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Abstract

We extend the recent results of R. Lata la and O. Guédon about
equivalence of Lq-norms of logconcave random variables (Kahane-
Khinchin’s inequality) to the quasi-convex case. We construct ex-
amples of quasi-convex bodies Kn ⊂ IRn which demonstrate that this
equivalence fails for uniformly distributed vector on Kn (recall that
the uniformly distributed vector on a convex body is logconcave). Our
examples also show the lack of the exponential decay of the “tail” vol-
ume (for convex bodies such decay was proved by M. Gromov and
V. Milman).

1 Introduction

It turned out that many crucial results of the asymptotic theory of finite
dimensional spaces hold also in the quasi-convex case. It is somewhat sur-
prising since the first proofs of most of theorems substantially used convexity
and duality. Because using convexity and duality in the quasi-convex setting
lead to the weak results, extensions to this case demand development of the
new methods. As an example of one of the difficulties arising in dealing with
quasi-convex bodies let us mention that, contrary to the convex case, inter-
section of the p-convex body with affine subspace (or any convex set) is not
necessarily p-convex set and even is not necessarily connected set. This is an
obvious remark, but it can be important when one works with the logconcave
measure which is known to concentrate on some affine subspace.

∗This research was partially supported by Grant No.92-00285 from U.S.–Israel BSF.
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In this note we extend the recent results of R. Lata la ([La]) and O. Guédon
([Gu]) about equivalence of Lq-norms of logconcave random variables (Kahane-
Khinchin’s inequality) to the quasi-convex case. Both theorems seem to be
an important result of the asymptotic theory. See e.g. [MP], where the par-
ticular case of the theorem was proved and used. The Lata la’s theorem as
well as our extension of it was already used in [LMS].

Of course not every result of the theory admits an extension to the quasi-
convex case. In the last section we provide examples which illustrate why
certain results are not possible to extend.

Let us introduce several definitions.
Recall that a set K is said to be quasi-convex if there is a constant C such

that K + K ⊂ CK, and given a p ∈ (0, 1], a body K is called p-convex if for
any λ, µ > 0 satisfying λp + µp = 1 and for any points x, y ∈ K the point
λx+µy belongs to K. Note that for the gauge ‖·‖ = ‖·‖K associated with the
quasi-convex (resp. p-convex) body K one has ‖x + y‖ ≤ C max{‖x‖, ‖y‖}
(resp. ‖x + y‖p ≤ ‖x‖p + ‖y‖p ) for all x, y ∈ IRn and this gauge is called the
quasi-norm (resp. p-norm) if K is a compact centrally-symmetric body. In
particular, every p-convex body K is also quasi-convex and K + K ⊂ 21/pK.
A more delicate result is that for every quasi-convex body K, with the gauge
‖ · ‖K satisfying ‖x + y‖K ≤ C (‖x‖K + ‖y‖K) , there exists a q-convex body
K0 such that K ⊂ K0 ⊂ 2CK, where 21/q = 2C. This is the Aoki-Rolewicz
theorem ([KPR], [R], see also [Kön], p.47). For an additional properties of
p-convex sets see [KPR].

Let us recall that the definition of the seminorm (quasi-seminorm, p-
seminorm) can be obtained from the definition of the norm (quasi-norm,
p-norm) by omitting the condition: ‖x‖ = 0 implies x = 0.

Given body K ⊂ IRn we denote its n-dimensional volume by |K|.
Below we consider Borel measures only. A Borel measure µ on IRn is

called a logconcave measure if for every Borel subsets B, K of IRn and all
0 < λ < 1

µ∗ (λB + (1− λ)K) ≥ µ(B)λµ(K)1−λ,

where
µ∗ (B) = sup {µ (K) | K ⊂ B, K is compact}

for every B ⊂ IRn. We refer to [Bor1], [Bor2], [Pr] for basic properties of
logconcave measures.
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We say that a random vector Y with values in IRn is logconcave if the
distribution of Y is logconcave.

For a random vector Y on IRn and a quasi-seminorm ‖ · ‖ on IRn we
denote ‖Y ‖q = (E ‖Y ‖q)1/q for non-zero q, and ‖Y ‖0 = limq→0 ‖Y ‖q =
exp (E ln ‖Y ‖).

