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0 Introduction

Let ai ∈ IRn, i = 1, . . . , N be a sequence of vectors such they span the space
IRn and let

‖x‖k,q =

(∑
1≤i≤k

|〈x, ai〉|∗q
) 1

q

,

where |〈x, ai〉|∗, i = 1, . . . , N is the decreasing rearrangement of the sequence
|〈x, ai〉|, i = 1, . . . , N . We denote the normed space (IRn, ‖ · ‖k,q) by Xk,q.
The unit ball of ‖x‖k,q we denote by Bk,q. We investigate the geometry of
these spaces and their duals in this paper.

The interest for those spaces comes from the fact that they generalize the
class of dual spaces of zonotopes in a natural way. For k = N and q = 1 the
spaces X∗

k,q are zonotopes and for k = 1 and q = 1 the spaces Xk,q range over
all possible spaces with a polytopal unit ball with no more than 2N facets.

The geometry of the spaces XN,1 has been investigated in [GJ1], [GJ2],
[GJN] while the spaces Xk,q for arbitrary k and q were hardly considered in
the literature.

We provide estimates for the volume of the unit balls of Xk,q and their
lower dimensional subspaces. We determine the dimension of almost Eu-
clidean subspaces and thus obtain a Dvoretzky-type theorem.

In section 5 we investigate the special case when the set {ai} is {ei}, the
canonical basis of IRn. Then the norm ‖ · ‖k = ‖ · ‖k,1 is in a sense inter-
mediate between the `1-norm and the `∞-norm. Moreover, (IRn, ‖ · ‖k) is
an interpolation space between `n

1 and `n
∞. In fact, by Lemma 5.1, Bk =

conv {Bn
1 , Bn

∞/k}, where Bn
1 and Bn

∞ are the unit balls of `n
1 and `n

∞ respec-
tively. We provide asymptotically sharp estimates of the most important
parameters of those bodies such as type and cotype constants, p-summing
norms, volume ratios, projection constants, etc. We would also like to
note that the general case can be reduced to this special case. Indeed, let
{ai}i≤N ⊂ IRn and T : IRN −→ IRn be the linear operator defined by
Tej = aj, j ≤ N . Considering the extreme points it is not hard to see that

Bk,1 =
(
T
(
(kBN

1 ) ∩BN
∞
))0

= T ∗ −1
(
conv

{
BN

1 , BN
∞/k

})
.

So, if the properties of the operator T are known we can estimate parameters
of Bk,1.

1 Definitions, notations, known results

We shall use the standard notation from the local theory of Banach spaces
(see e.g. [MS1], [Pi1], [T]). Given a finite set N , its cardinality is denoted by
|N |. We denote the canonical Euclidean norm on IRn by | · |, the Euclidean
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unit ball by Bn
2 , and the Euclidean unit sphere by Sn−1. The normalized

Lebesgue measure on Sn−1 will be denoted by dν (or by dνn−1 if we need
to emphasize the dimension). By {ei}1≤i≤n we denote the canonical basis of
IRn. The standard norm in `n

p , p ≥ 1, is denoted by | · |p and the unit ball of
it is denoted by Bn

p .
Given x ∈ IR by [x] we denote the largest integer not exceeding x.
Given a sequence {λi}i≤N ⊂ IR by {λ∗i }i≤N (resp. {|λi|∗}i≤N ) we denote

the non-increasing rearrangement of {λi}i≤N (resp. {|λi|}i≤N).
As mentioned in the introduction, given a sequence {ai}i≤N ⊂ IRn and

q ≥ 1 for every k ≤ N we define the following norm on IRn

‖x‖k,q =

(
k∑

i=1

(|〈x, ai〉|∗)q

)1/q

.

The unit ball of ‖x‖k,q we denote by Bk,q. The norm ‖ · ‖k,1 and its unit ball
Bk,1 we denote by ‖ · ‖k and Bk. Let us note that for q ≥ ln k one has

max
i≤N

|〈x, ai〉| = ‖x‖1,1 ≤ ‖x‖k,q ≤ e‖x‖1,1.

Therefore working with ‖x‖k,q below we always assume that q ≤ ln k.

By a convex body K ⊂ IRn we shall always mean a compact convex set
with the non-empty interior, and without loss of generality we shall assume
that interior of K contains 0. The gauge of K is denoted by ‖ · ‖K , i.e.,
‖x‖K = inf {λ > 0 | x ∈ λK}. The n-dimensional volume of K is denoted
by |K|.

The n-dimensional normed space defined by a norm ‖ · ‖ (resp. by a
centrally-symmetric convex body K) we denote by (IRn, ‖·‖) (resp. (IRn, K)).
Usually we identify the n-dimensional normed space with its unit ball.

Given centrally-symmetric convex bodies K, L in IRn, we define the
Banach–Mazur distance by

d(K, L) = inf{α β | α > 0, β > 0, (1/β)L ⊂ UK ⊂ αL},

where the infimum is taken over all linear U : IRn → IRn.
By {gi}, {hi}, {gi,j} we shall always denote sequences of independent

standard Gaussian random variables. Given integers m, n by the Gaussian
operator G : IRm −→ IRn we mean the operator

G =
∑

i≤m,j≤n

gi,jei ⊗ ej. (1)

By g we denote the standard Gaussian vector in IRn, i.e. g =
∑n

i=1 giei.
The expectation of the Gaussian vector in the space X = (IRn, K) is denoted
by

E(X) = E(K) := E‖g‖K . (2)
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It is well known (and can be directly checked) that

E(X) ≤
√

n

∫
Sn−1

‖x‖dν ≤ cnE(X),

where cn tends to 1 as n grows to infinity. We also denote

ε2(K) = ‖Id : `n
2 −→ (IRn, K)‖ = maxP

t2i =1


∥∥∥∥∥∑

i≤n

tiei

∥∥∥∥∥
K

. (3)

Given two sequences a = {ai} and b = {bi} by a·b we denote the sequence
{aibi} = {(a · b)i}.

We recall also the definitions of an Orlicz function and an Orlicz norm.
A convex function M : IR+ → IR+ with M(0) = 0 and M(t) > 0 for t 6= 0 is
called an Orlicz function. The Orlicz norm on IRn is defined by

‖x‖M = inf

{
ρ > 0 :

n∑
i=1

M (|xi|/ρ) ≤ 1

}
.

Any Orlicz function M can be represented as

M(t) =

∫ t

0

p(s)ds,

where p(t) is a non-decreasing, right continuous function. If p(t) satisfies

p(0) = 0 and p(∞) = lim
t→∞

p(t) = ∞, (4)

we define the dual Orlicz function M∗ by

M∗(t) =

∫ t

0

q(s)ds,

where q(s) = sup{t : p(t) ≤ s}. Such a function M∗ is also an Orlicz
function and

‖x‖M ≤ |||x||| ≤ 2‖x‖M ,

where ||| · ||| is the dual norm to ‖ · ‖M∗ (see e.g. [LT]). Moreover,

s < M∗−1(s)M−1(s) ≤ 2s

for every positive s (see e.g. 2.10 of [KR]). The last inequality shows in
particular that to define an Orlicz norm ‖ · ‖M it is enough to define the
function M∗−1. We shall use this below. Note that the condition (4) in fact
excludes only the case M(t) is equivalent to t, i.e. the case when there are
absolute positive constants c, C such that ct ≤ M(t) ≤ Ct. Moreover, q
satisfies condition (4) as well and q = p−1 if p is an invertible function. We
refer to [KR, LT] for further properties of Orlicz functions.

The letters C, c, c0, c1, ... denote absolute positive constants whose values
may be different from line to line.
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2 Preliminary results

The following lemma can be proved by direct computations.

Lemma 2.1 Let N be an integer. Consider the sequence {|gi|}i≤N . For
every k ≤ N/2 one has

c
√

ln (3N/k) ≤ E|gk|∗ ≤ C
√

ln (3N/k),

where c, C are absolute constants.

Remark. Thus for every k ≤ N one has

ck
√

ln (3N/k) ≤ E
k∑

i=1

|gi|∗ ≤ Ck
√

ln (3N/k),

where c, C are absolute constants.
Throughout we shall use the following inequality proved in [Go3].

Theorem 2.2 Let {Xi}i≤N and {Yi}i≤N be two sequences of centered Gaus-
sian random variables which satisfy

E |Xi −Xj|2 ≤ E |Yi − Yj|2

for all i, j. Then for all k ≤ N we have

E
k∑

i=1

X∗
i ≤ E

k∑
i=1

Y ∗
i .

