On the constant in the reverse Brunn-Minkowski inequality for p-convex balls.

A.E. Litvak^{*}

Abstract

This note is devoted to the study of the dependence on p of the constant in the reverse Brunn-Minkowski inequality for p-convex balls (i.e. p-convex symmetric bodies). We will show that this constant is estimated as

$$c^{1/p} \le C(p) \le C^{\ln(2/p)/p},$$

for absolute constants c > 1 and C > 1.

Let $K \subset \mathbb{R}^n$ and 0 . K is called a*p* $-convex set if for any <math>\lambda, \mu \in (0, 1)$ such that $\lambda^p + \mu^p = 1$ and for any points $x, y \in K$ the point $\lambda x + \mu y$ belongs to K. We will call a *p*-convex compact centrally symmetric body a *p*-ball.

Recall that a *p*-norm on real vector space X is a map $\|\cdot\| : X \longrightarrow \mathbb{R}^+$ such that

 $1) ||x|| > 0 \quad \forall x \neq 0,$

2) $||tx|| = |t| ||x|| \quad \forall t \in \mathbf{R}, \ x \in X,$

3) $\forall x, y \in X \quad ||x+y||^p \le ||x||^p + ||y||^p$.

Note that the unit ball of p-normed space is a p-ball and, vice versa, the gauge of p-ball is a p-norm.

Recently, J. Bastero, J. Bernués, and A. Peña ([BBP]) extended the reverse Brunn-Minkowski inequality, which was discovered by V. Milman ([M]), to the class of p-convex balls. They proved the following theorem.

Theorem Let $0 . There exists a constant <math>C = C(p) \geq 1$ such

^{*}This research was supported by Grant No.92-00285 from United States-Israel Binational Science Foundation (BSF).

that for all $n \ge 1$ and all p-balls $A_1, A_2 \subset \mathbb{R}^n$, there exists a linear operator $u : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ with |det(u)| = 1 and

$$|uA_1 + A_2|^{1/n} \le C\Big(|A_1|^{1/n} + |A_2|^{1/n}\Big),$$
 (*)

where |A| denotes the volume of body A.

Their proof yields an estimate $C(p) \leq C^{\ln(2/p)/p^2}$. We will obtain a much better estimate for C(p), namely

Theorem 1 There exist absolute constants c > 1 and C > 1 such that the constant C(p) in (*) satisfies

$$c^{1/p} \le C(p) \le C^{\ln(2/p)/p}.$$

The proof of the Theorem ([BBP]) based on an estimate of the entropy numbers (see also [Pi]). We use the same idea, but obtain the better dependence of the constant on p.

Let us recall the definitions of the Kolmogorov and entropy numbers. Let $U: X \longrightarrow Y$ be an operator between two Banach spaces. Let k > 0 be an integer. The Kolmogorov numbers are defined by the following formula

$$d_k(U) = \inf \{ \|Q_S U\| \mid S \subset Y, \dim S = k \},\$$

where $Q_S : Y \longrightarrow Y/S$ is a quotient map. For any subsets K_1, K_2 of Y denote by $N(K_1, K_2)$ the smallest number N such that there are N points y_1, \ldots, y_N in Y such that

$$K_1 \subset \bigcup_{i=1}^N (y_i + K_2).$$

Denote the unit ball of the space X(Y) by $B_X(B_Y)$ and define the entropy numbers by

$$e_k(U) = \inf \left\{ \varepsilon > 0 \mid N(UB_X, \varepsilon B_Y) \le 2^{k-1} \right\}.$$

For *p*-convex balls $(0 <math>B_1, B_2 \subset \mathbb{R}^n$ we will denote the identity operator $id : (\mathbb{R}^n, \|\cdot\|_1) \longrightarrow (\mathbb{R}^n, \|\cdot\|_2)$ by $B_1 \longrightarrow B_2$, where $\|\cdot\|_i$ (i = 1, 2)is the *p*-norm, whose unit ball is B_i . **Theorem 2** Given $\alpha > 1/p - 1/2$, there exists a constant $C = C(\alpha, p)$ such that for any n and for any p-convex ball $B \subset \mathbb{R}^n$ there exists an ellipsoid $D \subset \mathbb{R}^n$ such that for every $1 \le k \le n$

$$max \{ d_k(D \longrightarrow B), e_k(B \longrightarrow D) \} \leq C(n/k)^{\alpha}.$$

