On the symmetric average of a convex body

O. Guédon A. E. Litvak

Abstract

We introduce a new parameter, symmetric average, which measures the asymmetry of a given non-degenerated convex body K in \mathbb{R}^{n}. Namely, $\operatorname{sav}(K)=\inf _{a \in \operatorname{int} K} \int_{K_{a}}\|-x\|_{K_{a}} d x /|K|$, where $|K|$ denotes the volume of K and $K_{a}=K-a$. We show that for polytopes $\operatorname{sav}(K) \leq C \ln N$, where N is the number of facets of K. Moreover, in general $\frac{n}{n+1} \leq \operatorname{sav}(K)<\sqrt{n}$ and equality in the lower bound holds if and only if K is centrally symmetric. We apply these estimates to provide bounds for covering K by homotets of $K \cap-K$.

1 Introduction

Let $K \subset \mathbb{R}^{n}$ be a convex body. A shift of K by a vector $a \in \mathbb{R}^{n}$ is denoted by $K_{a}:=K-a$. Let λ denote the Lebesgue measure on \mathbb{R}^{n} and λ_{K} be defined by

$$
\lambda_{K}(A)=\frac{\lambda(A \cap K)}{\lambda(K)}
$$

We consider the following parameter of K, which can be called symmetric average of K,

$$
\operatorname{sav}(K):=\inf _{a \in \operatorname{int} K} \int_{K_{a}}\|-x\|_{K_{a}} d \lambda_{K_{a}},
$$

where $\|\cdot\|_{K}$ denotes the Minkowski functional (or gauge) of a convex body (see the definitions below). Note that $\operatorname{sav}(K)$ is an affine invariant, that is $\operatorname{sav}(K)=\operatorname{sav}(T K)$ for every affine invertible operator $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and that $\operatorname{sav}(K)$ measures the asymmetry of K. For other affine invariant measures of asymmetry and related discussions we refer to [Gr].

In Section 4, we provide general bounds for $\operatorname{sav}(K)$. Namely, we show that $n /(n+1) \leq \operatorname{sav}(K)<\sqrt{n}$. Moreover, we show that the equality in
the lower bound holds if and only if K is centrally symmetric. The upper bound is based on the study of a particular choice of a position of K, namely the one for which the Euclidean unit ball is the ellipsoid of maximal volume contained in K and centered at the centroid of K. In Section 3, we show that the general estimate can be significantly improved if K is a polytope with a small number of facets. More precisely, in Theorem 3.1 below we obtain that $\operatorname{sav}(K) \leq C \ln N$, where C is an absolute constant and N is the number of facets of K. This means that although a convex body can be very far from being symmetric (say, in Banach-Mazur distance, or, equivalently, in the sense of the functional $\inf _{a \in K} \sup _{x \in K}\|-x\|_{K_{a}}$) like a simplex, in average it is not very asymmetric, i.e. for most points $\|-x\|_{K}$ is not very big. Here we take average in the sense of normalized Lebesgue measure on the body. This phenomenon should be compared with a recent result in [GL], where the opposite phenomenon was observed for polytopes and the measure uniformly distributed on vertices. In the last section, we provide some applications to the bounds of covering numbers.

2 Preliminaries and notation

By $B_{2}^{n},|\cdot|$, and $\langle\cdot, \cdot\rangle$ we denote the standard Euclidean ball, the canonical Euclidean norm, and the canonical inner product on \mathbb{R}^{n}. Given points x_{1}, \ldots, x_{k} in \mathbb{R}^{n} we denote their convex hull by conv $\left\{x_{i}\right\}_{i \leq k}$. By a body in \mathbb{R}^{n} we always mean a connected compact set with non-empty interior. We denote by $\operatorname{int} A$ the interior of a set $A \subset \mathbb{R}^{n}$.

Let $K \subset \mathbb{R}^{n}$ be a convex body with 0 in its interior. The polar of K is

$$
K^{0}=\left\{x \in \mathbb{R}^{n} \mid\langle x, y\rangle \leq 1 \text { for every } y \in K\right\} .
$$

The Minkowski functional of K (or the gauge of K) is

$$
\|x\|_{K}=\inf \{t>0 \mid x \in t K\} .
$$

As we mentioned in introduction, λ denotes the Lebesgue measure on \mathbb{R}^{n} and λ_{K} denotes the measure on \mathbb{R}^{n} given by $\lambda_{K}(A)=\lambda(A \cap K) / \lambda(K)$. Note that by Brunn-Minkowski inequality λ_{K} is a normalized log-concave measure on \mathbb{R}^{n} (see [Bo] and, e.g., [MS], appendix III).