As a corollary we have

Lemma 2.3 Let {aj}j≤N ⊂ IRn. Then for every k ≤ N

cεk
√

ln(3N/k) ≤ E(Bk),

where ε = mini6=j |ai − aj| and c > 0 is an absolute constant.
Moreover, if {aj}j≤2N ⊂ Sn−1 then for every k ≤ N

E(Bk) ≤ Ck
√

ln(3N/k),

where C is an absolute constant.
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Proof: First we show the “Moreover” part of the lemma. Let g be the
standard Gaussian vector in IRn. Define centered Gaussian random variables
by Xi = 〈g, ai〉, Yi =

√
2hi, for i ≤ N , and Xi = −Xi−N , Yi = −Yi−N for

N < i ≤ 2N . Then

E |Xi −Xj|2 ≤ 4 ≤ E |Yi − Yj|2 .

Since for every k ≤ N

k∑
i=1

|Xi|∗ =
k∑

i=1

X∗
i and

k∑
i=1

|Yi|∗ =
k∑

i=1

Y ∗
i ,

using the previous two statements, we obtain

E(Bk) = E
k∑

i=1

X∗
i ≤ E

k∑
i=1

Y ∗
i ≤ ck

√
ln(3N/k),

which proves the upper estimate.
Let us turn to the lower estimate. Let Xi, 1 ≤ i ≤ 2N , be as above and

define now centered Gaussian random variables Yi by Yi = εhi/2, i ≤ N ,
Yi = −Yi−N , N < i ≤ 2N .

Then by Theorem 2.2 and Lemma 2.1 we obtain

E(Bk) = E
k∑

i=1

X∗
i ≥ E

k∑
i=1

Y ∗
i = E

k∑
i=1

|Yi|∗ ≥ cεk
√

ln(3N/k),

which proves the lemma. 2

We shall need the following theorem from [GLSW] (Theorem 4 with the
remark after the proof of Proposition 6 and Example 16).

Theorem 2.4 Let k ≤ N and 1 ≤ q ≤ ln N . Let λ = {λi}i≤N ⊂ IR. Let
ḡ = {|gi|q}i≤N , f̄ = {|fi|q}i≤N , where {gi}i≤N denotes a sequence of indepen-
dent standard Gaussian random variables and {fi}i≤N denotes a sequence of
standard Gaussian random variables (not necessarily independent). Then

E
k∑

i=1

∣∣(λ · f̄)
i

∣∣∗ ≤ 4e

e− 1
E

k∑
i=1

|(λ · ḡ)i|
∗

and

(cq)q/2 ‖λ‖Mk,q
≤ E

k∑
i=1

|(λ · ḡ)i|
∗ ≤ (Cq)q/2 ‖λ‖Mk,q
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where 0 < c < 1 < C are absolute constants and Mk,q is the Orlicz function
defined by

Mk,q(t) =


0 t = 0

1
k

exp
(
−q/ (kt)2/q

)
t ∈ (0, t0)

at− b t ≥ t0,

t0 =
1

k

(
2q

q + 2

)q/2

, a =
q + 2

eqkt0
e−q/2, b =

2

eqk
e−q/2.

Remark 1. Note that the inequality in the remark after Lemma 2.1 follows
from this theorem as well.

Remark 2. Let us mention that to prove the theorem we use that for
every Orlicz function M there exists a sequence y1 ≥ y2 ≥ ... ≥ yn > 0 such
that

e− 1

2e
‖x‖M ≤ n−n+1

∑
1≤j1,...,jn≤n

max
1≤i≤n

|xiyji
| ≤ 2‖x‖M

(see Lemma 5 and Lemma 9 of [GLSW]). We would like to note also that all
`p-norms are Orlicz norms with the Orlicz function M(t) = |t|p.

The theorem leads to the following extensions of Lemma 2.3.

Corollary 2.5 Let {aj}j≤N ⊂ IRn. Then for every k ≤ N

E(Bk) ≤ C ‖{|ai|}‖Mk,1
,

where C is an absolute constant and Mk,1 as in the previous theorem.
Moreover, denoting λi = minj 6=i |ai − aj|, we have

c ‖{λi}‖Mk,1
≤ E(Bk)

for some absolute constant c > 0.

Proof: The proof mimics the proof of Lemma 2.3. Indeed, to obtain the up-
per estimate we need to define Xi = 〈g, ai〉, XN+i = −Xi, and Yi =

√
2|ai|hi,

YN+i = −Yi, for every i ≤ N . To obtain the lower estimate we take the same
Xi and Yi = λihi/2, i ≤ N , Yi = −Yi−N , N < i ≤ 2N . 2

Remark. It can be shown that

‖{λi}‖Mk,1
≈

k∑
i=1

|λi|∗ + k max
i≤N/k

λ∗ki

√
1 + ln i

for every λ ∈ IRn.
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Corollary 2.6 Let q ≥ 1. Let {aj}j≤N ⊂ IRn. Then for every k ≤ N

E(Bk,q) ≤ C
√

q
(
‖{|ai|q}‖Mk,q

)1/q

,

where C is an absolute constant and Mk,q as in the previous theorem.

Proof: We apply Theorem 2.4 to the standard Gaussian random variables
fi = 〈g, ai〉/|ai|, where g is the standard Gaussian vector in IRn. Let f̄ =
{|fi|q}i≤N and λ = {|ai|q}i≤N . We obtain

E(Bk,q) = E

(
k∑

i=1

(|〈g, ai〉|∗)q

)1/q

≤

(
E

k∑
i=1

(|〈g, ai〉|∗)q

)1/q

=

(
E

k∑
i=1

∣∣(λ · f̄)
i

∣∣∗)1/q

≤

(
4e

e− 1
E

k∑
i=1

|(λ · ḡ)i|
∗

)1/q

≤

C
√

q
(
‖{|ai|q}‖Mk,q

)1/q

.

2

We conclude this section with the piecewise continuous version of theorem
2.4, namely

Corollary 2.7 If {aτ , 0 ≤ τ ≤ 1} is a piecewise continuous path in IRn, and
if 0 < t ≤ 1, q ≥ 1 are fixed, and if

sup |aτ |q ≤
(

2q

q + 2

)q/2

x0,

where

x0 := inf

{
x > 0 :

∫ 1

0

exp

(
−qx2/q

|aτ |2

)
dτ ≤ t

}
,

then

E

(
1

t

∫ t

0

| < g, aτ > |∗qdτ

)
≤ (cq)q/2x0.

Remark. If aτ ⊂ Sn−1 then it follows that x0 =
(

1
q
log
(

1
t

))q/2

and the

condition is that t satisfies 0 < t ≤ e−
q+2
2 . A more careful analysis of the

discrete version can give an estimate valid for all piecewise continuous paths,
that will hold for all values of t.
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3 Volume estimates

In this section we shall obtain two-sided estimates on the volumes of the
bodies Bk,q and their l-dimensional sections. We start with the following
theorem, which can be obtained also as a corollary to the general result
proved in Theorem 3.2.

Theorem 3.1 Let n ≤ N be positive integers. Let {ai}i≤N ⊂ Sn−1. Then
for every k ≤ N one has

|Bk|1/n ≥ C

k
√

ln 3N
k+n

,

where C > 0 is an absolute constant.

Remark. Let k = 1. Then B0
1 = conv {ai}, and

|B1|1/n ≥ C√
ln 3N

n

,

which was proved independently by Bárány and Füredy ([BF]), Carl and
Pajor ([CP]) and Gluskin ([G1]). See also [FJ] and Corollary 2.2 of [GJ1],
which generalizes it for an arbitrary set {ai} ⊂ IRn. Thus our Theorem 3.1
extends this result.

Proof: Let g be the standard Gaussian vector. By integration over the
Euclidean sphere and Lemma 2.3, we obtain

(|Bk| / |Bn
2 |)

1/n =

(∫
Sn−1

‖x‖−n
k dν(x)

)1/n

≥
(∫

Sn−1

‖x‖k dν(x)

)−1

≥ c1

√
n/ E ‖g‖k

= c1

√
n/

k∑
i=1

E |〈g, ai〉|∗

≥ c2

√
n

k
√

ln (3N/k)
,

where c1 and c2 are absolute positive constants.
To conclude the proof it is enough to notice that ‖x‖k ≤ k‖x‖1. Together

with the result of the remark above this implies that

|Bk|1/n ≥ 1

k
|B1|1/n ≥ c2

k
√

ln 3N
n

,
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where c2 is an absolute positive constant and the theorem follows. 2

Remark. Since(∣∣B0
k

∣∣ / |Bn
2 |
)1/n ≤

(∣∣∂B0
k

∣∣ / |∂Bn
2 |
)1/(n−1) ≤ c1

∫
Sn−1

‖x‖k dν(x),

using Urysohn’s inequality, one can similarly show that∣∣∂B0
k

∣∣1/(n−1) ≤ ck

n

√
ln (3N/k).

The following theorem generalizes Theorem 3.1.