The Kahane-Khinchin’s inequality says that for every q, s ∈ (0,∞) there
exists a constant Cq,s, depending on q, s only, such that ‖Y ‖q ≤ Cq,s ‖Y ‖s

for every seminorm ‖ · ‖ and every logconcave vector Y on IRn. Recently,
R. Lata la ([La]) demonstrated that the constant in this inequality can be
taken independent on s, i.e. there exists a constant Cq, depending on q
only, such that ‖Y ‖q ≤ Cq ‖Y ‖0 . Let us mention that for the Steinhaus
random vector such equivalence was proved by Ullrich ([U]). Furthermore,
using a different method, O. Guédon ([Gu]) has extended Lata la’s result to
the negative exponent: ‖Y ‖1 ≤ C

′
q ‖Y ‖q for every q ∈ (−1, 0], where C

′
q =

4e
1+q

. His paper helped us to realize that an extension to the negative exponent
can be done also using Lata la’s method. We adapt Lata la’s methods to prove
both inequalities for p-seminorm and for q ∈ (−p,∞).

Theorem 1.1 Let p ∈ (0, 1] and q1 ≥ 0 ≥ q > −p. Let Y1, . . . , Yk be
independent logconcave random vectors on IRn. Let ‖ · ‖ be p-seminorm on
IRn. Then ∥∥∥∥∥

k∑
i=1

Yi

∥∥∥∥∥
q1

≤ max {1, q1} · C(p, q) · Cp ·
∥∥∥∥∥

k∑
i=1

Yi

∥∥∥∥∥
q

,

where C(p, q) = 1 for q ≥ −p/2, C(p, q) = (p + q)1/q for q < −p/2, Cp =

(2/p)c/p with an absolute constant c.

Applying this theorem to the uniformly distributed on a convex body K
vector, i.e. for the vector Y with Pr (Y ∈ B) = |B ∩K|/|K|, we get

Corollary 1.2 Let ‖ · ‖ be a p-seminorm on IRn. Let K be a convex body
with non-zero volume |K|. Then for every q1 ≥ 1, q ∈ (−p, 0)

1

q1 · Cp

(∫
K
‖x‖q1dµ(x)

)1/q1

≤
∫

K
‖x‖dµ(x) ≤ CpC(p, q)

(∫
K
‖x‖qdµ(x)

)1/q

,

where dµ(x) = dx/|K|, C(p, q) and Cp as in Theorem 1.1.
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Let us note, that for ‖ · ‖ being a linear functional and q = 0 the right
hand side inequality was proved by V. Milman and A. Pajor ([MP]). In the
last section we construct examples showing that the condition of convexity
in this Corollary can not be replaced by the condition of p-convexity even
in the case of linear functional. These examples also show the lack of the
exponential decay of the “tail” volume (for convex bodies such decay was
proved by M. Gromov and V. Milman in [GrM] (see also [Bou], [MS])).

2 Proof of the extension of Lata la’s theorem

Let C be some constant. We will use the term C-quasi-seminorm for the
quasi-seminorm ‖ · ‖ if C is the constant of quasi-convexity of ‖ · ‖, i.e.
‖x + y‖ ≤ C(‖x‖+ ‖y‖) for every x and y. Analogously, a body K is said to
be C-quasi-convex if K + K ⊂ CK.

Given body B ⊂ IRn we denote IRn \B by Bc.
We follow Lata la’s scheme of the proof. First we prove a straightforward

extension to the quasi-convex case of Borel’s lemma ([Bor1], see also [MS],
App. 3).

Lemma 2.1 Let t, C > 0. Let µ be a logconcave probability measure. Let B
be a C-quasi-convex symmetric Borel set. Then for every λ ≥ C

µ ((λB)c) ≤ µ(tB)

(
1− µ(B)

µ(tB)

) λ+tC
(1+t)C

.

Proof: Set α = C 1+t
λ+tC

≤ 1. Then by C-quasi-convexity of B one has
B − (1 − α)tB ⊂ C (1 + t (1− α)) B = αλB. That means (1− α) tB +
α(λB)c ⊂ Bc. Using logconcavity of µ we get 1 − µ (B) = µ ((B)c) ≥
µ ((λB)c)

α
µ (tB)1−α, which implies the lemma. 2

The following lemma is the crucial step in the proof of Theorem 1.1. To
prove it we adapt ideas of [La] to the p-convex case.

