On the symmetric average of a convex body
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Abstract

We introduce a new parameter, symmetric average, which mea-
sures the asymmetry of a given non-degenerated convex body K in
R™. Namely, sav(K) = inf it i fKa | — x|k, dz/|K|, where |K| de-
notes the volume of K and K, = K — a. We show that for polytopes
sav(K) < Cln N, where N is the number of facets of K. Moreover,
in general 15 < sav(K) < y/n and equality in the lower bound holds
if and only if K is centrally symmetric. We apply these estimates to
provide bounds for covering K by homotets of K N —K.

1 Introduction

Let K C R™ be a convex body. A shift of K by a vector a € R" is denoted by
K, := K — a. Let X denote the Lebesgue measure on R"™ and A be defined
by
AMANK)

A(K)
We consider the following parameter of K, which can be called symmetric
average of K,

Ak (A) =

sav(K) := inf / | — ||k, dA\k,,
ecIntk J K,

where || - || denotes the Minkowski functional (or gauge) of a convex body
(see the definitions below). Note that sav(K) is an affine invariant, that is
sav(K) = sav(TK) for every affine invertible operator 7' : R™ — R™ and that
sav(K) measures the asymmetry of K. For other affine invariant measures
of asymmetry and related discussions we refer to [Gr].

In Section 4, we provide general bounds for sav(K). Namely, we show
that n/(n + 1) < sav(K) < y/n. Moreover, we show that the equality in
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the lower bound holds if and only if K is centrally symmetric. The upper
bound is based on the study of a particular choice of a position of K, namely
the one for which the Euclidean unit ball is the ellipsoid of maximal volume
contained in K and centered at the centroid of K. In Section 3, we show that
the general estimate can be significantly improved if K is a polytope with
a small number of facets. More precisely, in Theorem 3.1 below we obtain
that sav(K) < C'ln N, where C' is an absolute constant and N is the number
of facets of K. This means that although a convex body can be very far
from being symmetric (say, in Banach-Mazur distance, or, equivalently, in
the sense of the functional inf,cx sup,cx || — 2| x,) like a simplex, in average
it is not very asymmetric, i.e. for most points || — x||x is not very big. Here
we take average in the sense of normalized Lebesgue measure on the body.
This phenomenon should be compared with a recent result in [GL], where the
opposite phenomenon was observed for polytopes and the measure uniformly
distributed on vertices. In the last section, we provide some applications to
the bounds of covering numbers.

2 Preliminaries and notation

By BY, |- |, and (-,-) we denote the standard Euclidean ball, the canoni-
cal Euclidean norm, and the canonical inner product on R™. Given points
x1,...,2 in R™ we denote their convex hull by conv {z;};<x. By a body in
R™ we always mean a connected compact set with non-empty interior. We
denote by intA the interior of a set A C R".

Let K C R” be a convex body with 0 in its interior. The polar of K is

K'={zeR" | {r,y) <1 forevery y € K}.
The Minkowski functional of K (or the gauge of K) is
||| = inf{t >0 | z € tK}.

As we mentioned in introduction, A\ denotes the Lebesgue measure on R"
and Ag denotes the measure on R™ given by Ax(A) = A(AN K)/A(K). Note
that by Brunn-Minkowski inequality A\ is a normalized log-concave measure
on R" (see [Bo] and, e.g., [MS], appendix III).

We will need two known lemmas. The first one is the Kahane-Khinchine
inequality for linear functionals and it follows from the log-concavity of \x

(see [Bo)).



Lemma [Bo| There exists an absolute positive constant C' such that for every
q > 2, every y € R", and every convex body K C R™ with 0 in its interior

one has
([ twr o) <co( [ enr oww) @

The second lemma appeared in [KLS] (see also Chapter 3 in [F] for a
simpler proof). In particular it was used to estimate the distance between a
convex body and it’s Legendre ellipsoid.