We will need two known lemmas. The first one is the Kahane-Khinchine inequality for linear functionals and it follows from the log-concavity of λ_{K} (see [Bo]).

Lemma [Bo] There exists an absolute positive constant C such that for every $q \geq 2$, every $y \in \mathbb{R}^{n}$, and every convex body $K \subset \mathbb{R}^{n}$ with 0 in its interior one has

$$
\begin{equation*}
\left(\int_{K}|\langle x, y\rangle|^{q} d \lambda_{K}(x)\right)^{1 / q} \leq C q\left(\int_{K}|\langle x, y\rangle|^{2} d \lambda_{K}(x)\right)^{1 / 2} \tag{1}
\end{equation*}
$$

The second lemma appeared in [KLS] (see also Chapter 3 in [F] for a simpler proof). In particular it was used to estimate the distance between a convex body and it's Legendre ellipsoid.

Lemma [KLS] Let $K \subset \mathbb{R}^{n}$ be a convex body with centroid at 0 . Then for every $y \in \mathbb{R}^{n}$ one has

$$
\begin{equation*}
\frac{1}{\sqrt{n(n+2)}}\|y\|_{K^{0}} \leq\left(\int_{K}|\langle x, y\rangle|^{2} d \lambda_{K}(x)\right)^{1 / 2} \leq \sqrt{\frac{n}{n+2}}\|y\|_{K^{0}} \tag{2}
\end{equation*}
$$

Moreover, there is equality in the right hand side if K is a simplex in \mathbb{R}^{n} and in the left hand side if K is a Euclidean ball.

3 The case of non-degenerated polytopes

In this section we prove that $\operatorname{sav}(K)$ of a polytope with small number of facets cannot be large.

Theorem 3.1 Let $1 \leq n<N$. Let K be a non-degenerated polytope in \mathbb{R}^{n} with N facets. Then

$$
\operatorname{sav}(K) \leq C \ln N,
$$

where C is an absolute positive constant.
Proof: Since $\operatorname{sav}(K)$ is an affine invariant, we can assume that 0 is the centroid of K. Since K has N facets, there exist $x_{1}, \ldots, x_{N} \in \mathbb{R}^{n}$ such that

$$
\|x\|_{K}=\max _{i \leq N}\left\langle x, x_{i}\right\rangle
$$

Therefore for every $q \geq 2$ we have

$$
\operatorname{sav}(K) \leq \int_{K}\|-x\|_{K} d \lambda_{K}(x)=\int_{K} \max _{i \leq N}\left\langle-x, x_{i}\right\rangle d \lambda_{K}(x)
$$

$$
\leq \int_{K}\left(\sum_{i=1}^{N}\left|\left\langle x, x_{i}\right\rangle\right|^{q}\right)^{1 / q} d \lambda_{K}(x) \leq\left(\int_{K} \sum_{i=1}^{N}\left|\left\langle x, x_{i}\right\rangle\right|^{q} d \lambda_{K}(x)\right)^{1 / q}
$$

Applying Kahane-Khinchine inequality (1) we obtain

$$
\begin{gathered}
\operatorname{sav}(K) \leq C_{1} q\left(\sum_{i=1}^{N}\left(\int_{K}\left|\left\langle x, x_{i}\right\rangle\right|^{2} d \lambda_{K}(x)\right)^{q / 2}\right)^{1 / q} \\
\leq C_{1} q N^{1 / q} \max _{i \leq N}\left(\int_{K}\left|\left\langle x, x_{i}\right\rangle\right|^{2} d \lambda_{K}(x)\right)^{1 / 2}
\end{gathered}
$$

where C_{1} is an absolute positive constant.
Note that by the definition of x_{i} 's we have $K^{0}=\operatorname{conv}\left\{x_{i}\right\}_{i \leq N}$ and $\left\|x_{i}\right\|_{K^{0}}=1$. Therefore inequality (2) implies

$$
\operatorname{sav}(K) \leq C_{1} q N^{1 / q}
$$

The choice $q=\max \{2, \ln N\}$ completes the proof.