Lemma 2.2 Let µ be a logconcave probability measure. Let B be a Borel
p-convex, symmetric set such that µ(mB) ≥ (1 + δ)µ(B) for some m > 1
and δ > 0. Then for every ε ∈ (0, 1)

µ(εB) ≤ f(mp/δ) · εp · µ(B),
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where f(x) = max
{

32
p

ln (x/2); 64
p

ln (16/p)
}
.

Remark. In the case p = 1 one can take f(x) = max {16 ln (x/2); 50}.

Proof of the lemma: Let us note first that when lemma is proved for
some value δ0 it automatically holds for all δ > δ0. Therefore, it is enough
to prove the lemma with fixed m > 1 and δ ≤ δ0 := (8mp/p) · ln (16/p).

Denote

z =
2δ

mp
and α =

µ(εB)

εpµ(B)
.

If α ≤ 4z then µ(εB) ≤ 4zεpµ(B) ≤ 8 (δ0/m
p) εpµ(B) ≤ f (mp/δ) εpµ(B)

and we are done. In the case εp > p4p−1/ (2 + p) one has f(mp/δ)εp ≥ 1 and
assertion of the lemma follows.

Therefore we may assume

(1) εp ≤ p4p

4(2 + p)
and α > 4z.

For u > 0, w > 0 denote B(u; w) = {x | up − wp < ‖x‖p < up + wp} ,
where ‖ · ‖ is the gauge of B.

Given ε satisfying (1) there is A > 1 such that

(2) µ (B (A; ε)) ≥ zεpµ (B) .

Indeed, let

l =
[
mp

2εp

]
and up

j = 1 +
2j + 1

2l
(mp − 1) .

Clearly, εp < 1/2. So for every point x ∈ ((mB) \B) there is 0 ≤ j ≤ l − 1
such that x ∈ B(uj; ε), i.e.

⋃l−1
j=0 B(uj; ε) ⊃ ((mB) \B) . Thus

l−1∑
j=0

µ (B (uj; ε)) ≥ µ ((mB) \B) ≥ δµ (B)

and, by definitions of z and l, δ/l ≥ zεp from which (2) follows.
Denote γ = 2−1+1/p. Since for every λ ∈ [0, 1], u > 0, w > 0

λB(u; w) + (1− λ) wB ⊂ B(λu; γw),
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we get

(3) µ (B(λu; γε)) ≥ µ (B(u; ε))λ µ (εB)1−λ .

Using (1)-(3) we obtain µ (B(1; γε)) ≥ µ (B(A; ε))1/A µ (εB)1−1/A ≥ zεpµ (B).
Choose

w = γ2ε = 4−1+1/pε, v =
2wp (1− wp)−1+1/p

p
and l =

[
p (1− wp)

2wp

]
≥ 1.

Denote Bj = B(jv, w), 1 ≤ j ≤ l, and β = (z/α)v. Then the sets Bj are
mutually disjoint and Bj ⊂ B \ εB.

Since by (3): µ (Bj) ≥ µ (B(1; γε))jv µ (εB)1−jv ≥ αεpβjµ (B) , we obtain

µ (B) ≥
l∑

j=1

µ (Bj) + µ (εB) ≥ αεpµ (B)
l∑

j=0

βj.

Using (1) we get

α ≤ ε−p 1− β

1− β1+l
≤ 2ε−pv ln

α

z
≤ 16

p4p
ln

α

z
.

Hence α ≤ 32
p

ln
(
max

{
(16/p)2 ; 1/z

})
, which concludes the proof. 2

The following theorem follows from the lemma in a way similar to that
in the convex case (cf. [La]).

Theorem 2.3 Let µ be a logconcave probability measure. Let B be a Borel p-
convex symmetric set such that µ(B) < 1. Then there is an absolute constant
c such that for every t ∈ [0, 1]

µ(tB) ≤ c

p
· ln (2/p) · tp · (1− ln µ(Bc))p · µ(B).

Proof: Denote γ := µ (B). The assertion of the corollary is obviously true

for γ = 0. Let us consider the case γ ∈
(
0, 2−

√
2
)
.