Theorem 3.2 Let n ≤ N be positive integers. Let q ≥ 1 and {ai}i≤N ⊂ IRn.

(i) For every k ≤ N and every l ≤ n there exists an l-dimensional sub-
space E ⊂ IRn such that

|Bk,q ∩ E|1/l ≥ C

√
n

√
lq
(
‖ {|ai|q}i≤N‖Mk,q

)1/q
,

where ‖ · ‖Mk,q
is the Orlicz norm with the function Mk,q(t) defined in Theo-

rem 2.4 and C > 0 is an absolute constant.

(ii) For every k ≤ N and every l-dimensional subspace E ⊂ IRn we have

|Bk,q ∩ E|1/l ≥

c

max|I|=l |det (QEai)i∈I |1/l

(
1

k
1
q

√
ln(3N/l)

+
1

(
√

q ∧
√

l) N
1
q

)
,

where QE : IRn → E is the orthogonal projection onto E and c > 0 is an
absolute constant.

(iii) For every k ≤ N and every l-dimensional subspace E ⊂ IRn we have

|Bk,q ∩ E|1/l ≤ C
N

1
q

(l k)
1
q

(∑
|I|=l |det (QEai)i∈I |q

) 1
lq

where QE : IRn → E is the orthogonal projection onto E and C > 0 is an
absolute constant.
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Remark. Notice that if {ai}i≤N ⊂ Sn−1 then

‖ {|ai|q}i≤N‖1/q
Mk,q

≈ k1/q

√
ln(3N/k)
√

q

and
|det (QEai)i∈I | ≤ 1.

Thus in this case, for every l there exists an l-dimensional subspace E such
that

|Bk,q ∩ E|1/l ≥ C

√
n

k
1
q

√
l
√

ln(3N/k)
.

Moreover, in this case for all l-dimensional subspaces E we have

|Bk,q ∩ E|1/l ≥ c

(
1

k
1
q

√
ln(3N/l)

+
1

(
√

q ∧
√

l) N
1
q

)
.

If in addition q = 1 in the last expression, then

|Bk,1 ∩ E|1/l ≥ c

(
1

k
√

ln(3N/l)
+

1

N

)
.

Proof of Theorem 3.2:
(i) Let Gn,m denote the Grassmanian of m-dimensional subspaces of IRn

and dµ denote the normalized Haar measure on it. Then integration over the
Grassmanian gives

maxH⊂Gn,l

(
|H ∩Bk,q|

|Bl
2|

) 1
l

≥

(∫
Gnl

|H ∩Bk,q|∣∣Bl
2

∣∣ dµ(H)

)1/l

=

(∫
Sn−1

‖x‖−l
k,q dν(x)

)1/l

≥
(∫

Sn−1

‖x‖k,q dν(x)

)−1

≥ c
√

n

E(Bk,q)

≥ c1

√
n

√
q

(
‖ {|ai|q}i≤N‖Mk,q

)1/q
,

where the last inequality follows by Corollary 2.6. That proves (i).
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(ii) We first give a proof for the first expression.
As Bk,q ⊃ 1

k1/q B1, it is enough to consider B1 ∩ E. Without loss of
generality assume that {ai} is symmetric. By the inverse Santaló inequality
[BM]

|B1 ∩ E|1/l ≥ c

l |(B1 ∩ E)0|1/l

and therefore it is enough to estimate the volume of the polar of the section
B1 ∩ E from above. The polar of B1 ∩ E is the orthogonal projection of the
polar B0

1 = conv {±ai : 1 ≤ i ≤ N} onto E. Observe that

conv {±ai : 1 ≤ i ≤ N} = T (BN
1 ),

where BN
1 is the N -dimensional l1 unit ball and T : IRN → IRn is the map

defined by T (ei) = ai, 1 ≤ i ≤ N .
By a result of Meyer and Pajor [MP]

|T (BN
1 )| 1n

|Bn
1 |

1
n

≤
|T (BN

p )| 1n

|Bn
p |

1
n

for all 1 ≤ p < ∞ and by a result of Gordon and Junge [GJ1] we have for all
p′ with p′ = p

p−1

|T (BN
p )| 1n

|Bn
p |

1
n

≤ c
√

p′

∑
|I|=n

|det (ai)i∈I |p
′

 1
np′

,

where c is a constant. Therefore

|T (BN
1 )| 1n

|Bn
1 |

1
n

≤ c
√

p′
((

N

n

)
max|I|=n |det (ai)i∈I |p

′
) 1

np′

and thus

|T (BN
1 )|1/n ≤ c

√
p′
(

Ne

n

)1/p′

max|I|=n |det (ai)i∈I |1/n |Bn
1 |1/n.

Hence for |(B1 ∩ E)0|1/l = |QE(T (BN
1 ))|1/l where QE : IRn −→ E is the

orthogonal projection, we get

|QE(T (BN
1 ))|1/l ≤ c

√
p′
(

Ne

l

)1/p′

max|I|=l |det (QEai)i∈I |1/l |Bl
1|1/l.

We choose p′ = lnNe
l

so that
√

p′
(

Ne
l

)1/p′
is minimal and then observe

that

|QE(T (BN
1 ))|1/l ≤ c

l

√
ln

Ne

l
max|I|=l |det (QEai)i∈I |1/l.

12



Since (B1 ∩ E)0 = QETBN
1 , we obtain

|B1 ∩ E|1/l ≥ c√
lnNe

l
max|I|=l |det (QEai)i∈I |1/l

.

Therefore

|Bk,q ∩ E|1/l ≥ c

k
1
q

√
lnNe

l
max|I|=l |det (QEai)i∈I |1/l

.

Now we give a proof for the second expression.
Note that

BN,q ⊂ Bk,q ⊂
(

N

k

) 1
q

BN,q (5)

and
B0

N,q = T (BN
p ), (6)

where BN
p is the unit ball of lNp , 1

p
+ 1

q
= 1, and T : IRN → IRn is the map

defined by T (ei) = ai, 1 ≤ i ≤ N .
By the inverse Santaló inequality [BM] we have for every l-dimensional

subspace E

|Bk,q ∩ E|1/l ≥ c

l |(BN,q ∩ E)0|1/l

and therefore it is enough to estimate the volume of the polar of the section
BN,q∩E from above. Again, the polar of the section BN,q∩E is the orthogonal
projection of the polar B0

N,q = T (BN
p ) onto E.

By [GJ1]

c2

∑
|I|=n

|det (ai)i∈I |q
 1

nq

≤

|T (BN
p )| 1n

|Bn
p |

1
n

≤ c1 (
√

q ∧
√

n )

∑
|I|=n

|det (ai)i∈I |q
 1

nq

, (7)

where c1 and c2 are constants. Therefore

|T (BN
p )| 1n

|Bn
p |

1
n

≤ c1 (
√

q ∧
√

n )

((
N

n

)
max|I|=n |det (ai)i∈I |q

) 1
nq

and thus

|T (BN
p )|1/n ≤ c1 (

√
q ∧

√
n )

(
Ne

n

)1/q

max|I|=n |det (ai)i∈I |1/n |Bn
p |1/n.

13



Hence for |(BN,q ∩ E)0|1/l = |QE(T (BN
p ))|1/l with the orthogonal projection

QE : IRn −→ E we get

|QE(T (BN
p ))|1/l ≤ c (

√
q ∧

√
l )

(
Ne

l

)1/q

max|I|=l |det (QEai)i∈I |1/l |Bl
p|1/l

≤ C (
√

q ∧
√

l )
N1/q

l
max|I|=l |det (QEai)i∈I |1/l.

Therefore

|Bk,q ∩ E|1/l ≥ c

(
√

q ∧
√

l) N
1
q max|I|=l |det (QEai)i∈I |1/l

.

(iii) By (5) and Santaló inequality we have for all l-dimensional subspaces
E

|Bk,q ∩ E|1/l ≤ C

l

(
N

k

) 1
q 1

|B0
N,q ∩ E|1/l

,

which by (7) is

≤ C
N

1
q

(k l)
1
q

(∑
|I|=l |det (QEai)i∈I |q

) 1
lq

.

2

Theorem 3.3 Let k, n, N be integers such that 204nk ≤ N ≤ 20nnk. There
exists a sequence {ai}i≤N ⊂ Sn−1 such that for every l ≤ n and every l-
dimensional subspace E ⊂ IRn one has

|Bk,q ∩ E|1/l ≤ C

√
n

k
1
q

√
l
√

ln(N/(nk))
.

Remark. Clearly, (1/k)Bn
2 ⊂ Bk,q. On the other hand, if N > k5n then

we can take k copies of some 1/2-net in Sn−1 (i.e. a sequence {aij}i≤k,j≤5n ,
where {aij}j≤5n is the same 1/2-net for each fixed i). Then for all i

‖x‖k,q ≥ k maxj |〈aij, x〉| ≥
3

4
k |x|.

