
Entropy extension∗

A. E. Litvak V. D. Milman † A. Pajor
N. Tomczak-Jaegermann ‡

Dedication: The paper is dedicated to the memory of an outstanding analyst B. Ya. Levin.
The second named author would like to note that he was a student of B. Ya. Levin whose
scientific integrity and honesty of his teacher have accompanied him all his life.

Abstract

We prove “entropy extension-lifting theorem”. It consists of two
inequalities for covering numbers of two symmetric convex bodies.
The first inequality, that can be called “entropy extension theorem”,
provides estimates in terms of entropy of sections and should be com-
pared with the extension property of `∞. The second one, which can
be called “entropy lifting theorem”, provides estimates in terms of
entropies of projections.

1 Introduction

One of important consequences of the Hahn-Banach theorem is so called
“extension property of `∞”. It states that given normed space X and a
subspace Y ⊂ X every linear operator S : Y → `∞ can be extended to
an operator T : X → `∞ having the same norm as S. This theorem is
used in proofs of many results of Banach space theory and related fields.
In particular, it was one of ingredients of the following result on covering
numbers, obtained recently in ([LPT]):
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Let 0 < a < r < A and 1 ≤ k < n. Let K, L ⊂ Rn be symmetric convex
bodies, and let K ⊂ AL. Let E ⊂ Rn be k-codimensional subspace such that
K ∩ E ⊂ aL. Then

N(K, 2rL) ≤ 2k

(
A + r

r − a

)k

.

Here, as usual, N(K, L) denotes the covering number (see the definition
below). In a sense, the latter result is a (weak) version of extension theorem
for entropy: if we control the norm of the identity operator (= the half of
diameter of the unit ball) in a subspace then we control the entropy in the
entire space. Note that if K ∩ E ⊂ aL then trivially N(K ∩ E, aL) ≤ 1.
However, why should the diameter play such a crucial role? Can one achieve
a similar control of entropy in the whole space from the knowledge of the
entropy (rather than the diameter) in a subspace? The intuition does not
support such a hope. However, quite surprisingly, this is possible. In the
present paper we prove a strong version of an extension theorem for entropy:
if we control the entropy in a subspace then we control the entropy in the
entire space, see Theorem 3.1 below for the precise statement.

We also provide a variant of the inverse statement in Theorem 4.1 below.
In the last section we discuss the non-symmetric case.

2 Notation and preliminaries

By a convex body we always mean a closed convex set with non-empty in-
terior. By a symmetric convex body we mean centrally symmetric (with
respect to the origin) convex body.

Let K ⊂ Rm be a convex body with the origin in its interior. We denote
by |K| the volume of K, and by K0 the polar of K, i.e.

K0 = {x | 〈x, y〉 ≤ 1 for every y ∈ K} .

Let K, L be subsets of Rm. We recall that the covering number N(K, L)
of K by L is defined as the minimal number N such that there exist vectors
x1, ..., xN in Rm satisfying

K ⊂
N⋃

i=1

(xi + L).
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We use notation NA(K, L), if additionally xi ∈ A, for 1 ≤ i ≤ N and
A ⊂ Rm; and we let N̄(K,L) = NK(K, L).

For a symmetric convex body K ⊂ Rm and ε ∈ (0, 1), we shall need an
upper estimate for the covering number N(K, εK). The standard estimate
is

N(K, εK) ≤ N̄(K, εK) ≤ (1 + 2/ε)m, (2.1)

which follows by comparing volumes and which would be sufficient for our
results. However, when positions of centers is not important, we prefer to
use here a more sophisticated estimate which follows from a more general
result by Rogers-Zong ([RZ]), namely

N(K, εK) ≤ θm(1 + 1/ε)m, (2.2)

where
θm ≤ min {2m, m(ln m + ln(ln m) + 5)} .

In fact, from Rogers-Zong Lemma one gets that θm is bounded from above
by so-called covering density of K (see [R1], [R2] for precise definitions and
upper bounds), while the bound 2m follows immediately from (2.1).