Moreover, there is an absolute constant c such that

$$C(\alpha, p) \le \left(\frac{2}{p}\right)^{c/p} \left(\frac{1}{1-\delta}\right)^{8/\delta}, \text{ for } \alpha > \frac{3(1-p)}{2p}, \delta = \frac{3(1-p)}{2p\alpha}, p \le 1/2$$
(**)

and

$$C(\alpha, p) \le \left(\frac{2}{p}\right)^{c/p^2} \left(\frac{1}{1-\varepsilon}\right)^{\frac{2}{\varepsilon p^2}}, \quad for \quad \alpha > \frac{1}{p} - \frac{1}{2}, \quad \varepsilon = \frac{1/p - 1/2}{\alpha}. \quad (***)$$

Remark 1. In fact, in [BBP] Theorem 2 was proved with estimate (* * *). Using this result we prove estimate (**).

In the following $C(\alpha, p)$ will denote the best possible constant from Theorem 2.

The main point of the proof is the following lemma.

Lemma 1 Let $p,q,\theta \in (0,1)$ such that $1/q - 1 = (1/p - 1)(1 - \theta)$ and $\gamma = \alpha(1 - \theta)$. Then

$$C(\alpha, p) \le 2^{1/p} 2^{1/(1-\theta)} (e/(1-\theta))^{\alpha} C_{p\theta}^{1/(1-\theta)} C(\gamma, q)^{1/(1-\theta)} ,$$

where

$$C_{p\theta} = \frac{\Gamma(1+(1-p)/p)}{\Gamma(1+\theta(1-p)/p)\Gamma(1+(1-\theta)(1-p)/p)}, \ \ \Gamma \ is \ the \ gamma-function.$$

For reader's convenience we postpone the proof of this lemma.

Proof of Theorem 2: Take q = 1/2, $1 - \theta = p/(1-p)$. Then $C_{p\theta} = (1-p)/p$ and, consequently, by Lemma 1,

$$C(\alpha, p) \le c \left(\frac{e}{p}\right)^{\alpha} 2^{2/p} \left(\frac{1}{p}\right)^{1/p} C\left(\frac{\alpha p}{1-p}, 1/2\right).$$

Inequality (* * *) implies

$$C\left(\frac{\alpha p}{1-p}, 1/2\right) \le c\left(\frac{1}{1-\delta}\right)^{8/\delta}$$
, where $\delta = \frac{3(1-p)}{2p\alpha}$

Thus for $\alpha > 3(1-p)/(2p)$ and $p \le 1/2$ we obtain

$$C(\alpha, p) \le \left(\frac{2}{p}\right)^{c/p} \left(\frac{1}{1-\delta}\right)^{8/\delta}.$$

Proof of Theorem 1: By B. Carl's theorem ([C], or see Th. 5.2 of [Pi]) for any operator u between Banach spaces the following inequality holds

$$\sup_{k \le n} k^{\alpha} e_k(u) \le \rho_{\alpha} \sup_{k \le n} k^{\alpha} d_k(u) \, .$$

One can check that Carl's proof works in the *p*-convex case also and gives

$$\rho_{\alpha} \leq C^{1/p} (C\alpha)^{C\alpha}$$

for some absolute constant C. Let us fix $\alpha = 2/p$. Then, by Theorem 2, we have that for any p-convex body K there exists an ellipsoid D such that

$$\max\{e_n(D \longrightarrow B), \ e_n(B \longrightarrow D)\} \le C^{\ln(2/p)/p}$$

The standard argument ([Pi]) gives the upper estimate for C_p .