Thus Bk,q ⊂ 4
3k

Bn
2 and, hence, for some positive absolute constants c, C

c
1

k
√

l
≤ |Bk,q ∩ E|1/l ≤ C

1

k
√

l
.
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We shall need the following simple fact. Let ρ be the geodesic distance
on the Euclidean sphere Sn−1. Let S(x, δ) denote the cap with center x and
radius δ

S(x, δ) =
{
y ∈ Sn−1 | ρ(x, y) ≤ δ

}
.

When the choice of the center is not important we write just S(δ). As before
ν = νn−1 denotes the normalized Lebesgue measure on Sn−1.

Fact 3.4 For every δ ∈ [0, π/2] and n ≥ 3 one has

δ sinn−2 δ

2e(n− 1)I
≤ ν(S(δ)) =

1

2I

∫ π/2

π/2−δ

cosn−2 t dt ≤ δ sinn−2 δ

2I
,

where
1√

n− 1
≤ I =

∫ π/2

0

cosn−2 t dt ≤
√

π

2(n− 1)
.

Proof: The equality for ν(S(δ)) follows from the direct computation as well
as the inequalities for I (see e.g. [MS1], Ch. 2). The upper inequality for
ν(S(δ)) is obvious, since the cos is a decreasing function on [0, π/2]. Now let
β ∈ (0, 1). Then

I0 :=

∫ π/2

π/2−δ

cosn−2 t dt ≥
∫ π/2−βδ

π/2−δ

cosn−2 t dt ≥

(1− β)δ sinn−2(βδ) ≥ (1− β)βn−2δ sinn−2 δ,

since sin(βδ) ≥ β sin δ for β ∈ [0, 1], δ ∈ [0, π/2]. Taking β = (n− 2)/(n− 1)
we obtain I0 ≥ 1

e(n−1)
δ sinn−2 δ. That concludes the proof. 2

Proof of Theorem 3.3: Our proof based on a construction by Figiel
and Johnson ([FJ], see also [G1]).

It is enough to show the result for Bk as Bk,q ⊂ k1− 1
q Bk.

Take m = [log20(N/(nk))]. Then 4 ≤ m ≤ n. Denote M = 2[Nm/n] and
choose δ such that M = (π/δ)m−1, i.e. δ = 2π(1/M)1/(m−1) < π/10.

The standard volume estimates show that there exists a symmetric se-
quence {zi}i≤M , i.e. {−zi}i = {zi}i, which is a δ-net (with respect to
geodesic distance) in Sm−1. Indeed, take a maximal δ-separated set N on
the sphere. Clearly, N ∪ −N is a symmetric δ-net on Sm−1. Let a be the
cardinality of N . Since the caps S(δ/2) with the centers in N are disjoint
we have aν(S(δ/2)) ≤ ν(Sm−1) = 1. Using Fact 3.4 and the inequality
sin δ ≥ 2

√
2δ/π on [0, π/4], we obtain for m ≥ 12

a ≤
√

2π

m− 1

e(m− 1)

δ/2 sinm−2(δ/2)
≤ 4e

√
m− 1√
π

(
π√
2δ

)m−1

≤ 1

2

(π

δ

)m−1

.
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Thus for m ≥ 12 the cardinality of N ∪ −N is less than or equal to M .
Set

K = conv


{∑

I

zi

}
|I|=k,I⊂{1,...,M}

 .

To continue the proof we need the following claim, which will be proved
below.

Claim 3.5 The body K, defined above, satisfies

(k/2)Bm
2 ⊂ K.

Now, let s0 = n/m. Without loss of generality we can assume that s0 is
an integer. For every 1 ≤ s ≤ s0 define the operator is : IRm −→ IRn by
isej = el, where l = (s− 1)m+ j. Then, taking as

i = iszi, we have as
i ∈ Sn−1.

Set {aj} = {as
i}i,s. By the choice of M and s0 one has that the cardinality of

the set {aj} is Ms0 ≤ 2N . Also, by construction, we have that {−ai} = {ai},
i.e. we need only half of ai’s to define Bk.

Denote B = conv {isK}s. Using the claim we obtain

B ⊃ (k/2)

s0∑
s=1

⊕Bm
2 ⊃ k

2
√

s0

Bs0m
2 ,

where
∑
⊕ denotes the `1-sum. It follows

B0 ⊂
2
√

s0

k
Bn

2 ⊂
2
√

n

k
√

m
Bn

2 .

It is not difficult to see that B0
k ⊃ B. Thus Bk ⊂ 2

√
n/(k

√
m)Bn

2 . Thus for
every l-dimensional subspace E one has

|E ∩Bk| ≤
∣∣∣∣ 2√n

k
√

m
Bl

2

∣∣∣∣ ≤ (C

√
n

k
√

ml

)l

.

2

Proof of the claim: Consider u ∈ Sm−1. Choose the minimal angle θ such
that there are at least k points of the zi’s with 〈u, zi〉 ≥ cos θ. Since k ≤ M/2
we have θ ∈ [0, π/2]. Assume that z̄1, z̄2, ... are those points. Then we have∣∣∣∣∣

k∑
i=1

z̄i

∣∣∣∣∣
2

=
k∑

i,j=1

〈z̄i, z̄j〉 ≥ k2 cos(2θ) = k2(1− 2 sin2 θ).

Denote A = {i | 〈z̄i, u〉 > cos θ}. By minimality of θ we have |A| ≤ k.
Since {zi}i≤M is a δ-net in Sm−1, {z̄i}i∈A is a δ-net in S(u, θ − δ). That
implies ∑

i∈A

νm−1(S(zi, δ)) ≥ νm−1(S(u, θ − δ)).
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Using Fact 3.4 we obtain

kδ sinm−2 δ ≥ (θ − δ) sinm−2(θ − δ)

e(m− 1)
.

Thus sinm−1(θ − δ) ≤ e(m − 1)kδm−1. Now if δ ≥ θ/2 then θ ≤ 2δ ≤ π/6
and 1− 2 sin2 θ ≥ 1/2. If δ ≤ θ/2 then

sin θ ≤ 2 sin(θ/2) ≤ 2 sin(θ − δ) ≤ 2(emk)1/(m−1)δ = 2π(emk/M)1/(m−1).

By the choice of m, M we have

sin θ ≤ 2π

(
enk

2N

)1/(m−1)

≤ 2π
( e

2 20m

)1/(m−1)

≤ 1

2
.

Thus 1 − 2 sin2 θ ≥ 1/2. That means that for every u ∈ Sm−1 there is
z =

∑k
i=1 z̄i such that |z|2 ≥ k2/2 and 〈u, z〉/|z| ≥ cos θ ≥

√
3/2.

The estimate now follows by the standard technique. Indeed, let b the
best possible constant such that for every x ∈ IRn we have ‖x‖K ≤ b|x|.
Then for every u ∈ Sn−1 one has

‖u‖K ≤ ‖z/|z| ‖K + ‖u− z/|z| ‖K ≤

1/|z|+ b |u− z/|z| | ≤
√

2/k + b(2−
√

3).

By minimality of b we obtain b ≤
√

2/k + b(2−
√

3), which means

b ≤
√

2

(
√

3− 1)k
≤ 2/k.

That proves the claim. 2

4 Dvoretzky’s theorem

First we recall the following version of Dvoretzky’s Theorem (see Theorem
2.5 and Corollary 2.6 of [Go1]).

Theorem 4.1 Let X be an n-dimensional space. Let m ≤ n and G : `m
2 −→

X be the Gaussian operator defined by (1). Then

E ‖G‖ = Emax
|x|=1

‖Gx‖ ≤ E(X) +
√

mε2(X),

and
E min
|x|≤1

‖Gx‖ ≥ E(X)−
√

mε2(X),
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where ε2(X) is defined by (3).
In particular, if E(X) >

√
mε2(X), then there exists an m-dimensional

subspace Y ⊂ X such that

dY ≤ E ‖G‖
/

E min
|x|≤1

‖Gx‖ ≤ E(X) +
√

mε2(X)

E(X)−
√

mε2(X)

Moreover, the subspace can be taken in a “random” way.

Theorem 4.2 Let α ∈ (0, 1) and 1 ≤ m ≤ n. Let {aj}j≤N ⊂ Sn−1 be such
that |ai − aj| ≥ ε for every i 6= j and let X = (IRn, Bk), k ≤ N . There are
absolute positive constants c and C such that

(i) if

m ≤ α2 c2ε2k2 ln (3N/k)

(ε2 (Bk))
2

then there exists an m-dimensional subspace Y ⊂ X satisfying

dY ≤ 1 + α

1− α
;

(ii) if
√

mε2(Bl) < cεl
√

ln(3N/l) then there exists an m-dimensional
subspace Y ⊂ X satisfying

dY ≤ max {1, l/k}
Ck
√

ln(3N/k) +
√

mε2(Bk)

cεl
√

ln(3N/l)−
√

mε2(Bl))
.