3 Entropy extension-lifting theorem

The main result of this paper is the following “entropy extension-lifting theo-
rem”. It consists of two inequalities for entropies. The first inequality relates
the entropy of K and L to the entropy of sections of small codimension and
can be called “entropy extension theorem”, while the second one assumes an
information on entropies of projections of a small corank and can be called
“entropy lifting theorem”.

Theorem 3.1 Let 0 < a < r < A. Let K, L be symmetric convex bodies in
Rn such that K ⊂ AL. Let E be a subspace of Rn and P : Rn → Rn be a
projection with ker P = E.

(i) If codim E = k, then

N(K, rL) ≤ θk

(
1 +

A

r − a

)k

N(K ∩ E,
a

3
L).
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(ii) If dim E = k, then

N(K, rL) ≤ θk

(
2A + r

r − a

)k

N(PK,
a

2
PL).

Let us notice one particular case of this theorem, namely the case when
N(K ∩ E, (a/3)L ∩ E) = 1 (resp. N(PK, (a/2) PL) = 1). Taking b = a/3,
R = r/3 in the first part and b = a/2, R = r/2 in the second part, we
immediately obtain the following consequence of Theorem 3.1 (the first part
of which has been already mentioned in the Introduction).

Corollary 3.2 Let 0 < b < R < A. Let K, L be symmetric convex bodies
in Rn such that K ⊂ AL. Let E be a subspace of Rn and P : Rn → Rn be a
projection with ker P = E.

(i) If codim E = k and K ∩ E ⊂ bL ∩ E then

N(K, 3RL) ≤ θk

(
1 +

A

3(R− b)

)k

(ii) If dim E = k and PK ⊂ bPL then

N(K, 2RL) ≤ θk

(
A + R

R− b

)k

.

This corollary was one of the main results on covering numbers in [LPT]
(see Corollaries 1.6 and 1.7 there), which was essentially used in proofs of
other results of [LPT] and of [LMPT]. Actually, our present work is inspired
by this result.

Now we turn to the proof of Theorem 3.1. First we obtain a more gen-
eral result estimating entropy of sets in terms of entropy of projections of
these sets and entropy of sections of related (but a bit more complicated)
sets, in a spirit of Rogers-Shephard lemma for volumes. We call it “entropy
decomposition lemma”. It will imply Theorem 3.1.

Theorem 3.3 Let K, L1, and L2 be subsets of Rn. Let E be a subspace of
Rn and P : Rn → Rn be a projection with ker P = E. Then

N (K, L1 + L2) ≤ N̄ (PK,PL1) max
z∈K

N ((K − L1 − z) ∩ E, L2)
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≤ N̄ (PK,PL1) N ((K −K − L1) ∩ E, L2) .

and

N (K, L1 + L2) ≤ N (PK,PL1) max
z∈Rn

N ((K − L1 − z) ∩ E, L2)

Proof: We prove the first estimate, the proof of the second one repeats the
same lines with obvious modifications.

Set
N1 := N̄(PK,PL1).

Then, by definition, there are z1, ..., zN1 with zi ∈ PK for 1 ≤ i ≤ N1, and
such that

PK ⊂
N1⋃
i=1

(zi + PL1).

For every x ∈ K fix i(x) ≤ N1 and yx ∈ PL1 such that

Px = zi(x) + yx

(if more than one such i(x) (or yx) exists, choose any of them and fix in the
further argument).

For 1 ≤ i ≤ N1 pick z̃i ∈ K such that P z̃i = zi, and for every y ∈ PL1

pick ỹ ∈ L1 such that P ỹ = y.
Now for every x ∈ K define

v(x) = z̃i(x) + ỹx ∈ z̃i(x) + L1

and
w(x) = x− v(x) = x− z̃i(x) − ỹx.

Denote
Ti := K − L1 − z̃i, for i ≤ N1.

Then w(x) ∈ Ti(x) for every x ∈ K. Note also that w(x) ∈ E for every
x ∈ K, since

Pw(x) = Px− Pv(x) = Px− zi(x) − yx = 0.