To show the lower bound we use the following example. Let B_p^n be a unit ball in the space l_p^n and B_2^n be a unit ball in the space l_2^n . Denote

$$A = \frac{|B_2^n|^{1/n}}{|B_p^n|^{1/n}} = \frac{\Gamma(3/2)\Gamma^{1/n}(1+n/p)}{\Gamma^{1/n}(1+n/2)\Gamma(1+1/p)} \ge C_0 \frac{n^{1/p-1/2}}{\sqrt{1/p}},$$

where C_0 is an absolute constant.

Consider a body

$$K = AB_p^n$$
.

We are going to estimate from below

$$\frac{|UB_2^n + K|^{1/n}}{|UB_2^n|^{1/n} + |K|^{1/n}} = \frac{|UB_2^n + K|^{1/n}}{2|B_2^n|^{1/n}}$$

for arbitrary operator $U : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ with $|\det U| = 1$.

To simplify the sum of bodies in the example let us use the Steiner symmetrization with respect to vectors from the canonical basis of \mathbb{R}^n (see, e.g., [BLM], for precise definitions). Usually the Steiner symmetrization is defined for convex bodies, but if we take the unit ball of l_p^n and any coordinate vector then we have the similar situation. The following properties of the Steiner symmetrization are well-known (and can be directly checked)

(i) it preserves the volume,

(ii) the symmetrization of sum of two bodies contains sum of symmetrizations of these bodies, and

(*iii*) given an ellipsoid UB_2^n , a consecutive application of the Steiner symmetrizations with respect to all vectors from the canonical basis results in the ellipsoid VB_2^n , where V is a diagonal operator (depending on U).

That means that in our example it is enough to consider a diagonal operator U with $|\det U| = 1$.

Let $b \in (0, 1)$ and P_1 be the orthogonal projection on a coordinate subspace of dimension n - 1. Then direct computations give for every r > 0

$$|UB_{2}^{n} + rB_{p}^{n}| \ge 2\int_{0}^{rb_{p}} |P_{1}UB_{2}^{n} + brP_{1}B_{p}^{n}|dx \ge 2rb_{p}|P_{1}UB_{2}^{n} + brP_{1}B_{p}^{n}|,$$

where $b_p = (p(1-b))^{1/p}$. Since $P_1 K = A B_p^{n-1}$, by induction arguments one has

$$UB_{2}^{n} + K \mid \geq \left(2Ab^{(k-1)/2}b_{p}\right)^{k} \mid P_{k}UB_{2}^{n} + b^{k}P_{k}K \mid,$$

where P_k is the orthogonal projection on an arbitrary n - k-dimensional coordinate subspace of \mathbb{R}^n . Choosing $b = \exp\left(-\frac{2}{kp}\right)$, P_k such that $|P_k U B_2^n| \ge |B_2^{n-k}|$ and k = [n/2] we get

$$C(p) \ge \frac{|UB_2^n + K|^{1/n}}{2|B_2^n|^{1/n}} \ge \frac{1}{2} \left(2Ae^{-1/p} \left(2/k \right)^{1/p} \right)^{k/n} \left(\frac{|B_2^{n-k}|}{|B_2^n|} \right)^{1/n}$$
$$\ge c_1 \sqrt{p^{1/2} \left(4/e \right)^{1/p}}$$

for sufficiently large n and an absolute constant c_1 . That gives the result for p small enough, i.e. $p \leq c_2$, where c_2 is an absolute constant. For $p \in (c_2, 1]$ the result follows from the convex case.

To prove Lemma 1 we will use the Lions-Peetre interpolation ([BL], [K]) with parameters $(\theta, 1)$.

Let us recall some definitions.

Let X be a quasi-normed space with an equivalent quasi-norms $\|\cdot\|_0$ and $\|\cdot\|_1$. Let $X_i = (X, \|\cdot\|_i)$.

Define $K(t, x) = \inf\{||x_0||_0 + t||x_1||_1 \mid x = x_0 + x_1\}$ and

$$||x||_{\theta,1} = \theta(1-\theta) \int_{0}^{+\infty} \frac{K(t,x)}{t^{1+\theta}} dt$$

for $\theta \in (0, 1)$.

The interpolation space $(X_0, X_1)_{\theta,1}$ is the space $(X, \|\cdot\|_{\theta,1})$.