By Borel’s theorem ([Bor1], [Bor2]) every logconcave probability mea-
sure on IRn is concentrated on some k-dimensional affine subspace E of IRn.
Moreover, on this subspace it is absolutely continuous with respect to the
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corresponding k-dimensional Lebesgue measure on E. So, for every Borel
p-convex set B with µ(B) > 0 we have supt µ(tB) = 1. Therefore we can
choose m ≥ 1 such that

µ (mB) ≤ 2
1− γ

2− γ
and µ (2mB) > 2

1− γ

2− γ
.

By Lemma 2.1 and p-convexity of B, for every λ ≥ C = 21/p

µ ((λmB)c) ≤ µ (2mB)

(
1− µ (mB)

µ (2mB)

)(λ+2C)/(3C)

≤
(

1− γ

2

)k

,

where k = λ/(3C). Choose λ = 3C
(
ln 1−γ

2

)
/ (ln (1− γ/2)) < 6C ln 6

γ
, then

µ (λmB) ≥
(
1− (1− γ/2)k

)
µ (mB) /γ ≥

(
1 +

1− γ

2γ

)
µ (mB) .

Let f be the function defined in Lemma 2.2 and A := f (2λpγ/ (1− γ)) =
64
p

ln (32/p). Then Lemma 2.2 implies µ (tmB) ≤ Atpµ (mB) for every t ≤ 1.

Therefore, if µ (mB) < 2µ (B) then µ (tB) ≤ µ (tmB) ≤ 2Atpµ (B) for
every t ∈ (0, 1). If µ (mB) ≥ 2µ (B) then

mp ≤ A
µ (mB)

µ (B)
≤ 2A

(
µ (mB)

µ (B)
− 1

)
.

Using Lemma 2.2 again, we obtain µ (tB) ≤ f (2A) · tp ·µ (B) ≤ A · tp ·µ (B) .
That proves the corollary for γ ≤ 2−

√
2.

In the case γ ≥ 2−
√

2, by Lemma 2.1, we have for C = 21/p

0 < 1− γ = µ (λ (B/λ)c) ≤
(

1− µ (B/λ)

µ (B/λ)

)λ/(2C)

.

Thus for λ = 2C log2 (1/ (1− γ)) we get µ (B/λ) ≤ 2/3 and, by above,
µ(tB) ≤ A · tp · λp · µ (B/λ) , which completes the proof. 2

Proof of Theorem 1.1: Since the convolution of logconcave measures
is also logconcave ([Bor1], [Bor2], [Pr], see also [DKH] where corresponding
result was proved for logconcave functions), it is enough to prove the theorem
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for the case k = 1. Let Y = Y1 and µ is distribution of Y . Let B be the unit
ball of ‖ · ‖. If µ({x | ‖x‖ = 0}) = 1 there is nothing to prove. Otherwise,
by Lemma 2.1, µ({x | ‖x‖ = 0}) = 0. Therefore we can choose m such that
µ(mB) ≤ 2/3 and µ(2mB) > 2/3.

Then, by Theorem 2.3, µ(smB) ≤ Cps
p for s ∈ (0, 1) and Cp = c0

p
ln (2/p)

with an absolute constant c0. Thus for q ∈ (−p, 0) one has

E ‖Y ‖q = −qmq
∫ ∞

0
sq−1µ (‖Y ‖ < ms) ds ≤ mq

(
−Cp

q

q + p
+ 1

)
.

Therefore there is an absolute constant c such that

‖Y ‖q ≥
{

(p/2)c/p m for q ∈ [−p/2, 0),

(p/2)c/p (p + q)−1/q m for q ∈ (−p,−p/2).

On the other hand for q > 0: E ‖Y ‖q = q (2m)q ∫∞
0 sq−1µ ((s2mB)c) ds.

Since µ(2mB) ≥ 2/3, by Lemma 2.1 and p-convexity of ‖ · ‖ we obtain

‖Y ‖q
q ≤ q (2m)q

(∫ C

0
sq−1ds +

∫ ∞

C
sq−12−

s
2C ds

)
≤ 2qCqmq (1 + q2qΓ (q)) ,

where C = 2−1+1/p and Γ(·) is the Gamma function. Thus ‖Y ‖q ≤ c Cq m for
q ≥ 1 and ‖Y ‖q ≤ ‖Y ‖1 ≤ c C m for q < 1, where c is an absolute constant.
That proves the theorem. 2

We end this section with another corollary of Theorem 1.1.

