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Abstract

We introduce a new parameter, symmetric average, which mea-
sures the asymmetry of a given non-degenerated convex body K in
Rn. Namely, sav(K) = infa∈intK

∫
Ka
‖ − x‖Ka dx/|K|, where |K| de-

notes the volume of K and Ka = K − a. We show that for polytopes
sav(K) ≤ C lnN , where N is the number of facets of K. Moreover,
in general n

n+1 ≤ sav(K) <
√
n and equality in the lower bound holds

if and only if K is centrally symmetric. We apply these estimates to
provide bounds for covering K by homotets of K ∩ −K.

1 Introduction

Let K ⊂ Rn be a convex body. A shift of K by a vector a ∈ Rn is denoted by
Ka := K − a. Let λ denote the Lebesgue measure on Rn and λK be defined
by

λK(A) =
λ(A ∩K)

λ(K)
.

We consider the following parameter of K, which can be called symmetric
average of K,

sav(K) := inf
a∈intK

∫
Ka

‖ − x‖Ka dλKa ,

where ‖ · ‖K denotes the Minkowski functional (or gauge) of a convex body
(see the definitions below). Note that sav(K) is an affine invariant, that is
sav(K) = sav(TK) for every affine invertible operator T : Rn → Rn and that
sav(K) measures the asymmetry of K. For other affine invariant measures
of asymmetry and related discussions we refer to [Gr].

In Section 4, we provide general bounds for sav(K). Namely, we show
that n/(n + 1) ≤ sav(K) <

√
n. Moreover, we show that the equality in
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the lower bound holds if and only if K is centrally symmetric. The upper
bound is based on the study of a particular choice of a position of K, namely
the one for which the Euclidean unit ball is the ellipsoid of maximal volume
contained in K and centered at the centroid of K. In Section 3, we show that
the general estimate can be significantly improved if K is a polytope with
a small number of facets. More precisely, in Theorem 3.1 below we obtain
that sav(K) ≤ C lnN , where C is an absolute constant and N is the number
of facets of K. This means that although a convex body can be very far
from being symmetric (say, in Banach-Mazur distance, or, equivalently, in
the sense of the functional infa∈K supx∈K ‖−x‖Ka) like a simplex, in average
it is not very asymmetric, i.e. for most points ‖ − x‖K is not very big. Here
we take average in the sense of normalized Lebesgue measure on the body.
This phenomenon should be compared with a recent result in [GL], where the
opposite phenomenon was observed for polytopes and the measure uniformly
distributed on vertices. In the last section, we provide some applications to
the bounds of covering numbers.

2 Preliminaries and notation

By Bn
2 , | · |, and 〈·, ·〉 we denote the standard Euclidean ball, the canoni-

cal Euclidean norm, and the canonical inner product on Rn. Given points
x1, . . . , xk in Rn we denote their convex hull by conv {xi}i≤k. By a body in
Rn we always mean a connected compact set with non-empty interior. We
denote by intA the interior of a set A ⊂ Rn.

Let K ⊂ Rn be a convex body with 0 in its interior. The polar of K is

K0 = {x ∈ Rn | 〈x, y〉 ≤ 1 for every y ∈ K} .

The Minkowski functional of K (or the gauge of K) is

‖x‖K = inf{t > 0 | x ∈ tK}.

As we mentioned in introduction, λ denotes the Lebesgue measure on Rn

and λK denotes the measure on Rn given by λK(A) = λ(A ∩K)/λ(K). Note
that by Brunn-Minkowski inequality λK is a normalized log-concave measure
on Rn (see [Bo] and, e.g., [MS], appendix III).

We will need two known lemmas. The first one is the Kahane-Khinchine
inequality for linear functionals and it follows from the log-concavity of λK
(see [Bo]).
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Lemma [Bo] There exists an absolute positive constant C such that for every
q ≥ 2, every y ∈ Rn, and every convex body K ⊂ Rn with 0 in its interior
one has (∫

K

|〈x, y〉|q dλK(x)

)1/q

≤ Cq

(∫
K

|〈x, y〉|2 dλK(x)

)1/2

. (1)

The second lemma appeared in [KLS] (see also Chapter 3 in [F] for a
simpler proof). In particular it was used to estimate the distance between a
convex body and it’s Legendre ellipsoid.

Lemma [KLS] Let K ⊂ Rn be a convex body with centroid at 0. Then for
every y ∈ Rn one has

1√
n(n+ 2)

‖y‖K0 ≤
(∫

K

|〈x, y〉|2 dλK(x)

)1/2

≤
√

n

n+ 2
‖y‖K0 . (2)

Moreover, there is equality in the right hand side if K is a simplex in Rn and
in the left hand side if K is a Euclidean ball.