Thus w(x) ∈ Ti(x) ∩ E and

x = w(x) + v(x) ∈ Ti(x) ∩ E + z̃i(x) + L1
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for every x ∈ K. It implies

K ⊂
N1⋃
i=1

(
Ti ∩ E + z̃i(x) + L1

)
.

Since for every i ≤ N1 we have

N (Ti ∩ E, L2) ≤ max
z∈K

N ((K − L1 − z) ∩ E, L2) ,

the result follows. 2

Proof of Theorem 3.1: Let ε := r − a. To prove (i), first note that
since (1/A)K ⊂ L, then N(K, rL) ≤ N(K, (ε/A)K + aL). Thus, using
Theorem 3.3 with L1 = (ε/A)K and L2 = aL we get

N(K, rL) ≤ N̄
(
PK,

ε

A
PK

)
N

((
2 +

ε

A

)
K ∩ E, aL

)
.

Now, by estimate (2.2) the first factor is bounded by θk (1 + A/ε)k, while the
second factor is less than or equal to N(3K ∩ E, aL) = N(K ∩ E, (a/3)L).
This concludes the proof of (i).

To prove (ii), we use Theorem 3.3 with L1 = aL and L2 = εL to get

N(K, rL) ≤ N̄ (PK, aPL) N ((2K + aL) ∩ E, εL) .

To estimate the first factor note a well-known general fact that for arbitrary
sets K ′, L′, with L′ symmetric, we have N̄(K ′, L′) ≤ N(K ′, (1/2)L′). For the
second factor we use estimate (2.2) to get

N ((2K + aL) ∩ E, εL) ≤ N ((2A + a) L ∩ E, εL) ≤ θk

(
2A + r

r − a

)k

.

2

4 Lower bounds for entropy

Here we prove a theorem which is in a sense inverse to Theorem 3.3.
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Theorem 4.1 Let 0 < t < 1. Let K1, K2 be subsets of Rn and L1, L2

be symmetric convex bodies in Rn. Let P : Rn → Rn be a projection and
E = ker P . Then

N
(
tK1+(1−t)K2, (tL1)∩((1−t)L2)

)
≥ N̄

(
PK1, 2PL1

)
N̄

(
K2∩E, 2L2∩E

)
.

Let us note that taking K1 = K2 and, additionally, L1 = ((1 − t)/t)L2,
we have the following corollary.

Corollary 4.2 Let 0 < t < 1. Let K be a convex body in Rn and L, L1,
L2 be symmetric convex bodies in Rn. Let P : Rn → Rn be a projection and
E = ker P . Then

N
(
K, (tL1) ∩ ((1− t)L2)

)
≥ N̄

(
PK, 2PL1

)
N̄

(
K ∩ E, 2L2 ∩ E

)
.

and
N(K, L) ≥ N̄(tPK, 2PL) N̄((1− t)K ∩ E, 2L ∩ E).

In the proof we will use the notion of packing numbers. Recall that for
K and L in Rn the packing number P (K, L) of K by L is defined as the
maximal number M such that there exist vectors x1, ..., xM ∈ K satisfying

(xi + L) ∩ (xj + L) = ∅ for every i 6= j.

In other words, xi − xj 6∈ L0 := L − L. Such set of points we also call L0-
separated set. It is well known (and easy to check) that if L is symmetric
convex body (so L− L = 2L) then

N̄(K, 2L) ≤ P (K, L) ≤ N(K,L).

Proof of Theorem 4.1: Let N1 = P (PK1, PL1) ≥ N̄(PK1, 2PL1). Then
there exist z1, . . . , zN1 ∈ PK1 such that zi − zj 6∈ 2PL1 whenever i 6= j. For
1 ≤ i ≤ N1 pick z̃i ∈ K1 such that P z̃i = zi.

Let N2 = P (K2 ∩ E, L2 ∩ E) ≥ N̄(K2 ∩ E, 2L2 ∩ E). Then there exist
w1, . . . , wN2 in K2 ∩ E such that wk − w` 6∈ 2L2 if k 6= `.