4 The general case

Here we provide general estimates for $\operatorname{sav}(K)$. Note that in general we have

$$
\inf _{a \in \operatorname{int} K} \sup _{x \in K_{a}}\|-x\|_{K_{a}} \leq n
$$

and that the bound n here cannot be improved as the example of simplex shows. We show here that for every convex body $K \subset \mathbb{R}^{n}$ there is a choice of a center a (in fact, the centroid works) such that in average $\|-x\|_{K_{a}}$ is much smaller than in the extremal case. Or, in other words, the measure of points $x \in K_{a}$ with large $\|-x\|_{K_{a}}$ is small. This should be compared with the recent paper [GL], where the opposite phenomenon was observed for polytopes and the discrete measure supported on vertices instead of the Lebesgue measure.

The bound \sqrt{n} is an immediate consequence of the following theorem (see Theorem 2.3 of [G]).

Theorem 4.1 Let K be a convex body in \mathbb{R}^{n} such that 0 is the centroid of K and B_{2}^{n} is the ellipsoid of maximal volume contained in $K \cap-K$, i.e. that
B_{2}^{n} maximizes the volume of $T B_{2}^{n}$ over all linear operators on \mathbb{R}^{n} satisfying $T B_{2}^{n} \subset K \cap-K$. Then

$$
\left(\int_{K}|x|_{2}^{2} d \lambda_{K}\right)^{1 / 2} \leq \frac{n}{\sqrt{n+2}}=\left(\int_{\Delta_{n}}|x|_{2}^{2} d \lambda_{\Delta_{n}}\right)^{1 / 2}
$$

where Δ_{n} is the regular simplex, circumscribed to the Euclidean unit ball.
As an immediate consequence we obtain the general estimate for $\operatorname{sav}(K)$.
Theorem 4.2 Let $K \subset \mathbb{R}^{n}$ be a convex body. Then

$$
\operatorname{sav}(K) \leq \frac{n}{\sqrt{n+2}}<\sqrt{n}
$$

Proof: It is well known that for every convex body K there exists a linear transformation T such that $T K$ satisfies the condition of Theorem 4.1. Thus, since $\operatorname{sav}(K)$ is an affine invariant, we can assume that 0 is the centroid of K and that B_{2}^{n} is the ellipsoid of maximal volume for $K \cap-K$. Then we have $\|x\| \leq|x|$ for every $x \in \mathbb{R}^{n}$ and therefore, applying Theorem 4.1,

$$
\operatorname{sav}(K) \leq \int_{K}\|-x\|_{K} d \lambda_{K} \leq \int_{K}|x| d \lambda_{K} \leq\left(\int_{K}|x|_{2}^{2} d \lambda_{K}\right)^{1 / 2} \leq \frac{n}{\sqrt{n+2}}
$$

For the reader convenience, we provide the proof of Theorem 4.1.
Proof of Theorem 4.1: Let K be a convex body in \mathbb{R}^{n} such that 0 is the centroid of K and B_{2}^{n} is the ellipsoid of maximal volume contained in $K \cap-K$. By John's theorem [J] (see also [B]), there exist scalars $c_{1}, \ldots, c_{m}>0$ and contact points u_{1}, \ldots, u_{m} of B_{2}^{n} and $K \cap-K$ such that

$$
\begin{equation*}
\mathrm{Id}=\sum_{j=1}^{m} c_{j} u_{j} \otimes u_{j} \tag{3}
\end{equation*}
$$

where Id denotes the identity operator on \mathbb{R}^{n}. Replacing if necessary u_{j} by $-u_{j}$, we can assume that points u_{1}, \ldots, u_{m} belong to \mathbb{S}^{n-1} and the boundary of K, i.e. $\left|u_{j}\right|_{2}=\left\|u_{j}\right\|_{K}=\left\|u_{j}\right\|_{K^{o}}=1$.