Moreover, the subspaces can be taken in a “random” way.

Proof: The first part of the theorem follows by Theorem 4.1 and Lemma 2.3.
To show the second part of the theorem note that ‖x‖s ≤ ‖x‖k ≤

(k/s)‖x‖s for every s ≤ k. Let G be the Gaussian operator G : `m
2 −→ X.

Then by Theorem 4.1 and Lemma 2.3

E ‖G‖ ≤ Ck
√

ln(3N/k) +
√

mε2(Bk).

If l ≥ k then

E min
|x|=1

‖Gx‖k ≥ max
l≥k

k

l
E min
|x|=1

‖Gx‖l ≥

max
l≥k

k

l
(cεl
√

ln(3N/l)−
√

mε2(Bl)).

If l ≤ k then
E min
|x|=1

‖Gx‖k ≥ max
l≤k

E min
|x|=1

‖Gx‖l ≥

18



max
l≤k

(cεl
√

ln(3N/l)−
√

mε2(Bl)).

The result follows by Theorem 4.1. 2

Remark 1. The general case (when {ai} 6⊂ Sn−1) can be treated using
Corollary 2.5.

Remark 2. As ε2(Bk) = max|x|=1

∑
|〈x, ai〉|∗ = max{±,|I|=k}|

∑
i∈I ±ai| and

likewise for ε2(Bl), we may replace ε2(Bk) and ε2(Bl) by these values.

5 Properties of the spaces intermediate be-

tween `1 and `∞

In this section we investigate the spaces whose unit balls are convex hulls
of {Bn

1 , (Bn
∞/k)} and their duals, (kBn

1 ) ∩ Bn
∞, where Bn

1 denotes the unit
ball of ln1 and Bn

∞ the unit ball of ln∞. As we shall see in Lemma 5.1 those
spaces are particular cases of spaces with unit balls Bk and B0

k, when N = n
and the sequence {ai}i is {ei}i. Henceforth Bk will refer to this choice of the
sequence {ai}i.

In the first subsection we investigate Dvoretzky’s theorem, type and co-
type constants of such spaces. In the second subsection we provide asymptot-
ically sharp estimates of the volume ratio of Bk and B0

k, and of the projection
constant of Bk. Finally, in the third section we investigate the p-summing
norm of the identity operator acting on some special spaces. As a corollary
we obtain asymptotically sharp estimates of the projection constant of B0

k.

Lemma 5.1 Let {ai}i≤n = {ei}i≤n and k ≤ n. Then

Bk = conv {Bn
1 , (Bn

∞/k)} and B0
k = (kBn

1 ) ∩Bn
∞.

Proof: Denote B := (kBn
1 )∩Bn

∞. Fix x. Without loss of generality assume
that only k terms of {|xi|} are larger than or equal to x∗k. Define z = {zi} by

zi =

{
sign xi for |xi| ≥ x∗k,
0 otherwise.

Clearly z ∈ B, and hence

‖x‖B0 = max
y∈B

〈x, y〉 ≥ 〈x, z〉 =
k∑

i=1

|xi|∗ = ‖x‖k.

To get the inequality in the other direction, assume, as we can, that
x1 ≥ x2 ≥ ... ≥ xn ≥ 0. Then for every y ∈ B one has 〈x, y〉 ≤

∑k
1 x∗i , i.e.
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‖x‖B0 ≤ ‖x‖k. That proves the first equality. The second follows by duality.
2

Below we will use Khinchine’s inequality, which states that there exists
an absolute constant c > 0 such that for every p ≥ 1 and every {bi}i ⊂ IR
one has

1

Ap

(
1

2n

∑
ε

∣∣∣∣∣
n∑

i=1

biεi

∣∣∣∣∣
p)1/p

≤

 1

2n

∑
ε

∣∣∣∣∣
n∑

i=1

biεi

∣∣∣∣∣
2
1/2

= (8)

(
n∑

i=1

|bi|2
)1/2

≤ Bp

(
1

2n

∑
ε

∣∣∣∣∣
n∑

i=1

biεi

∣∣∣∣∣
p)1/p

,

where the sum is taken over all ε ∈ {−1, 1}n and

Ap ≤
{

1 for 1 ≤ p ≤ 2,
c
√

p for p > 2,

Bp =

{ √
2 for 1 ≤ p ≤ 2,

1 for p > 2.

5.1 Consequences of Dvoretzky’s theorem.
Type 2 and Cotype 2

We start with a well known estimate of type and cotype constants (see e.g.
[Pi1], [T]). Let C2(B) and T2(B) denote the cotype and type constant of the
space with the unit ball B.

Lemma 5.2 Let B ⊂ IRn be a convex body with m > 1 extreme points. Then

C2

(
B0
)
≤ T2 (B) ≤ c

√
ln m,

where c is an absolute constant.

In the following statements we describe the properties of Bk and B0
k. We

start with a trivial fact.

Fact 5.3 The following sharp inclusions hold

min
{
1, k/

√
n
}

Bn
2 ⊂ B0

k ⊂
√

kBn
2

and
1√
k
Bn

2 ⊂ Bk ⊂ max
{
1,
√

n/k
}

Bn
2 .

In particular it means ε2(Bk) =
√

k and ε2(B
0
k) = max {1,

√
n/k}.
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We shall also use the following estimates.

Lemma 5.4 There are absolute positive constants c and C such that

c k
√

ln (2n/k) ≤ E (Bk) ≤ C k
√

ln (2n/k)

and
c
(√

ln n + n/k
)
≤ E

(
B0

k

)
≤ C

(√
ln n + n/k

)
.

Proof: The first estimate is a consequence of Lemma 2.1 (and the remark
after it). The second estimate can be obtained directly, since

1/2 (|x|∞ + |x|1/k) ≤ ‖x‖B0
k

= max{|x|∞, |x|1/k} ≤ |x|∞ + |x|1/k,

where | · |1 is the l1-norm and | · |∞ is the l∞-norm. 2

The next two corollaries give Dvoretzky type theorems. They follow
immediately from Theorem 4.2.

Corollary 5.5 Let 1 ≤ m ≤ n and 1 ≤ k ≤ n. Let δ ∈ (0, 1). There are
absolute constants c and C such that

(i) if m ≤ ckδ2 ln(3n/k) then there exists an m-dimensional subspace
E ⊂ IRn such that

d (Bk ∩ E, Bm
2 ) ≤ 1 + δ

1− δ
;

(ii) if m ≥ k ln(3n/k) then there exists an m-dimensional subspace E ⊂
IRn such that

d (Bk ∩ E, Bm
2 ) ≤ C

√
m

k ln (3n/m)
.

Moreover, the subspaces can be taken in a “random” way.

Proof: By the definition of the body Bk we have |ai − aj| =
√

2 and by

Fact 5.3 ε2(Bk) =
√

k. Thus the first estimate follows by Theorem 4.2.
If m ≥ k ln(3n/k) then k ≤ m

ln(3n/k)
. On the other hand there exists an

absolute constant c1 ≥ 1 such that if l = c1m
ln(3n/m)

then c0

√
2
√

ln(3n/l)l ≥
2
√

m
√

l. Since l ≥ k, ε2(Bk) =
√

l and |ai−aj| =
√

2 for i 6= j, we can apply
the “Moreover” part of Theorem 4.2 in order to obtain an m-dimensional
subspace Y ⊂ X with

dY ≤
ck
√

ln(3n/k) +
√

mk

ck
√

2
√

ln(3n/l)
≤ C1

√
m√

k
√

ln(3n/(c1m))
,

which implies the desired estimate. 2
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Corollary 5.6 Let 1 ≤ m ≤ n and 1 ≤ k ≤ n. There are an absolute
constant C and an m-dimensional subspace E ⊂ IRn such that

(i) if k ≤ n/
√

ln(2n/m) then

d
(
B0

k ∩ E, Bm
2

)
≤ C

(
1 + k

√
m/n

)
;

(ii) if k > n/
√

ln(2n/m) then

d
(
B0

k ∩ E, Bm
2

)
≤ C

(
1 +

√
m

ln (2n/m)

)
.

Moreover, the subspaces can be taken in a “random” way.

Remark. The second estimate is known in a general case. That is for every
convex body K and every m ≤ n/2 there exists an m-dimensional subspace
E, such that

d (K ∩ E, Bm
2 ) ≤ C

(
1 +

√
m

ln (2n/m)

)
([MS3], see also [MS2, GGM, LiT, Gu]).