3 The case of non-degenerated polytopes

In this section we prove that sav(K) of a polytope with small number of
facets cannot be large.

Theorem 3.1 Let 1 ≤ n < N . Let K be a non-degenerated polytope in Rn

with N facets. Then
sav(K) ≤ C lnN,

where C is an absolute positive constant.

Proof: Since sav(K) is an affine invariant, we can assume that 0 is the
centroid of K. Since K has N facets, there exist x1, . . . , xN ∈ Rn such that

‖x‖K = max
i≤N
〈x, xi〉 .

Therefore for every q ≥ 2 we have

sav(K) ≤
∫
K

‖ − x‖K dλK(x) =

∫
K

max
i≤N
〈−x, xi〉 dλK(x)
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≤
∫
K

(
N∑
i=1

|〈x, xi〉|q
)1/q

dλK(x) ≤

(∫
K

N∑
i=1

|〈x, xi〉|q dλK(x)

)1/q

.

Applying Kahane-Khinchine inequality (1) we obtain

sav(K) ≤ C1q

(
N∑
i=1

(∫
K

|〈x, xi〉|2 dλK(x)

)q/2
)1/q

≤ C1qN
1/q max

i≤N

(∫
K

|〈x, xi〉|2 dλK(x)

)1/2

,

where C1 is an absolute positive constant.
Note that by the definition of xi’s we have K0 = conv {xi}i≤N and

‖xi‖K0 = 1. Therefore inequality (2) implies

sav(K) ≤ C1qN
1/q.

The choice q = max{2, lnN} completes the proof. 2

4 The general case

Here we provide general estimates for sav(K). Note that in general we have

inf
a∈intK

sup
x∈Ka

‖ − x‖Ka ≤ n

and that the bound n here cannot be improved as the example of simplex
shows. We show here that for every convex body K ⊂ Rn there is a choice
of a center a (in fact, the centroid works) such that in average ‖ − x‖Ka is
much smaller than in the extremal case. Or, in other words, the measure
of points x ∈ Ka with large ‖ − x‖Ka is small. This should be compared
with the recent paper [GL], where the opposite phenomenon was observed
for polytopes and the discrete measure supported on vertices instead of the
Lebesgue measure.

The bound
√
n is an immediate consequence of the following theorem (see

Theorem 2.3 of [G]).

Theorem 4.1 Let K be a convex body in Rn such that 0 is the centroid of
K and Bn

2 is the ellipsoid of maximal volume contained in K ∩−K, i.e. that
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Bn
2 maximizes the volume of TBn

2 over all linear operators on Rn satisfying
TBn

2 ⊂ K ∩ −K. Then(∫
K

|x|22 dλK
)1/2

≤ n√
n+ 2

=

(∫
∆n

|x|22 dλ∆n

)1/2

,

where ∆n is the regular simplex, circumscribed to the Euclidean unit ball.

As an immediate consequence we obtain the general estimate for sav(K).

Theorem 4.2 Let K ⊂ Rn be a convex body. Then

sav(K) ≤ n√
n+ 2

<
√
n.

Proof: It is well known that for every convex body K there exists a linear
transformation T such that TK satisfies the condition of Theorem 4.1. Thus,
since sav(K) is an affine invariant, we can assume that 0 is the centroid of
K and that Bn

2 is the ellipsoid of maximal volume for K ∩ −K. Then we
have ‖x‖ ≤ |x| for every x ∈ Rn and therefore, applying Theorem 4.1,

sav(K) ≤
∫
K

‖ − x‖K dλK ≤
∫
K

|x| dλK ≤
(∫

K

|x|22 dλK
)1/2

≤ n√
n+ 2

.

2

For the reader convenience, we provide the proof of Theorem 4.1.

Proof of Theorem 4.1: Let K be a convex body in Rn such that 0 is the
centroid of K and Bn

2 is the ellipsoid of maximal volume contained in K∩−K.
By John’s theorem [J] (see also [B]), there exist scalars c1, . . . , cm > 0 and
contact points u1, . . . , um of Bn

2 and K ∩ −K such that

Id =
m∑
j=1

cjuj ⊗ uj, (3)

where Id denotes the identity operator on Rn. Replacing if necessary uj by
−uj, we can assume that points u1, . . . , um belong to Sn−1 and the boundary
of K, i.e. |uj|2 = ‖uj‖K = ‖uj‖Ko = 1.