Lemma [KLS| Let K C R" be a convex body with centroid at 0. Then for
every y € R™ one has

_ b 2 2 n
J(nt2) [yl o < (/K|(x,y)| d)\K(I)) < — lyllwo.  (2)

Moreover, there is equality in the right hand side if K is a simplex in R™ and
in the left hand side if K is a Fuclidean ball.

3 The case of non-degenerated polytopes

In this section we prove that sav(K) of a polytope with small number of
facets cannot be large.

Theorem 3.1 Let 1 < n < N. Let K be a non-degenerated polytope in R™
with N facets. Then
sav(K) < Cln N,

where C' is an absolute positive constant.

Proof: Since sav(K) is an affine invariant, we can assume that 0 is the
centroid of K. Since K has N facets, there exist x1,...,zy € R" such that

|zl = max (&, i)
Therefore for every ¢ > 2 we have

sav(K) < /K | — 2|k dA\k(x) = | max(—z,z;) d\g(2)

K <N
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1/q

N 1/q N
</ (Zux,xw) D (z) < ( | Sl dAK@s))

Applying Kahane-Khinchine inequality (1) we obtain

sav(K) < Ciq <Z§; (/K |, ;)| d/\K(x)>q/2>

1/2
< CygNY9max </ |<:z:,xz>|2 d/\K(x)) ,
K

<N

1/q

where ('] is an absolute positive constant.
Note that by the definition of z;’s we have K° = conv {z;};<y and
|z;|| co = 1. Therefore inequality (2) implies

sav(K) < CygNY.

The choice ¢ = max{2,In N} completes the proof. O

4 The general case
Here we provide general estimates for sav(K'). Note that in general we have

inf sup || - allx, <n
aclNtK zeK,

and that the bound n here cannot be improved as the example of simplex
shows. We show here that for every convex body K C R"™ there is a choice
of a center a (in fact, the centroid works) such that in average || — x|k, is
much smaller than in the extremal case. Or, in other words, the measure
of points # € K, with large || — x[/x, is small. This should be compared
with the recent paper [GL], where the opposite phenomenon was observed
for polytopes and the discrete measure supported on vertices instead of the
Lebesgue measure.

The bound /7 is an immediate consequence of the following theorem (see

Theorem 2.3 of [G]).

Theorem 4.1 Let K be a convex body in R™ such that 0 is the centroid of
K and BY s the ellipsoid of mazimal volume contained in KN —K, i.e. that
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B} maximizes the volume of T'BY over all linear operators on R™ satisfying
TBy C KN—K. Then

1/2 n 1/2
a:zd)\> < :</ xQd)\> ,
(Lt ) < L= ([ 1B,

where A,, is the reqular simplex, circumscribed to the Fuclidean unit ball.

As an immediate consequence we obtain the general estimate for sav(K).

Theorem 4.2 Let K C R™ be a convex body. Then

n
< .
v+ 2 Vi

Proof: It is well known that for every convex body K there exists a linear
transformation 7" such that T'K satisfies the condition of Theorem 4.1. Thus,
since sav(K) is an affine invariant, we can assume that 0 is the centroid of
K and that B} is the ellipsoid of maximal volume for K N —K. Then we
have ||z|| < |z| for every x € R" and therefore, applying Theorem 4.1,

1/2
n
savKg/ —x d)\g/xd)\g(/xsz> < .
(K) K|| & dAk K‘| K K|’2 K NCE)

O

sav(K) <

For the reader convenience, we provide the proof of Theorem 4.1.

Proof of Theorem 4.1: Let K be a convex body in R” such that 0 is the
centroid of K and B is the ellipsoid of maximal volume contained in KN—K.
By John’s theorem [J] (see also [B]), there exist scalars c¢q,...,¢, > 0 and
contact points uq,...,u, of By and K N —K such that

Id = Z CjU; & Uyj, (3)

Jj=1

where Id denotes the identity operator on R". Replacing if necessary u; by
—u;, we can assume that points us, ..., u,, belong to S"~! and the boundary
of K, l.e. |Uj|2 = ||Uj||K = ||Uj||Ko =1.