Proof:
Note that for every 1 ≤ l ≤ n

‖x‖B0
k

= max

{
|x|1
k

, |x|∞
}
≥ |x|1

2k
+
|x|∞

2
≥ 1

2

(
|x|1
k

+
1

l

∑
i≤l

|xi|∗
)

,

where | · |1 is the l1-norm and | · |∞ is the l∞-norm. Using the estimates for
the Gaussian operator G : lm2 → (IRn, B0

k), Fact 5.3 and Lemma 5.4, we get

E ‖G‖ ≤ E
(
B0

k

)
+
√

mε2

(
B0

k

)
≤


c
√

ln n +
√

m for k > n/
√

ln(2n)

cn
k

+
√

m for
√

n ≤ k ≤ n/
√

ln(2n)
cn

k
for k <

√
n.

Consider now the new norm defined by

|||x||| = |x|1
k

+
1

l

l∑
i=1

|xi|∗ ≤ 2 ‖x‖B0
k
.

Clearly ε2 ((IRn, ||| · |||)) ≤
√

n
k

+ 1√
l
. Therefore, by Theorem 4.1 we have

E inf
|x|=1

2 ‖Gx‖B0
k
≥ E inf

|x|=1
|||Gx||| ≥ E

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣∑

i≤n

gi ei

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣−√

mε2 ((IRn, ||| · |||)) ≥
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n

k

√
2

π
+ c
√

ln (2n/l)−
√

m

(√
n

k
+

1√
l

)
=

√
n

k

(√
2n/π −

√
m
)

+
c
√

l
√

ln (2n/l)−
√

m√
l

.

We can assume that m ≤ n/2 (otherwise the corollary is obvious). Choose l
satisfying c

√
l
√

ln (2n/l) ≈
√

2m, so that l ≈ m
ln(2n/m)

. Then

E inf
|x|=1

‖Gx‖B0
k
≥ c1

(
n/k +

√
ln (2n/m)

)
for some absolute constant c1 > 0. Thus for k ≤ n/

√
ln (2n/m) one has

dE ≤ E ‖G‖
E inf |x|=1 ‖Gx‖B0

k

≤ c n/k +
√

m

2c1n/k
≤ C

(
1 +

k
√

m

n

)
.

That proves the first case. If k ≥ n/
√

ln (2n/m) one has

dE ≤ E ‖G‖
E inf |x|=1 ‖Gx‖B0

k

≤
√

m + c
√

ln m

2
√

ln (2n/m)
≤ C

(
1 +

√
m

ln (2n/m)

)
,

which proves the second case. 2

For the proof Proposition 5.8 as well as in Section 7 we need the fol-
lowing result of S. Kwapień and C. Schütt (Corollary 2.3 of [KS2], see also
Theorem 1.2 of [KS1]).

Lemma 5.7 (i) Let q ≥ 1. Let b ∈ IRn such that b1 ≥ b2 ≥ · · · ≥ bn ≥ 0.
For every x ∈ IRn one has

1

5n

n∑
j=1

s(j) +

(
1

n

n2∑
j=n+1

s(j)q

)1/q

≤ 1

n!

∑
π

(
n∑

i=1

|xibπ(i)|q
)1/q

≤

1

n

n∑
j=1

s(j) +

(
1

n

n2∑
j=n+1

s(j)q

)1/q

,

where {s(k)}k is the non-increasing rearrangement of {|xibj|}i,j.

(ii) Let q ≥ 1. Let b ∈ IRn such that b1 ≥ b2 ≥ · · · ≥ bn > 0 and such
that

∑
1≤i≤n bi = n. For every x ∈ IRn one has

1

4

(
1

2
− 1

n− 1

)
‖x‖Nb

≤ 1

n!

∑
π

(
n∑

i=1

|xibπ(i)|q
)1/q

≤ 8

(
1 +

2

n− 1

)
‖x‖Nb

,
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where Nb is the Orlicz function defined by

1

5
N∗−1

b

(
l

n

)
≤ 1

n

∑
1≤i≤l

bi + l
q−1

q

( ∑
l+1≤i≤n

bq
i

)1/q
 ≤ 2N∗−1

b

(
l + 1

n

)
.

The following Proposition provides estimates for the type and cotype
constants of the bodies.

Proposition 5.8 There are absolute constants c and C such that

(i) for k <
√

n we have

c
√

k ≤ C2

(
B0

k

)
≤ T2 (Bk) ≤ min

{√
n/k, C

√
k
√

ln n
}

and
c
√

n/k ≤ T2

(
B0

k

)
≤
√

n/k;

(ii) for k ≥
√

n we have

c
√

k ≤ C2

(
B0

k

)
≤ T2 (Bk) ≤

√
k

and

c max
{√

ln k,
√

n/k
}
≤ T2

(
B0

k

)
≤ min

{√
k,
√

n/k
√

ln n
}

;

(iii) for all k we have

c
√

n/k ≤ C2 (Bk) ≤ C
√

n/k.

Proof:
(i) To prove the first upper estimate note that the set of extreme points

of B0
k is the set of points x = {xi} satisfying

xi =

{
±1 for i ∈ A
0 otherwise,

for some set A with cardinality |A| = k. Therefore by Lemma 5.2 we have

C2

(
B0

k

)
≤ T2 (Bk) ≤ c

√
ln

(
2k

(
n

k

))
≤ c1

√
k
√

ln(2n/k),

and as k <
√

n we have that ln(2n/k) is, up to a numerical constant, of the
same order as ln n.
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Since T2 (Bk) ≤ dBk
, we get with Fact 5.3 in the case k <

√
n that

T2 (Bk) ≤
√

n/k.

This is the other upper estimate.
To obtain the lower estimate for C2 (B0

k) it is enough to take the set of
points xi = ei, i ≤ k. This works for all 1 ≤ k ≤ n.

Again, since T2 (B0
k) ≤ dBk

, we get with Fact 5.3 in the case k <
√

n that

T2

(
B0

k

)
≤
√

n/k.

The lower estimate for T2 (B0
k) will follow from (iii), since T2 (B0

k) ≥
C2 (Bk).

(ii) We have that C2 (B0
k) ≤ T2 (Bk) and the upper estimate for T2 (Bk)

follows again from Fact 5.3 as now k ≥
√

n. The lower estimate for C2 (B0
k)

is as in (i).
The first upper estimate T2 (B0

k) ≤
√

k follows again from the fact that
T2 (B0

k) ≤ dBk
and Fact 5.3.

The other upper estimate for T2 (B0
k) follows from (iii) and the fact that

T2 (B0
k) ≤

√
ln n C2 (Bk) (see [Pi2]).

Taking the k-dimensional subspace E = span{ei}i≤k of IRn one can easily
check that lk∞ ⊂ (IRn, Bk). Therefore

T2

(
B0

k

)
≥
√

ln k,

which gives the first lower estimate for T2 (B0
k). As T2 (B0

k) ≥ C2 (Bk), the
other lower estimate for T2 (B0

k) for all k will follow from (iii).

(iii) We get the lower estimate for C2 (Bk) by taking
[

n
k

]
vectors xi of the

following form
x1 = (1, . . . , 1, 0, . . . , 0),

with 1 on the first k coordinates, 0 on the others;

x2 = (0, . . . , 0, 1, . . . , 1, 0, . . . , 0),

with 0 on the first k coordinates, 1 on the next k and 0 on the others. We
continue with the other xi in the obvious way.

To prove the upper bound for C2 (Bk) we consider for x ∈ IRn the norm

|||x||| =
∑
i≤k

|xi|∗ +
√

k

( ∑
k+1≤i≤n

|xi|∗2
) 1

2

.

Since |xk+1|∗ ≤ 1
k
‖x‖k, we obtain

‖x‖k ≤ |||x||| ≤ ‖x‖k +
√

k
√

n− k|xk+1|∗ ≤
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‖x‖k

(
1 +

√
n− k

k

)
≤ 2
√

n/k‖x‖k.

Thus the Banach-Mazur distance is

d ((IRn, ||| · |||) , (IRn, ‖ · ‖k)) ≤ 2

√
n

k
.

Now we show that (IRn, ||| · |||) has cotype 2. This will follow once we
have shown that (IRn, ||| · |||) is c-isomorphic to a subspace of L1 where c does
not depend on the dimension n and on k. This is what we shall prove now:
By Lemma 5.7 we have for all n ∈ IN , b, x ∈ IRn

1

5n

n∑
j=1

s(j) +

(
1

n

n2∑
j=n+1

s(j)2

)1/2

≤ 1

n!