Corollary 2.4 Let ‖ · ‖ be a p-seminorm on IRn. Let Cp be as in the theo-
rem. Denote the Euclidean sphere on IRn by Sn−1 and the rotation invariant
normalized measure on Sn−1 by ν. Denote

Mq =
(∫

Sn−1
‖x‖qdν(x)

)1/q

and M0 = exp
(∫

Sn−1
ln ‖x‖dν(x)

)
.

Then for every q1 ≥ 2, q ∈ (−p,−p/2)

Mq1

q1 · Cp

≤ M2 ≤ Cp ·M−p/2 ≤ Cp (p + q)1/q Mq.

This corollary immediately follows from Corollary 1.2 and integration
over the Euclidean ball.

Let us note that for seminorms and q ≥ 1 inequality Mq ≤ c
√

qM1 is

known and, moreover, Mq/M1 ≈ max{1, b
√

q/n} for b = maxSn−1 ‖x‖ and

q ∈ [1, n] (see Statement 3.1 of [LMS]).
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3 Decay of “tail” volume

By “tail” volume of a body we mean the volume of difference of the body
and some symmetric strip.

In the eighties M. Gromov and V. Milman investigated the law of decay
of the “tail” volume when the width of the strip grows up. They proved
the exponential decay of the “tail” volume ([GrM], see also [Bou], [MS]).
For every p ∈ (0, 1) we construct examples of p-convex bodies without the
exponential decay of the “tail” volume. Moreover, our examples show lack of
any decay of the “tail” volume that is independent of the dimension. Thus,
result of M. Gromov and V. Milman can not be extended to p-convex bodies
in any sense. Our examples show also that the condition of the convexity in
Corollary 1.2 is essential.

We need more definitions and notations.
Given set K ⊂ IRn, the p-convex hull of K, p-conv K, is the intersection

of all p-convex sets containing K.
It was shown by J.Bastero, J.Bernués, and A.Peña ([BBP]) that

p-conv K =

{
m∑

i=1

λixi | m ∈ IN, xi ∈ K, λi ≥ 0,
m∑

i=1

λp
i = 1

}

=

{
m∑

i=1

λixi | m ∈ IN, xi ∈ K, λi ≥ 0, 0 <
m∑

i=1

λp
i ≤ 1

}
.

In this section it will be more convenient for us to represent IRn+1 as
IR × IRn = {(x, y) | x ∈ IR, y ∈ IRn} . So we fix one direction. Given a < b
by S(a; b) we denote the strip {(x, y) ∈ IRn+1 | a ≤ x ≤ b} and S±(a; b) =
S(a; b) ∪ S(−b;−a).

Given vector y = {yi}n
i=1 ∈ IRn we denote the Euclidean norm

√∑
y2

i of
y by |y|.

Let v, w be positive numbers. Let p ∈ (0, 1) and n > 0 be an integer.
Throughout this section by Vn we will denote the volume of the n-dimensional
Euclidean ball, and by Bp = Bp(v; w; n) we will denote the following p-convex
body

Bp = p-conv
{

(x, y) ∈ IRn+1 | x ∈ IR, |x| ≤ v, y ∈ IRn, |y| ≤ f(x)
}
⊂ IRn+1,

where

f(x) =

{
1 for |x| ≤ 1,
w otherwise.
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The following lemma provides estimates of the volume of Bp.

Lemma 3.1 Let p ∈ (0, 1), w ∈ (3/4, 1) and v > 3/2. There is an ab-
solute constant c ∈ (0, 1) such that if 1 − wp < βp := c1/(1−p) then for

x0 = max
{

3/2; 4 (1− wp)1/p v
}

the following holds

|Bp ∩ S (3/2; x0)| ≤ 4 · Vn ·
v

n1/p
,

and Bp ∩ S (x0; v) = {(x, y) ∈ IRn+1 | x0 ≤ x ≤ v, |y| ≤ w} (thus its volume
|Bp ∩ S (x0; v)| = Vn · (v − x0) · wn).

For reader’s convenience we postpone the proof of this lemma.
Let us recall the result of M. Gromov and V. Milman ([GrM]).
Let K be a centrally-symmetric compact convex body in IRn+1. Denote

Vt (K) =
∣∣∣K ∩ S± (t;∞)

∣∣∣ = |K| − |K ∩ S (−t; t)| .