Claim 1 Let $\|\cdot\|_0 = \|\cdot\|_1 = \|\cdot\|$ be p-norms on space X. Then

$$\frac{1}{C_{p\theta}} \|x\| \le \|x\|_{\theta,1} \le \|x\|$$

for every $x \in X$, with $C_{p\theta}$ as in Lemma 1.

Proof: $||x||_{\theta,1} \le ||x||$ since

$$\inf \{ \|x_0\|_0 + t \|x_1\|_1 \mid x = x_0 + x_1 \} \le \min(1, t) \|x\|$$

and

$$\|x\|_{\theta,1} = \theta(1-\theta) \int_{0}^{+\infty} \frac{K(t,x)}{t^{1+\theta}} dt \le \theta(1-\theta) \int_{0}^{+\infty} \frac{\min(1,t)}{t^{1+\theta}} \|x\| dt = \|x\|.$$

By *p*-convexity of norm $\|\cdot\|$ for $a = \frac{\|y\|}{\|x\|} \le 1$ we have

$$\frac{\|y\| + t\|x - y\|}{\|x\|} \ge a + t(1 - a^p)^{1/p} \ge \frac{t}{(1 + t^s)^{1/s}}, \text{ where } s = \frac{p}{1 - p}$$

Hence

$$K(t,x) = \inf \{ \|x_0\|_0 + t \|x_1\|_1 \mid x = x_0 + x_1 \} \ge \|x\| \frac{t}{(1+t^s)^{1/s}}$$

and

$$\frac{\|x\|_{\theta,1}}{\|x\|} \ge \theta(1-\theta) \int_0^{+\infty} \frac{dt}{(1+t^s)^{1/s}t^{\theta}} = B\left(\frac{1-\theta}{s}, \frac{\theta}{s}\right) \frac{\theta(1-s)}{s} =$$
$$= \frac{(\theta/s)\Gamma(\theta/s) ((1-\theta)/s)\Gamma((1-\theta)/s)}{(1/s)\Gamma(1/s)} = \frac{1}{C_{p\theta}},$$

where B(x, y) is the beta-function. This proves the claim.

Claim 2 Let $\|\cdot\|_0 = \|\cdot\|_1 = \|\cdot\|$ be norms on X. Then $\|x\|_{\theta,1} = \|x\|$ for every $x \in X$.

Proof: In case of norm $K(t, x) = \min(1, t) ||x||$. So, $||x||_{\theta, 1} = ||x||$.

The next statement is standard (see [BL] or [K]).

Claim 3 Let $X_i, Y_i \ (i = 0, 1)$ be quasi-normed spaces. Let $T : X_i \longrightarrow Y_i$ (i = 0, 1) be a linear operator. Then

$$||T: (X_0, X_1)_{\theta,1} \longrightarrow (Y_0, Y_1)_{\theta,1}|| \le ||T: X_0 \longrightarrow Y_0||^{1-\theta} ||T: X_1 \longrightarrow Y_1||^{\theta}.$$

Claim 4 Let X_i (i = 0, 1) be quasi-normed spaces. Then for every $N \ge 1$,

$$(l_1^N(X_0), l_1^N(X_1))_{\theta,1} = l_1^N((X_0, X_1)_{\theta,1})$$

with equal norms.

Proof: The conclusion of this claim follows from equality

$$K(t, x = (x_1, x_2, ..., x_N), l_1^N(X_0), l_1^N(X_1)) = \sum_{i=1}^N K(t, x_i, X_0, X_1).$$

Claim 5 Let X_i (i = 0, 1) be quasi-normed spaces, Y be a p-normed space. Let $T : X_i$ $(i = 0, 1) \longrightarrow Y$ be a linear operator. Then for every $k_0, k_1 \ge 1$

$$d_{k_0+k_1-1}(T:(X_0,X_1)_{\theta,1}\longrightarrow Y) \le C_{p\theta} \ d_{k_0}^{1-\theta}(T:X_0\longrightarrow Y) d_{k_1}^{\theta}(T:X_1\longrightarrow Y).$$