∑
π

(
n∑

i=1

|xibπ(i)|2
)1/2

≤

1

n

n∑
j=1

s(j) +

(
1

n

n2∑
j=n+1

s(j)2

)1/2

,

where {s(k)}k is the non-increasing rearrangement of {|xibj|}i,j.
Using Khinchine’s inequality (8) one can prove that (IRn, ‖·‖) is equivalent

to a subspace of L1, where

‖x‖ =
1

n!

∑
π

(
n∑

i=1

|xibπ(i)|2
)1/2

.

We choose b = (1, . . . , 1, 0, . . . , 0) with m coordinates equal to 1 and the
others equal to 0. Assume that n/m is an integer. Then

n∑
j=1

s(j) = m

n/m∑
j=1

|xi|∗ and
n2∑

j=n+1

s(j)2 = m
n∑

j=(n/m)+1

|xi|∗2.

Hence

1

n

n∑
j=1

s(j) +

(
1

n

n2∑
j=n+1

s(j)2

)1/2

=
m

n

n/m∑
j=1

|xi|∗ +

√
m

n

( n∑
j=(n/m)+1

|xi|∗2
) 1

2

.

Without loss of generality we may assume that n/k is an integer. Choosing
m such that k = n

m
we obtain that (IRn, ||| · |||) is isomorphic to a subspace

of L1.
This proves the proposition. 2
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5.2 Volume Ratios. Projection constants of B0
k

We start with the estimate of the volume ratio of the bodies. Let us first
recall that for a body K ⊂ IRn the volume ratio vr(K) is

vr(K) = (|K| / |E|)1/n ,

where E is the ellipsoid of maximal volume in K.
By the volume ratio of the space we mean the volume ratio of its unit

ball.

Lemma 5.9 There exist absolute constants c > 0 and C such that

c
√

n/k ≤ vr (Bk) ≤ C
√

n/k

and

c max

{
k√
n

, 1

}
≤ vr

(
B0

k

)
≤ C max

{
k√
n

, 1

}
.

Proof: Since the bodies have enough symmetries, the ellipsoids in Fact 5.3
are of maximal volume. To estimate the volume of Bk note that Bn

∞/k ⊂
Bk ⊂ (n/k) Bn

1 . Hence

(2/k)n ≤ |Bk| ≤ (2e/k)n

and, by Santaló inequality and inverse Santaló inequality [BM],

(c1k/n)n ≤
∣∣B0

k

∣∣ ≤ (c2k/n)n .

This implies the result. 2

Remark. This result should be compared with the corollary of Theorem 7
of [GGMP] which says

E vr (K ∩ E) ≥ c
√

l

E(K) maxi ‖ei‖K0

,

where the expectation E is taken with respect to the normalized Haar mea-
sure on the Grassmanian of all l-dimensional subspaces E ⊂ IRn. By Lemma 5.4
we obtain

E vr (Bk ∩ E) ≥ c
√

l

k
√

ln(3n/k)

and

E vr
(
B0

k ∩ E
)
≥ c

√
l√

ln n + n/k
.

The volume ratio estimates allow us to obtain the following estimates for
the projection constant λ. Recall that for every n-dimensional body K one
has λ(K) ≤

√
n and λ(K) ≤ d(K, Bn

∞).
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Theorem 5.10 There is an absolute constant c > 0 such that

(i) for every
√

n ≤ k ≤ n one has

c
n

k
≤ λ

(
B0

k

)
≤ n

k
,

(ii) for every 1 ≤ k ≤
√

n one has

c
√

n ≤ λ
(
B0

k

)
≤
√

n.

Proof: To prove the first upper estimate we use a well-known estimate
λ(K) ≤ d(K, Bn

∞). The estimate d (B0
k, B∞) ≤ n

k
is trivial. Since λ(K) ≤

√
n

for every K ⊂ IRn we obtain the second upper estimate.
To obtain the lower estimates we use the following inequalities from

[GMP]. For every n-dimensional normed space X one has

√
n ≤ evr (X, `∞) vr (X) ≤

√
en

and
evr (X, `∞) zr (X) ≤ λ (X) ,

where evr and zr denote the external volume ratio and zonoid ratio cor-
respondingly (see e.g. [GMP] for the precise definitions). For every n-
dimensional normed space X with a 1-unconditional basis one has

1 ≤ zr (X) zr (X∗) ≤ C,

where C is a numerical constant. Since X = (IRn, Bk) and X∗ = (IRn, B0
k)

have a 1-unconditional basis we obtain

λ
(
B0

k

)
≥ c

√
n

vr (B0
k)

.

The result follows by Lemma 5.9. 2

Remark. The estimate on vr (B0
k) allows us to obtain lower bounds for the

GL-constant gl2 of subspaces of B0
k since by [GJ2], for every n-dimensional

normed space X there exists a subspace Y ⊂ X, dim Y ≤ n
2
, such that

vr (X) ≤ c zr (Y ) and zr (Y ) zr (Y ∗) ≤ c1gl2 (Y ), where c and c1 are positive
absolute constants ([GMP]).
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5.3 p-summing norms and related invariants

We shall obtain the estimates for the projection constant of Bk as a corollary
of the following lemma, in which we compute the p-summing norm πp(K) of
the identity operator Id : (IRn, K) −→ (IRn, K) for some special bodies K.
Recall that πp(K) is the best possible constant, satisfying

N∑
j=1

‖yj‖p
K ≤ πp

p(K) sup
‖f‖∗≤1

N∑
j=1

|〈yj, f〉|p

for every N and every y1, y2, ..., yN ∈ E = (IRn, K), where ‖ · ‖∗ denotes the
norm in E∗ = (IRn, K0).

Let b ∈ IRn be such that b1 ≥ b2 ≥ ... ≥ bn ≥ 0 and b1 > 0. Define the
norm ‖x‖b =

∑
i bi|xi|∗.

Lemma 5.11 Let Kb be the unit ball of ‖ · ‖b. Let p ≥ 1. Then there is an
absolute constant c such that

1

Ap
p

sup
x 6=0

n! ‖x‖p
b∑

π

(∑n
i=1 |xibπ(i)|2

)p/2
≤ πp

p(Kb) ≤ Bp
p sup

x 6=0

n! ‖x‖p
b∑

π

(∑n
i=1 |xibπ(i)|2

)p/2
,

where

Ap ≤
{

1 for 1 ≤ p ≤ 2,
c
√

p for p > 2,

Bp =

{ √
2 for 1 ≤ p ≤ 2,

1 for p > 2.

Proof: Given x ∈ IRn, ε ∈ {−1, 1}n, and a permutation π of {1, 2, ..., n}
denote the vector (εix(π(i)))n

i=1 by εxπ.
We show first the left hand inequality. Let x be a vector for which the

supremum

sup
x 6=0

n! ‖x‖p
b∑

π

(∑n
i=1 |xibπ(i)|2

)p/2

is attained. As a sequence we choose {εxπ}ε,π. Then we have∑
π

∑
ε

‖εxπ‖p
b ≤ πp

p(Kb) sup
‖f‖∗=1

∑
π

∑
ε

| < εxπ, f > |p.

This means

‖x‖p
b ≤ πp

p(Kb) sup
‖f‖∗=1

1

n!2n

∑
π

∑
ε

∣∣∣∣∣
n∑

i=1

εix(π(i))f(i)

∣∣∣∣∣
p

.
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We apply now Khintchine-inequality (8)

‖x‖p
b ≤ Ap

pπ
p
p(Kb) sup

‖f‖∗=1

1

n!

∑
π

(
n∑

i=1

|x(π(i))f(i)|2
) p

2

.

Instead of taking the supremum over all f with norm 1 we may take only
the supremum over the extreme points of the unit ball of ‖ · ‖∗. The extreme
points of the unit ball are all the points εbπ where ε ranges over all sequences
of signs and π over all permutations. Thus we get

‖x‖p
b ≤ Ap

pπ
p
p(Kb)

1

n!

∑
π

(
n∑

i=1

|x(π(i))bi|2
) p

2

.

Now we proof the right hand inequality. Let δ > 0 and let yi ∈ IRn, 1 ≤ i ≤ m
be a sequence such that

m∑
j=1

‖yj‖p
b ≥ (πp

p(Kb) + δ) sup
‖f‖∗=1

m∑
j=1

| < yj, f > |p.

Since the norm is 1-symmetric we get for all sequences of signs ε and permu-
tations π

m∑
j=1

‖εyπ
j ‖

p
b ≥ (πp

p(Kb) + δ) sup
‖f‖∗=1

m∑
j=1

| < εyπ
j , f > |p.

By triangle-inequality

m∑
j=1

‖yj‖p
b ≥ (πp

p(Kb) + δ) sup
‖f‖∗=1

1

n!2n

∑
π

∑
ε

m∑
j=1

| < εyπ
j , f > |p.