We deduce from this decomposition that∫
K

|x|22 dλK =
m∑
j=1

cj

∫
K

〈x, uj〉2 dλK(x).
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Since the centroid of K is at the origin, we can apply the lemma of Kannan,
Lovász and Simonovits [KLS] quoted above (see inequality (2)). We obtain∫

K

|x|22 dλK ≤
n

n+ 2

m∑
j=1

cj‖uj‖2
K0 .

Since for every j ≤ m, ‖uj‖K0 = 1 and
∑m

j=1 cj = n (by taking the trace in
the identity decomposition (3)), we have∫

K

|x|22 dλK ≤
n

n+ 2

m∑
j=1

cj‖uj‖2
K0 =

n2

n+ 2
.

Moreover, if ∆n is the regular simplex circumscribed to the Euclidean
unit ball, then ∆n has the centroid at 0 and there exist u1, . . . , um ∈ Sn−1

(in fact, m = n+ 1), such that
∑m

j=1 uj = 0 and

Id =
n

n+ 1

m∑
j=1

uj ⊗ uj.

Thus we have equality in inequality (2), which means that∫
∆n

〈x, uj〉2 dλ∆n =
n

n+ 2
.

This proves that ∫
∆n

|x|22 dλ∆n =
n2

n+ 2

and concludes the proof of Theorem 4.1. 2

We conclude this section providing the sharp lower bound for sav(K).
As one can intuitively guess, sav(K) is the smallest when K is centrally
symmetric and the infumum in the definition of sav(K) is attained when a
is chosen to be the center of symmetry of K.

Proposition 4.3 Let K ⊂ Rn be a convex body. Then

sav(K) ≥ n

n+ 1

and equality holds if and only if K is centrally symmetric.
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Proof: Let a be an interior point of K and denote L = Ka. Using polar
coordinates we have

I :=

∫
L

‖ − x‖L dx =
1

n+ 1

∫
Sn−1

‖ − ω‖L
‖ω‖n+1

L

dω.

By the symmetry of the sphere,∫
Sn−1

‖ − ω‖L
‖ω‖n+1

L

dω =

∫
Sn−1

‖ω‖L
‖ − ω‖n+1

L

dω.

Thus,

I =
1

2(n+ 1)

∫
Sn−1

(
‖ − ω‖L
‖ω‖n+1

L

+
‖ω‖L

‖ − ω‖n+1
L

)
dω.

Now note that for every positive a, b one has

a

bn+1
+

b

an+1
≥ 1

an
+

1

bn
, (4)

with equality if and only if a = b. Indeed, the inequality is equivalent to
an+1(a−b) ≥ bn+1(a−b), which is obviously true. Applying it to our integral
we observe

I ≥ 1

2(n+ 1)

∫
Sn−1

(
1

‖ω‖nL
+

1

‖ − ω‖nL

)
dω =

1

n+ 1

∫
Sn−1

1

‖ω‖nL
dω.

Since

λ(K) = λ(L) =
1

n

∫
Sn−1

1

‖ω‖nL
dω,

we obtain that I ≥ n/(n+ 1).
The equality case follows from the fact that in (4) we have equality if and

only if a = b. Thus, if ‖ω‖L 6= ‖ − ω‖L for some point ω ∈ Sn−1 (and hence
on a set of positive measure) then I > n/(n+ 1). 2

5 Applications

In this section we apply our results to obtain covering estimates. Namely, we
show upper bounds for the covering number N(K, t(K ∩ −K)), where K is
a convex body with centroid at 0. Recall, that the covering number N(K,L)
is the minimal number of translates of L needed to cover K. We will use the
following estimate, proved in [LMP] (see Lemma 4 there).
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Lemma 5.1 Let K, L be convex bodies. Assume that L− L ⊂ sL for some
positive s. Then for every positive t

N(K, tL) ≤ 2 exp (csnM(K,L)/t) ,

where c is an absolute positive constant and

M(K,L) =

∫
K

‖x‖L dλK .

Note that

M(K,K ∩ −K) =

∫
K

‖x‖K∩−K dλK ≤
∫
K

(‖x‖K + ‖ − x‖K) dλK .

Thus Lemma 5.1 together with Theorems 3.1 and 4.2 immediately imply

Corollary 5.2 There is an absolute positive constant c such that for every
convex body K ⊂ Rn with centroid at 0 and every t > 0 one has

N(K, t(K ∩ −K)) ≤ 2 exp
(
cn3/2/t

)
.

Moreover, if K is non degenerated polytope with N facets

N(K, t(K ∩ −K)) ≤ 2 exp (cn lnN/t) .
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