For every i ≤ N1 and k ≤ N2 denote xi,k := tz̃i + (1− t)wk and consider
the set

A = {xi,k}i≤N1, k≤N2
⊂ tK1 + (1− t)K2.

7



We claim that xi,k − xj,` 6∈ (2tL1) ∩ (2(1− t)L2) if the pair (i, k) is different
from (j, `). Indeed, if i 6= j then P (xi,k − xj,`) = t(zi − zj) 6∈ 2tPL1, and
hence xi,k−xj,` 6∈ 2tL1. If i = j then k 6= ` and xi,k−xj,` = (1−t)(wk−w`) 6∈
2(1− t)L2. Thus A is (2tL1) ∩ (2(1− t)L2)-separated, which implies

N
(
tK1+(1−t)K2, (tL1)∩((1−t)L2)

)
≥ P

(
tK1+(1−t)K2, (tL1)∩((1−t)L2)

)
≥ N1N2 ≥ N̄(PK1, 2PL1)N̄(K2 ∩ E, 2L2 ∩ E).

It concludes the proof. 2

5 Additional observations

In this section we will extend to the case of non-symmetric bodies the theorem
from [LPT], which was mentioned in the introduction and also as the first
part of Corollary 3.2. To keep the present paper self-contained we will use
formulation of Corollary 3.2.

First we extend it to the case when K is not symmetric body. We need
the following simple lemma.

Lemma 5.1 Let a > 0 and 1 ≤ k ≤ n. Let K be a convex body in Rn and L
be a symmetric convex body in Rn. Let E be a k-codimensional subspace of
Rn. Assume that 2a is the maximal diameter of K ∩ (E− z) over all choices
of z ∈ Rn, that is

∀x ∈ Rn ∃y ∈ E such that (x + K) ∩ E − y ⊂ aL.

Then
(K −K) ∩ E ⊂ 2aL.

Proof: Let z ∈ (K − K) ∩ E. Then z = v − w, where v, w ∈ K. Write
v = v1 + v2 and w = w1 + w2, where v1, w1 ∈ E⊥ and v2, w2 ∈ E. Since
z ∈ E, we have v1 = w1.

By the conditions of the lemma there exists y ∈ E such that

(K − v1) ∩ E − y ⊂ aL.

Therefore v2 − y ⊂ aL and w2 − y ⊂ aL, which implies

z = v − w = (v2 − y)− (w2 − y) ⊂ 2aL.
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2

Combining Lemma 5.1 and Corollary 3.2 (applied to K − K) we imme-
diately obtain the following theorem.

Theorem 5.2 Let 0 < a < A and 1 ≤ k ≤ n. Let K be a convex body in
Rn and L be a symmetric convex body in Rn such that K ⊂ AL. Let E be a
k-codimensional subspace of Rn. Assume that 2a is the maximal diameter of
K ∩ (E − x) over all choices of x ∈ Rn. Then for every r > 2a one has

N(K −K, 3rL) ≤ θk

(
1 +

2A

3(r − 2a)

)k

.

Now we consider the case when K is symmetric and L is not. First note
that in this case the conclusion of Corollary 3.2 holds if we substitute L with
L ∩ −L. Indeed, if K = −K is such that K ⊂ RL and K ∩ E ⊂ aL ∩ E
then −K ⊂ RL and −K ∩ E ⊂ aL ∩ E, which implies K ⊂ R(L ∩ −L) and
K ∩E ⊂ a(L ∩−L) ∩E. Therefore, optimizing over all shifts of L, i.e. over
all choices of center of L, we can extend Corollary 3.2 in the following way.

Theorem 5.3 Let 0 < a < A and 1 ≤ k ≤ n. Let K be a symmetric
convex body in Rn and L be a convex body in Rn. Let E be a k-codimensional
subspace of Rn. Assume that there exists z ∈ Rn satisfying

K ⊂ A(L− z) and K ∩ E ⊂ a(L− z).

Then for every r > 0 one has

N(K, 3rL̄) ≤ θk

(
1 +

A

3(r − a)

)k

,

where L̄ = (L− z) ∩ (−L + z).
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