As in the proof of the left hand inequality we apply Khintchine-inequality
(8)

m∑
j=1

‖yj‖p
b ≥ Bp

p(π
p
p(Kb) + δ) sup

‖f‖∗=1

1

n!

∑
π

m∑
j=1

(
n∑

i=1

|yj(π(i))f(i)|2
) p

2

.

Since ‖b‖∗ = 1

m∑
j=1

‖yj‖p
b ≥ Bp

p(π
p
p(Kb) + δ)

1

n!

∑
π

m∑
j=1

(
n∑

i=1

|yj(π(i))bi|2
) p

2

.

It follows that

Bp
pπ

p
p(Kb) ≤ sup

{yj}m
j=1

∑m
j=1 ‖yj‖p

b∑m
j=1

1
n!

∑
π (
∑n

i=1 |yj(π(i))bi|2)
p
2
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where the supremum is taken over all sequences of vectors such that at least
one vector is different from 0. It is left to observe that the supremum is
attained for a sequence consisting of one vector only.

Bp
pπ

p
p(Kb) ≤ sup

y 6=0

‖y‖p
b

1
n!

∑
π (
∑n

i=1 |y(π(i))bi|2)
p
2

2

Proposition 5.12 Let 1 ≤ p ≤ 2. Let b ∈ IRn with b1 ≥ b2 ≥ . . . bn > 0 and
let Eb be IRn with the norm ‖x‖b =

∑
i bi|xi|∗. Then we have

c1 πp(Kb) ≤ sup
x 6=0

‖x‖b

‖(|x1|p, . . . , |xn|p)‖1/p
Nbp

≤ c2 πp(Kb),

where c1 and c2 are positive absolute constants and where the Orlicz function
Nbp is defined by

1

5
N∗−1

bp

(
l

n

)
≤ 1

n

∑
1≤i≤l

bp
i + l

2−p
2

( ∑
l+1≤i≤n

b2
i

) p
2

 ≤ 2N∗−1
bp

(
l + 1

n

)
.

In particular for p = 1 we get

c1 π1(Kb) ≤ ‖b‖N∗
b
≤ c2 π1(Kb),

where c1 and c2 are constants and where the Orlicz function Nb is defined by

1

5
N∗−1

b

(
l

n

)
≤ 1

n

∑
i≤l

bi +
√

l

( ∑
l+1≤i≤n

b2
i

) 1
2

≤ 2 N∗−1
b

(
l + 1

n

)
.

Proof: We may assume that
∑

1≤i≤n bp
i = n. By Lemma 5.11 we have

πp(Kb)

Bp

≤ sup
x6=0

‖x‖b[
1

n!

∑
π

(∑n
i=1 |xibπ(i)|2

)p/2
]1/p

≤ Ap πp(Kb).

By Lemma 5.7, applied for q = 2/p, we obtain

(1/4)1/p

(
1

2
− 1

n− 1

)1/p

‖(|x1|p, . . . , |xn|p)‖1/p
Nbp

≤

 1

n!

∑
π

(
n∑

i=1

|xibπ(i)|2
)p/2

1/p

≤
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81/p

(
1 +

2

n− 1

)1/p

‖(|x1|p, . . . , |xn|p)‖1/p
Nbp

,

where the Orlicz function Nbp is defined by

1

5
N∗−1

bp

(
l

n

)
≤ 1

n

∑
1≤i≤l

bp
i + l

2−p
2

( ∑
l+1≤i≤n

b2
i

) p
2

 ≤ 2N∗−1
bp

(
l + 1

n

)
.

Thus we get

πp(Kb)

81/p
(
1 + 2

n−1

)1/p
Bp

≤ sup
x 6=0

‖x‖b

‖(|x1|p, . . . , |xn|p)‖1/p
Nbp

≤ 41/pApπp(Kb)(
1
2
− 1

n−1

)1/p
.

If p = 1, this can be simplified as then by definition of the ‖ · ‖b-norm

sup
x 6=0

‖x‖b

‖(|x1|p, . . . , |xn|p)‖1/p
Nbp

= sup
‖(|x1|,...,|xn|)‖Nb

=1

〈b, |x|〉 = ‖b‖N∗
b
,

where |x| denotes {|xi|}i. 2

Using Lemma 5.11 we obtain the following result of Gluskin [G2] and
independently Schütt [S].

Corollary 5.13 There is an absolute constant c > 0 such that

(i) for every
√

n ≤ k ≤ n one has

c
√

n ≤ λ (Bk) = n/π1 (Bk) <
√

n;

(ii) for every 1 ≤ k ≤
√

n one has

ck ≤ λ (Bk) = n/π1 (Bk) ≤ k.

Proof: It is well known ([GG]) that for a symmetric space (IRn, K) one has
λ(K)π1(K) = n. Clearly, (IRn, Bk) is a symmetric space. This shows the
equality. The upper estimates hold, since λ(K) ≤

√
n for every K ⊂ IRn and

λ(Bk) ≤ d(Bk, B
n
∞) ≤ k. It remains to prove the lower estimates.

Take b ∈ IRn such that b1 = b2 = ... = bk = 1, bk+1 = ... = bn = 0. Then
Bk = Kb and ‖ · ‖k = ‖ · ‖b. Clearly,

1

n

n∑
j=1

s(j) ≥ k

2n

∑
i≤n/k

|xi|∗
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and (
1

n

n2∑
j=n+1

s(j)2

)1/2

≥

k

n

∑
i>n/k

(|xi|∗)2

1/2

.

Thus by Lemma 5.11 (applied for p = 1) and Lemma 5.7 (applied for q = 2)
we have

λ(Bk) ≥
n

20
·min

x 6=0

(k/n)
∑

i≤n/k |xi|∗ +
(
(k/n)

∑
i>n/k (|xi|∗)2

)1/2

‖x‖k

=

k

20
·min

x6=0

∑
i≤n/k |xi|∗ +

(
(n/k)

∑
i>n/k (|xi|∗)2

)1/2∑
i≤k |xi|∗

.

Now, if k ≤
√

n then

λ(Bk) ≥
k

20
·min

x 6=0

∑
i≤n/k |xi|∗∑
i≤k |xi|∗

≥ k

20
.

If k ≥
√

n then

λ(Bk) ≥
k

20
·min

x 6=0

∑
i≤n/k |xi|∗ +

(
(n/k)

∑
k≥i>n/k (|xi|∗)2

)1/2∑
i≤k |xi|∗

≥

k

20
·min

x6=0

∑
i≤n/k |xi|∗ + (

√
n/k)

∑
k≥i>n/k |xi|∗∑

i≤k |xi|∗
≥ k

20
·
√

n

k
.

That completes the proof. 2
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[Gu] O. Guédon, Gaussian version of a theorem of Milman and Schechtman,
Positivity 1 (1997), 1–5.

[KR] M. A. Krasnosel’skii, J. B. Rutickii, Convex functions and Orlicz spaces.
P. Noordhoff Ltd., Groningen 1961.
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[KS2] S. Kwapień, C. Schütt, Some combinatorial and probabilistic inequalities
and their application to Banach space theory II, Studia Math. 95 (1989),
141–154.

[LT] J. Lindenstrauss, L. Tzafriri, Classical Banach spaces. I. Sequence spaces.
Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 92. Springer-
Verlag, Berlin-New York, 1977.

[LiT] A. E. Litvak, N. Tomczak-Jaegermann, Random aspects of high-
dimensional convex bodies, GAFA, Lecture Notes in Math., V. 1745, 169–
190, Springer-Verlag, 2000.

[FJ] T. Figiel, W. B. Johnson, Large subspaces of ln∞ and estimates of the
Gordon-Lewis constant, Israel J. Math. 37 (1980), no. 1-2, 92–112.

[MP] M. Meyer, A. Pajor, Sections of the unit ball of lnp , J. Funct. Anal. 80
(1988), no. 1, 109–123.

[MS1] V. D. Milman, G. Schechtman, Asymptotic theory of finite-dimensional
normed spaces, Lecture Notes in Math., 1200, Springer, Berlin-New York,
1985.

[MS2] V. D. Milman, G. Schechtman, An “isomorphic” version of Dvoretzky’s
theorem, C.R. Acad. Sci. Paris 321, Série I, (1995), 541–544.

[MS3] V. D. Milman, G. Schechtman, An “isomorphic” version of Dvoretzky’s
theorem, II, Convex geometric analysis (Berkeley, CA, 1996), 159–164,
Math. Sci. Res. Inst. Publ., 34, Cambridge Univ. Press, Cambridge, 1999.

[Pi1] G. Pisier, The Volume of Convex Bodies and Banach Space Geometry.
Cambridge University Press, Cambridge 1989.

[Pi2] G. Pisier, Sur les espaces de Banach K-convexe, Seminaire d’Analyse
Fonctionelle, exposé XI, (1979-80).
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