Let m be the median of K, i.e. a number which satisfies Vm (K) = |K| /2
(precisely speaking, m is the median of the function f ((x, y)) = |x| on the
probability space (IR× IRn, Pr) with Pr ((x, y) ∈ B) = |B ∩K|/|K|).

M. Gromov and V. Milman ([GrM]) proved that there is an absolute
constant c such that

Vt (K) ≤ 1 + e

2
exp

(
− c

1 + e

t

m

)
|K|

for every t ≥ (1 + e)m.
Lemma 3.1 yields the following corollary.

Corollary 3.2 Let p ∈ (0, 1). Let A > 0. Then for large enough n ∈ IN
there exists a centrally-symmetric p-convex body Bp ⊂ IRn+1 with median m
such that there is t ≥ Am for which

Vt (Bp) ≥ 1

32
|Bp| .

Proof: Let βp be as in Lemma 3.1. Let n be large enough to satisfy

n > (32A)p , α := ln
n1/p

4
< nβp,

(
1− α

n

)n

≥ 2

n1/p
.

10



Put v = n1/p

16
and w = 1 − α

n
. Let Bp = Bp(v; w; n) ⊂ IRn+1 be as in

Lemma 3.1. Then by choice of Bp and by the lemma, one has |Bp ∩ S (−1; 1)| =
2Vn, |Bp ∩ S± (1; 3/2)| ≤ Vn, |Bp ∩ S± (3/2; x0)| ≤ Vn/2, |Bp ∩ S± (x0,∞)| ≤
Vn/2, where x0 was defined in Lemma 3.1. Hence m ≤ 1. Take t = v/2. Then
t/m > A and t > x0, since 1− wp ≤ α

n
≤ ln n

n
. Thus

Vt (Bp) =
∣∣∣Bp ∩ S± (t; v)

∣∣∣ = 2 · Vn · (v − t) · wn ≥ Vn · v ·
2

n1/p
≥ 1

32
|Bp| ,

which proves the corollary. 2

Proof of Lemma 3.1: Let L = {(x, y) ∈ IR2 | 0 ≤ x ≤ v, 0 ≤ y ≤ f(x)} .
Let

G =
{
λ(1, 1) + (1− λp)1/p (v, w) | λ ∈ [0, 1]

}
⊂ IR2

be p-convex curve between points (1, 1) and (v, w). By definition of p-
convexity we have K := p-conv L = L ∪ {λz | z ∈ G, λ ∈ [0, 1]} . Clearly, Bp

is the rotation body of K ∪ −K. We will show that

K ⊂
{

(x, y) ∈ IR2 | 0 ≤ x ≤ v, 0 ≤ |y| ≤ g(x)
}

,

where

g(x) =


1 for x < 3/2,(
1− xp

4pvp

)1/p
for 3/2 ≤ x ≤ x0,

w for x0 < x ≤ v,

and x0 = max
{

3/2; 4 · (1− wp)1/p · v
}

. Since

∫ x0

3/2

(
1− xp

4pvp

)n/p

dx ≤
∫ ∞

0
exp

(
− nxp

p4pvp

)
dx =

4 · v · p1/p

n1/p
Γ (1 + 1/p) ≤ 4

v

n1/p
,

where Γ is the Gamma function, the result follows.
Let (x, y) ∈ G. Then{

x = x(λ) = λ + (1− λp)1/p v,

y = y(λ) = λ + (1− λp)1/p w.

Hence (v − w)p = (vy − xw)p + (x− y)p . Therefore,

yp = yp

(
v − w

vy − xw

)p

−yp

(
x− y

vy − xw

)p

=

(
1 +

xw − yw

vy − xw

)p

−xp

vp

(
xyv − vy2

xyv − x2w

)p

.
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Assume (x, y) ∈ G be such that y ≥ w and 3/2 ≤ x ≤ x0 = 4 (1− wp)1/p v
(if for every x ≥ 3/2 one has y ≤ w, we are done).

Then y ≥ 1/2 and vy ≥ 2xw as long as 1 − wp ≤ 8−p. So, x−y
vy−xw

≤ 4·x
v

.