We deduce from this decomposition that

/ |z|3 dAg = ch/ (z,u;)* dAg ().
K = UK
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Since the centroid of K is at the origin, we can apply the lemma of Kannan,
Lovész and Simonovits [KLS] quoted above (see inequality (2)). We obtain

m
n
23 dAx < —— E ¢l %o-
/K n+2 =

Since for every j < m, |lujl|go = 1 and } 7", ¢; = n (by taking the trace in
the identity decomposition (3)), we have

2 Do < —" v 2 1
K|5L‘|2 K < m;%H%HKO =

Moreover, if A, is the regular simplex circumscribed to the Euclidean
unit ball, then A, has the centroid at 0 and there exist ug,...,u,, € S*!
(in fact, m =n + 1), such that 7", u; = 0 and

n m
Id: TL—l-lZUj@uj.
7j=1
Thus we have equality in inequality (2), which means that

/ (z,u;)* d\a, =

n

2
2 s, = —
[t na, =

and concludes the proof of Theorem 4.1. O

n
n+2

This proves that

We conclude this section providing the sharp lower bound for sav(K).
As one can intuitively guess, sav(K) is the smallest when K is centrally
symmetric and the infumum in the definition of sav(K) is attained when a
is chosen to be the center of symmetry of K.

Proposition 4.3 Let K C R" be a convex body. Then

n
n+1

sav(K) >
and equality holds if and only if K 1is centrally symmetric.
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Proof: Let a be an interior point of K and denote L = K,. Using polar
coordinates we have

1 | —wllz
I::/||—x||de:—/ L=l g,
L n+1 Jouor [wlFH

By the symmetry of the sphere,

| —wllz / |wl|z
-~ dw = —  dw.
/Sn—l Jwl| 7 sn—1 || — w7t

1 | —wlz |wlz >
I= —/ < ud L - ) dw.
20+ 1) Jouor \ [lw[|77" || = w7

Now note that for every positive a, b one has

a b 1 1
'bn+1+an+1 Zﬁ—i_b_’n? (4>

Thus,

with equality if and only if @ = 0. Indeed, the inequality is equivalent to
a1 (a—0b) > b""(a—b), which is obviously true. Applying it to our integral
we observe

1 1 1 1 1
> nt ) dw= .
2(n+1) Jewr \llwllz, [ = w7 n+1 Jg [Jwlg

AK) = ML) = 1/ L,
n Jen ||lwllz

we obtain that I > n/(n+ 1).

The equality case follows from the fact that in (4) we have equality if and
only if a = b. Thus, if ||w||. # || — w||z for some point w € S*~! (and hence
on a set of positive measure) then I > n/(n +1). O

Since

5 Applications

In this section we apply our results to obtain covering estimates. Namely, we
show upper bounds for the covering number N (K, (K N —K)), where K is
a convex body with centroid at 0. Recall, that the covering number N (K, L)
is the minimal number of translates of L needed to cover K. We will use the
following estimate, proved in [LMP] (see Lemma 4 there).
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Lemma 5.1 Let K, L be convex bodies. Assume that L — L C sL for some
positive s. Then for every positive t

N(K,tL) < 2exp (esnM(K,L)/t),

where ¢ is an absolute positive constant and
K

Note that
MK, KN —K) = / lellnor dhk < / (lzllx + 1l = llx) drx.
K K

Thus Lemma 5.1 together with Theorems 3.1 and 4.2 immediately imply

Corollary 5.2 There is an absolute positive constant ¢ such that for every
convez body K C R™ with centroid at 0 and every t > 0 one has

N(K, (KN —K)) < 2exp (en®?/t).
Moreover, if K is non degenerated polytope with N facets
N(K,t(KN—=K)) <2exp(cnlnN/t).
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