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Abstract. Let Bn
2 denote the Euclidean ball in IRn, and, given closed

star-shaped body K ⊂ IRn, MK denote the average of the gauge of K
on the Euclidean sphere. Let p ∈ (0, 1) and let K ⊂ IRn be a p-convex
body. In [17] we proved that for every λ ∈ (0, 1) there exists an orthogonal
projection P of rank (1− λ)n such that

f(λ)
MK

PBn
2 ⊂ PK,

where f(λ) = cpλ
1+1/p for some positive constant cp depending on p only.

In this note we prove that f(λ) can be taken equal to Cpλ
1/p−1/2. In terms

of Kolmogorov numbers it means that for every k ≤ n

dk(Id : `n
2 −→ (IRn, ‖ · ‖K)) ≤ Cp

n1/p−1

k1/p−1/2
`(Id : `n

2 −→ (IRn, ‖ · ‖K)),

where `(Id) = E‖
∑n

i=1 giei‖K for the independent standard Gaussian ran-
dom variables {gi} and the canonical basis {ei} of IRn. All results do not
require the symmetry of K.

1. Introduction and notations

In this note Bn
2 denotes the Euclidean ball in IRn, Sn−1 denotes the Euclidean

sphere. Given a closed star-shaped body K we denote by ‖ · ‖K its Minkowski
functional (the gauge), i.e. ‖x‖K = inf {t > 0 | x ∈ tK}. Note that K is the
unit ball of K. By MK we denote∫

Sn−1

‖x‖Kdν(x),

where dν is the normalized Lebesgue measure on Sn−1.
Let p ∈ (0, 1). A closed body K is called p-convex body if for every positive

λ, µ satisfying λp + µp ≤ 1 and every x, y ∈ K one has λx + µy ∈ K. If
K is a p-convex body then ‖ · ‖K is a homogeneous non-degenerate functional
satisfying p-triangle inequality ‖x + y‖p ≤ ‖x‖p + ‖y‖p for every x, y ∈ IRn.
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Vice versa, if ‖ · ‖ is a homogeneous non-degenerate functional satisfying the
p-triangle inequality then the unit ball of it is a p-convex body. A closed star-
shaped body is called quasi-convex with quasi-convexity constant C > 0 if its
Minkowski functional satisfies a quasi-triangle inequality ‖x + y‖ ≤ C(‖x‖ +
‖y‖) for every x, y ∈ IRn. Clearly, any p-convex body is quasi-convex with the
quasi-convexity constant 2−1+1/p. Moreover, any quasi-convex body can be
approximated by a p-convex body. Aoki-Rolewicz theorem says that for every
quasi-convex body K with quasi-convexity constant C there exists a p-convex
body K0, where 2−1+1/p = C, such that K ⊂ K0 ⊂ 21/pK ([12, 14, 28]). In
view of this theorem we work with p-convex bodies only, but all results can be
reformulated in terms of quasi-convex bodies.

It turns out that many crucial theorems of the Asymptotic Theory of Banach
Spaces hold in the quasi-convex case. This is somehow surprising since the first
proofs used convexity essentially. We refer to [1, 2, 3, 5, 6, 8, 9, 10, 11, 13, 22,
26] for different results in this direction. Of course, to extend the theory to
the class of quasi-convex bodies we need to develop new methods and tools.
In many cases such development led to the new direct proofs, which simplify
also the convex case and thus gave the new understanding of the behavior of
convex bodies (see e.g. [17, 18, 22]).

The purpose of this note is to investigate the dependence on p of function
appearing in following theorem proved in [17].

Theorem 1.1. Let p ∈ (0, 1) and K be a p-convex body. Then for every
λ ∈ (0, 1) there exists an orthogonal projection P of rank [(1− λ)n] such that

f(λ)

CpMK

PBn
2 ⊂ PK,

where f(λ) = λ1+1/p, Cp = (c/p)c/p for some absolute positive constant c.

Let us note that in the convex case this theorem is well-known. It is the
dual form of the so-called “Low M∗-estimate” by Milman and plays an es-
sential role in the Asymptotic Theory. For example it was a crucial step
for obtaining such results as the Quotient of Subspace Theorem and the Re-
verse Brunn-Minkowski inequality by Milman ([23, 27]). In the convex case
(p = 1) Theorem 1.1 was proved in [19] with some function f(λ). In [20, 21]
Milman improved the function f(λ) to the polynomial one. Then Pajor and
Tomczak-Jaegermann ([25]) were able to show that f(λ) can be taken equal

to c
√

λ, where c is an absolute positive constant. Although it was formulated
for convex centrally-symmetric bodies (or for norms), all proofs hold in the
non-symmetric case as well. Finally, Gordon ([4]) found a direct proof show-

ing that the absolute constant c in f(λ) = c
√

λ can be taken as 1−αn, where
αn → 0 , as n grows to ∞. He also gave a precise measure estimate of the set
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of such projections. In particular, he showed that for f(λ) =
√

λ/2 this set
has measure larger than 1− e−cλn, where c is an absolute positive constant.