We deduce from this decomposition that

$$
\int_{K}|x|_{2}^{2} d \lambda_{K}=\sum_{j=1}^{m} c_{j} \int_{K}\left\langle x, u_{j}\right\rangle^{2} d \lambda_{K}(x)
$$

Since the centroid of K is at the origin, we can apply the lemma of Kannan, Lovász and Simonovits [KLS] quoted above (see inequality (2)). We obtain

$$
\int_{K}|x|_{2}^{2} d \lambda_{K} \leq \frac{n}{n+2} \sum_{j=1}^{m} c_{j}\left\|u_{j}\right\|_{K^{0}}^{2} .
$$

Since for every $j \leq m,\left\|u_{j}\right\|_{K^{0}}=1$ and $\sum_{j=1}^{m} c_{j}=n$ (by taking the trace in the identity decomposition (3)), we have

$$
\int_{K}|x|_{2}^{2} d \lambda_{K} \leq \frac{n}{n+2} \sum_{j=1}^{m} c_{j}\left\|u_{j}\right\|_{K^{0}}^{2}=\frac{n^{2}}{n+2} .
$$

Moreover, if Δ_{n} is the regular simplex circumscribed to the Euclidean unit ball, then Δ_{n} has the centroid at 0 and there exist $u_{1}, \ldots, u_{m} \in \mathbb{S}^{n-1}$ (in fact, $m=n+1$), such that $\sum_{j=1}^{m} u_{j}=0$ and

$$
\mathrm{Id}=\frac{n}{n+1} \sum_{j=1}^{m} u_{j} \otimes u_{j} .
$$

Thus we have equality in inequality (2), which means that

$$
\int_{\Delta_{n}}\left\langle x, u_{j}\right\rangle^{2} d \lambda_{\Delta_{n}}=\frac{n}{n+2} .
$$

This proves that

$$
\int_{\Delta_{n}}|x|_{2}^{2} d \lambda_{\Delta_{n}}=\frac{n^{2}}{n+2}
$$

and concludes the proof of Theorem 4.1.
We conclude this section providing the sharp lower bound for $\operatorname{sav}(K)$. As one can intuitively guess, $\operatorname{sav}(K)$ is the smallest when K is centrally symmetric and the infumum in the definition of $\operatorname{sav}(K)$ is attained when a is chosen to be the center of symmetry of K.

Proposition 4.3 Let $K \subset \mathbb{R}^{n}$ be a convex body. Then

$$
\operatorname{sav}(K) \geq \frac{n}{n+1}
$$

and equality holds if and only if K is centrally symmetric.

Proof: Let a be an interior point of K and denote $L=K_{a}$. Using polar coordinates we have

$$
I:=\int_{L}\|-x\|_{L} d x=\frac{1}{n+1} \int_{\mathbb{S}^{n-1}} \frac{\|-\omega\|_{L}}{\|\omega\|_{L}^{n+1}} d \omega
$$

By the symmetry of the sphere,

$$
\int_{\mathbb{S}^{n-1}} \frac{\|-\omega\|_{L}}{\|\omega\|_{L}^{n+1}} d \omega=\int_{\mathbb{S}^{n-1}} \frac{\|\omega\|_{L}}{\|-\omega\|_{L}^{n+1}} d \omega
$$

Thus,

$$
I=\frac{1}{2(n+1)} \int_{\mathbb{S}^{n-1}}\left(\frac{\|-\omega\|_{L}}{\|\omega\|_{L}^{n+1}}+\frac{\|\omega\|_{L}}{\|-\omega\|_{L}^{n+1}}\right) d \omega
$$

Now note that for every positive a, b one has

$$
\begin{equation*}
\frac{a}{b^{n+1}}+\frac{b}{a^{n+1}} \geq \frac{1}{a^{n}}+\frac{1}{b^{n}} \tag{4}
\end{equation*}
$$

with equality if and only if $a=b$. Indeed, the inequality is equivalent to $a^{n+1}(a-b) \geq b^{n+1}(a-b)$, which is obviously true. Applying it to our integral we observe

$$
I \geq \frac{1}{2(n+1)} \int_{\mathbb{S}^{n-1}}\left(\frac{1}{\|\omega\|_{L}^{n}}+\frac{1}{\|-\omega\|_{L}^{n}}\right) d \omega=\frac{1}{n+1} \int_{\mathbb{S}^{n-1}} \frac{1}{\|\omega\|_{L}^{n}} d \omega
$$

Since

$$
\lambda(K)=\lambda(L)=\frac{1}{n} \int_{\mathbb{S}^{n-1}} \frac{1}{\|\omega\|_{L}^{n}} d \omega
$$

we obtain that $I \geq n /(n+1)$.
The equality case follows from the fact that in (4) we have equality if and only if $a=b$. Thus, if $\|\omega\|_{L} \neq\|-\omega\|_{L}$ for some point $\omega \in \mathbb{S}^{n-1}$ (and hence on a set of positive measure) then $I>n /(n+1)$.