Proof: As in convex case ([P]), fix $\varepsilon > 0$. Consider a subspace $S_i \subset Y$ (i = 0, 1) such that dim $S_i < k_i$ and

$$\|Q_{S_i}T: X_i \longrightarrow Y/S_i\| \le (1+\varepsilon)d_{k_i}(T: X_i \longrightarrow Y).$$

Let $S = span(S_0, S_1) \subset Y$. Then dim $S < k_0 + k_1 - 1$ and

$$||Q_ST: X_i \longrightarrow Y/S|| \le ||Q_{S_i}T: X_i \longrightarrow Y/S_i||.$$

Note that quotient space of a p-normed space is again a p-normed one. Because of this, and by Claims 1 and 3,

$$\begin{aligned} \|Q_ST: (X_0, X_1)_{\theta,1} \longrightarrow Y/S\| &\leq C_{p\theta} \|Q_ST: (X_0, X_1)_{\theta,1} \longrightarrow (Y/S, Y/S)_{\theta,1}\| \leq \\ &\leq C_{p\theta} \|Q_ST: X_0 \longrightarrow Y/S\|^{1-\theta} \|Q_ST: X_1 \longrightarrow Y/S\|^{\theta} \leq \\ &\leq C_{p\theta} \|Q_{S_0}T: X_0 \longrightarrow Y/S_0\|^{1-\theta} \|Q_{S_1}T: X_1 \longrightarrow Y/S_1\|^{\theta} \leq \\ &\leq C_{p\theta} (1+\varepsilon)^2 d_{k_0} (T: X_0 \longrightarrow Y)^{1-\theta} d_{k_1} (T: X_1 \longrightarrow Y)^{\theta}. \end{aligned}$$

This completes the proof.

Proof of Lemma 1: Step 1.

Let D be an optimal ellipsoid such that

$$d_k(D \longrightarrow B) \le C(\alpha, p)(n/k)^{\alpha}$$
 and $e_k(B \longrightarrow D) \le C(\alpha, p)(n/k)^{\alpha}$

for every $1 \le k \le n$. Let $\lambda = C(\alpha, p)(n/k)^{\alpha}$.

Step 2.

Now denote the body $(B, D)_{\theta,1}$ by B_{θ} . By Claim 5 (applied for $k_0 = 1$), for every $1 \le k \le n$ we have

$$d_k(B_\theta \longrightarrow B) \le C_{p\theta} \| B \longrightarrow B \|^{1-\theta} (d_k(D \longrightarrow B))^{\theta} \le C_{p\theta} \lambda^{\theta}.$$

It follows from the definition of entropy numbers that B is covered by 2^{k-1} translates of λD with centers in \mathbb{R}^n . Replacing λD with $2\lambda D$ we can choose

these centers in *B*. Therefore there are 2^{k-1} points $x_i \in B$ $(1 \le i \le 2^{k-1})$ such that

$$B \subset \bigcup_{i=1}^{2^{k-1}} (x_i + 2\lambda D)$$

This means that for any $z \in B$ there is some $x_i \in B$ such that $||z - x_i||_D \leq 2\lambda$. Also, by *p*-convexity, $||z - x_i||_B \leq 2^{1/p}$. By taking the operator $u_x : \mathbb{R} \longrightarrow X$, $u_x t = tx$ for some fixed x, and applying Claim 3 (or see [BL], [BS]) it is clear that

$$||x||_{B_{\theta}} \le ||x||_{B}^{1-\theta} ||x||_{D}^{\theta}$$

Hence, for any $z \in B$ there exists $x_i \in B$ such that

$$||z - x_i||_{B_{\theta}} \le (2^{1/p})^{1-\theta} (2\lambda)^{\theta},$$

i.e.

$$e_k(B \longrightarrow B_{\theta}) \le 2^{(1-\theta)/p} (2\lambda)^{\theta}.$$

Thus, we obtain

$$d_k(B_\theta \longrightarrow B) \le C_{p\theta}\lambda^\theta$$
 and $e_k(B \longrightarrow B_\theta) \le 2^{\theta}2^{(1-\theta)/p}\lambda^\theta$

for every $1 \leq k \leq n$.