Since x ≥ 3
2
y, we have xyv−vy2

xyv−x2w
> 1/3. Hence

yp ≤
(

1 + 4
xw

v

)p

− 1

3p

xp

vp
≤ 1 + 4

xw

v
− 1

3p

xp

vp
≤ 1− xp

4pvp

if

γp :=
(

1

4

(
1

3p
− 1

4p

)) p
1−p

· 1

4p
> 1− wp.

Obviously, γp ∈ (c1/(1−p), 8−p) for some absolute constant c. Therefore if
1−wp < c1/(1−p) then for every (x, y) ∈ G satisfying y ≥ w, 3/2 ≤ x ≤ x0 =

4 (1− wp)1/p v we obtain y ≤ (1− (x/(4v))p)
1/p

.

Due to behavior of the function y = y(λ) and since wp = 1− xp
0

4pvp , we get
that if (x, y) ∈ G with x ≥ x0 then y ≤ w. That proves the lemma. 2

The following corollary shows that the condition of convexity in Corol-
lary 1.2 can not be replaced by the condition of p-convexity even if the
seminorm is just the absolute value of the first coordinate.

Corollary 3.3 Let p ∈ (0, 1). There are centrally-symmetric p-convex bod-
ies K = K (n) ⊂ IRn+1 = {(x, y) | x ∈ IR, y ∈ IRn} such that for every
q ∈ (0,∞) if n is sufficiently large then

1

21/q
(3/8)1+1/q

(
1

1 + q

)1/q (
n

ln n

)1/p

(ln n)−
1
qp ≤

(
1

|K|

∫
K
|x|qd(x, y)

)1/q

≤

≤ 21/q (3/8)1+1/q

(
1

1 + q

)1/q (
n

ln n

)1/p

(ln n)−
1
qp .

Remark. This result demonstrates the existence of the centrally-symmetric
p-convex bodies K = K (n) ⊂ IRn+1 such that for every s < q from (0,∞) if
n is large enough then(

1

|K|

∫
K
|x|qd(x, y)

)1/q /(
1

|K|

∫
K
|x|sd(x, y)

)1/s

> Cs,q (ln n)
1
p( 1

s
− 1

q ) ,

12



where Cs,q depends on s, q only.

Proof: Let βp be as in Lemma 3.1. Let n be large enough. Put

v =
3

8

(
n

ln n

)1/p

and w = 1− ln n

p · n
> 1− βp.

Let K = Bp = Bp(v; w; n) ⊂ IRn+1 be as in Lemma 3.1. Then, repeating
the proof of the previous corollary, we obtain 2Vn < |K| < 4Vn and, since

1 − w > 1 − wp > p(1 − w), x0 = 4 (1− wp)1/p v ≥ 3/2 for large enough n.
Therefore,

1

|K|

∫
K
|x|qd(x, y) ≥ 2Vn

|K|
wn

∫ v

0
xqdx >

1

2

v1+qwn

1 + q
,

1

|K|

∫
K
|x|qd(x, y) ≤ 2Vn

|K|

(
wn

∫ v

0
xqdx +

∫ x0

0
xqdx

)
<

2v1+qwn

1 + q

if v1+qwn ≥ x1+q
0 = 41+q (1− wp)(1+q)/p v1+q, which is true for large enough

n. Since

γn
3

8

(
1

ln n

)1/p

< v · wn <
3

8

(
1

ln n

)1/p

for some γn −→ 1, we obtain the result. 2

Remark. Let us fix a constant C > 1/p. Slightly different choice of v and
w in the proof gives us(

1

|K|

∫
K
|x|qd(x, y)

)1/q

≈ (3/8)1+1/q

(
1

1 + q

)1/q (
n

ln n

)1/p

(ln n)−
C
q

up to the factor 21/q. Moreover, if we restrict ourselves by the interval [α,∞)
for some α > 0 then one can find bodies K = K(n) such that for every
q ∈ [α,∞) and for large enough n one has

(
1

|K|

∫
K
|x|qd(x, y)

)1/q

≈
(

3

8(1 + α)1/p

)1+1/q (
1

1 + q

)1/q (
n

ln n

)1/p

n−
α
qp

13



up to the factor 21/q. Thus, for every s < q from [α,∞) there is a constant
Cs,q such that for large enough n

(
1

|K|

∫
K
|x|qd(x, y)

)1/q /(
1

|K|

∫
K
|x|sd(x, y)

)1/s

> Cs,qn
α
p ( 1

s
− 1

q ).
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