5 Applications

In this section we apply our results to obtain covering estimates. Namely, we show upper bounds for the covering number $N(K, t(K \cap-K)$, where K is a convex body with centroid at 0 . Recall, that the covering number $N(K, L)$ is the minimal number of translates of L needed to cover K. We will use the following estimate, proved in [LMP] (see Lemma 4 there).

Lemma 5.1 Let K, L be convex bodies. Assume that $L-L \subset$ sL for some positive s. Then for every positive t

$$
N(K, t L) \leq 2 \exp (\operatorname{csn} M(K, L) / t)
$$

where c is an absolute positive constant and

$$
M(K, L)=\int_{K}\|x\|_{L} d \lambda_{K}
$$

Note that

$$
M(K, K \cap-K)=\int_{K}\|x\|_{K \cap-K} d \lambda_{K} \leq \int_{K}\left(\|x\|_{K}+\|-x\|_{K}\right) d \lambda_{K}
$$

Thus Lemma 5.1 together with Theorems 3.1 and 4.2 immediately imply
Corollary 5.2 There is an absolute positive constant c such that for every convex body $K \subset \mathbb{R}^{n}$ with centroid at 0 and every $t>0$ one has

$$
N(K, t(K \cap-K)) \leq 2 \exp \left(c n^{3 / 2} / t\right)
$$

Moreover, if K is non degenerated polytope with N facets

$$
N(K, t(K \cap-K)) \leq 2 \exp (c n \ln N / t)
$$

References

[B] K. Ball, Flavors of geometry in An elementary introduction to modern convex geometry, Levy, Silvio (ed.), Cambridge: Cambridge University Press. Math. Sci. Res. Inst. Publ. 31, 1-58 (1997).
[Bo] C. Borell, Convex measures on locally convex spaces, Ark. Mat. 12 (1974), 239-252.
[F] M. Fradelizi, Inégalités fonctionnelles et volume des sections des corps convexes, Thèse de doctorat de mathématiques, Université de Marne-la-Vallée, 1998.
[GL] E. D. Gluskin, A. E. Litvak, Asymmetry of convex polytopes and vertex index of symmetric convex bodies, Discrete and Computational Geometry, 40 (2008), 528-536.
[Gr] B. Grünbaum, Measures of symmetry for convex sets, Proc. Sympos. Pure Math. 1963, Vol. VII pp. 233-270 Amer. Math. Soc., Providence, R.I.
[G] O. Guédon, Sections euclidiennes des corps convexes et inégalités de concentration volumique. Thèse de doctorat de mathématiques, Université de Marne-la-Vallée, 1998.
[J] F. John, Extremum problems with inequalities as subsidiary conditions, Studies and Essays Presented to R. Courant on his 60th Birthday, January 8, 1948, 187-204. Interscience Publishers, Inc., New York, N. Y., 1948.
[KLS] R. Kannan, L. Lovász, M. Simonovits, Isoperimetric problems for convex bodies and a localization lemma, Discrete Comput. Geom. 13 (1995), 541-559.
[LMP] A.E. Litvak, V.D. Milman, A. Pajor, The covering numbers and "low M^{*}-estimate" for quasi-convex bodies, Proc. Am. Math. Soc. 127, No.5, 1499-1507 (1999).
[MP] V. D. Milman, A. Pajor, Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space. Lect. Notes Math. 1376, 64-104 (1989).
[MS] V. D. Milman, G. Schechtman, Asymptotic Theory of Finite Dimensional normed spaces. Lecture Notes in Math., 1200, Springer, Berlin-New York, 1985.

Olivier Guédon, Université Paris-Est, Marne La Vallée, Laboratoire d'Analyse et de Mathématiques Appliquées, 5, boulevard Descartes, Champs sur Marne, 77454 Marne-la-Vallée, Cedex 2, France
e-mail: olivier.guedon@univ-mlv.fr
A.E. Litvak, Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB, Canada, T6G 2 G1.
e-mail: alexandr@math.ualberta.ca