Step 3.

Lemma 2 Let $B \subset \mathbb{R}^n$ be a *p*-convex ball and $D \subset \mathbb{R}^n$ be a convex body. Let $0 < \theta < 1$ and $B_{\theta} = (B, D)_{\theta,1}$. Then there exists a *q*-convex body B^q such that $B_{\theta} \subset B^q \subset 2^{1/q}B_{\theta}$, where $1/q - 1 = (1/p - 1)(1 - \theta)$.

Proof : Take the operator $U: l_1^2(\mathbb{R}^n) \longrightarrow \mathbb{R}^n$ defined by U((x,y)) = x + y. Since

$$||x+y||_B \le 2^{1/p-1} (||x||_B + ||y||_B)$$
 and $||x+y||_D \le (||x||_D + ||y||_D)$

and by Claims 3, 4 we have

$$\|x+y\|_{B_{\theta}} \le 2^{(1-\theta)(1/p-1)} \left(\|x\|_{B_{\theta}} + \|y\|_{B_{\theta}} \right).$$

But by the Aoki-Rolewicz theorem for every quasi-norm $\|\cdot\|$ with the constant C in the quasi-triangle inequality there exists a q-norm

$$\|\cdot\|_q = \inf\left\{\left(\sum_{i=1}^n \|x_i\|^q\right)^{1/q} \mid n > 0, \ x = \sum_{i=1}^n x_i\right\}$$

such that $||x||_q \leq ||x|| \leq 2C ||x||_q$ with q satisfying $2^{1/q-1} = C$ ([KPR], [R], see also [K], p.47).

Thus, $B_{\theta} \subset B^q \subset 2^{1/q} B_{\theta}$, where B^q is a unit ball of q-norm $\|\cdot\|_q$. \Box

Remark 2. Essentially, Lemma 2 goes back to Theorem 5.6.2 of [BL]. However, the particular case that we need is simpler and we are able to estimate the constant of equivalence.

Note that Lemma 2 can be easily extended to the more general case:

Lemma 2' Let $B_i \subset \mathbb{R}^n$ be a p_i -convex bodies for i = 0, 1 and $B_{\theta} = (B_0, B_1)_{\theta,1}$. Then there exists a q-convex body B^q such that $B_{\theta} \subset B^q \subset 2^{1/q}B_{\theta}$, where

$$\frac{1}{q} = \frac{1-\theta}{p_0} + \frac{\theta}{p_1}.$$

Remark 3. N. Kalton pointed out to us that the interpolation body $(B, D)_{\theta,1}$ between a *p*-convex *B* and an ellipsoid *D* is equivalent to some *q*-convex body for any $q \in (0, 1]$ satisfying

$$1/q - 1/2 > (1/p - 1/2)(1 - \theta)$$
.

To prove this result one have to use methods of [Kal] and [KT]. Certainly, with growing q the constant of equivalence becomes worse.

Step 4.

By definition of $C(\alpha, p)$ for B^q and $\gamma = \alpha(1 - \theta)$ there exists an ellipsoid D_1 such that for every $1 \le k \le n$

$$d_k(D_1 \longrightarrow B^q) \le C(\gamma, q)(n/k)^{\gamma}$$
 and $e_k(B^q \longrightarrow D_1) \le C(\gamma, q)(n/k)^{\gamma}$.

By the ideal property of the numbers d_k , e_k and because of the inclusion $B_\theta \subset B^q \subset 2^{1/q} B_\theta$, for every $1 \le k \le n$

$$d_k(D_1 \longrightarrow B_\theta) \le 2^{1/q} C(\gamma, q) (n/k)^{\gamma}$$
 and $e_k(B_\theta \longrightarrow D_1) \le C(\gamma, q) (n/k)^{\gamma}$.

Step 5.

Let $a = 1 + [k(1 - \theta)]$. Using multiplicative properties of the numbers d_k , e_k we get

$$d_{k}(D_{1} \longrightarrow B) \leq d_{k+1-a}(D_{1} \longrightarrow B_{\theta})d_{a}(B_{\theta} \longrightarrow B)$$

$$\leq C_{p\theta}\lambda^{\theta}2^{1/q}C(\gamma,q)(n/k)^{\gamma}\left(\frac{1}{(1-\theta)^{1-\theta}\theta^{\theta}}\right)^{\alpha}$$

$$\leq C(\alpha,p)^{\theta}\left(\frac{e}{1-\theta}\right)^{\alpha(1-\theta)}C_{p\theta}2^{1/q}C(\gamma,q)(n/k)^{\alpha}$$

and

$$e_{k}(B \longrightarrow D_{1}) \leq e_{k+1-a}(B \longrightarrow B_{\theta})e_{a}(B_{\theta} \longrightarrow D_{1})$$

$$\leq 2^{\theta}2^{(1-\theta)/p}\lambda^{\theta}C(\gamma,q)(n/k)^{\gamma}\left(\frac{1}{(1-\theta)^{1-\theta}\theta^{\theta}}\right)^{\alpha}$$

$$\leq C(\alpha,p)^{\theta}\left(\frac{e}{1-\theta}\right)^{\alpha(1-\theta)}2^{\theta}2^{(1-\theta)/p}C(\gamma,q)(n/k)^{\alpha}.$$

By minimality of $C(\alpha, p)$ and since $1/q \le 1 + (1 - \theta)/p$ we have

$$C(\alpha, p) \le C(\alpha, p)^{\theta} \left(\frac{e}{1-\theta}\right)^{\alpha(1-\theta)} C_{p\theta} 2^{1-\theta/p} 2C(\gamma, q) (n/k)^{\alpha}.$$

That proves Lemma 1.

Acknowledgement. I want to thank Prof. E. Gluskin and Prof. V. Milman for their great help, and to thank Prof. N. Kalton for his useful remarks.

References

[BBP] J. Bastero, J. Bernués, A. Peña, An extension of Milman's reverse Brunn-Minkowski inequality, GAFA, 5, no. 3, 572-581, 1995.

- [BS] C. Bennett, R. Sharpley, Interpolation of Operators, Academic Press, Orlando, 1988.
- [BL] J. Bergh, J. Löfström, Interpolation spaces. An introduction, Springer-Verlag, 223, Berlin Heildeberg, 1976.
- [BLM] J. Bourgain, J. Lindenstrauss and V. Milman, *Estimates related to Steiner symmetrizations*, Geometrical aspects of functional analysis, Israel Seminar, 1987–88, Lect. Notes in Math. 1376, Springer-Verlag, 264-273, 1989.
- [C] B. Carl, Entropy numbers, s-numbers, and eigenvalue problems, J. Funct. Anal. 41, no. 3, 290–306, 1981.
- [Kal] N.J. Kalton, Convexity, type and the three space problem, Studia Math., Vol. 69, 247-287, 1981.
- [KPR] N.J. Kalton, N.T. Peck, J.W. Roberts, An F-space sampler, London Mathematical Society Lecture Note Series, 89, Cambridge University Press, Cambridge-New York, 1984.
- [KT] N. Kalton, Sik-Chung Tam, Factorization theorems for quasi-normed spaces, Houston J. Math. 19, 301-317, 1993.
- [K] H. König, Eigenvalue Distribution of Compact Operators, Birkhäuser, 1986.
- [M] V.D. Milman, Inégalité de Brunn-Minkowsky inverse et applications á la théorie locale des espaces normés, C.R. Acad. Sci. Paris 302, Sér 1, 25-28, 1986.
- [P] A. Pietch, *Operator Ideals*, North-Holland, Berlin, 1979.
- [Pi] G. Pisier, The Volume of Convex Bodies and Banach Space Geometry, Cambridge University Press, Cambridge 1989.
- [R] S. Rolewicz, Metric linear spaces, Monografie Matematyczne, Tom. 56. [Mathematical Monographs, Vol. 56] PWN-Polish Scientific Publishers, Warsaw, 1972.