In this note we show that in the p-convex case f(λ) can be taken as Cpλ
1/p−1/2,

where Cp is the positive constant, depending on p only.
Theorem 1.1 can be formulated in terms of the Kolmogorov numbers and

the `-functional. Recall, that the k-th Kolmogorov number of an operator
u : X −→ Y is

dk(u) = inf {‖Qu‖ : Q is a quotient map Y −→ Y/S, where dimS < k}.

The `-functional of u : `n
2 −→ X is E‖

∑n
i=1 giuei‖, where gi’s are independent

standard Gaussian random variables, {ei} is the canonical basis of IRn. It is
well-known (and can be directly calculated) that

`(Id : `n
2 −→ (IRn, ‖ · ‖K))) = cn

√
nMK ,

where

cn =

√
2 Γ ((1 + n)/2)√

n Γ(n/2)
.

Note that 1 ≥ cn −→ 1 as n tends to ∞.
Theorem 1.1 says that

dk(Id : `n
2 −→ (IRn, ‖ · ‖K)) ≤ `(Id : `n

2 −→ (IRn, ‖ · ‖K))/
(√

nf(k/n)
)
.

2. The main result

Theorem 2.1. Let p ∈ (0, 1) and K be a p-convex body. Then for every
λ ∈ (0, 1) there exists an orthogonal projection P of rank [(1− λ)n] such that

(∗) λ1/p−1/2

CpMK

PBn
2 ⊂ PK,

where Cp = (c/p)(2−p)/p2
for some absolute positive constant c.

Equivalently,

dk(Id : `n
2 −→ (IRn, ‖ · ‖K)) ≤ Cp

n1/p−1

k1/p−1/2
`(Id : `n

2 −→ (IRn, ‖ · ‖K)).

Remark 1. In fact “randomly” chosen projections satisfy (∗) with high prob-
ability. More precisely, let Gn,k denote the Grassmanian of k-dimensional
subspaces of IRn. Let µ be the normalized Haar measure on Gn,k. Define the
measure σ on the class of all orthogonal projections of rank k by

σ (A) = µ ({E ⊂ IRn : there is P ∈ A with PIRn = E}) .

Then the measure of the set of projections satisfying (∗) is larger than 1−e−ck,
where k = [λn] and c is an absolute positive constant.
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Remark 2. Let M denote the median of K, i.e. the number satisfying
ν({x ∈ Sn−1 : ‖x‖ ≥ M}) ≥ 1/2 and ν({x ∈ Sn−1 : ‖x‖ ≤ M}) ≥ 1/2.
Then the theorem holds with MK replaced by M with the same measure
estimates as in Remark 1. Let us note that trivially MK ≥ M/2.

Remark 3. Using standard concentration inequalities (see e.g. [24], ch. 2)
one can show that MK ≤ (c/p)1/pM for some absolute positive constant c.
Moreover, using ideas of Lata la ([15], see also [7]) it was shown in [16] that
MK is equivalent to the Mq,K for q ∈ (−p,∞), where

Mq,K =

(∫
Sn−1

‖x‖q
Kdν

)1/q

.

Namely, for every s ≥ 2 and every q ∈ (−p,−p/2) one has

1

sCp

Ms,K ≤ M2,K ≤ CpM−p/2,K ≤ Cp(p + q)1/qMq,K ,

where Cp = (c/p)1/p for some absolute positive constant c. Note also that
Mq,K in an increasing function of q.

We shall use the following result of Gordon and Kalton, which says that if
the convex hull of a p-convex body is not far from the Euclidean ball then so
is the body itself ([6], see also Lemma 1 of [8] and its proof for the precise
estimates and for the non-symmetric case).

Lemma 2.2. Let p ∈ (0, 1) and K be a p-convex body satisfying

(1/d)Bn
2 ⊂ convK ⊂ Bn

2

for some positive number d. Then

(c/p)−(2−p)/p2

(1/d)2(1/p−1/2) Bn
2 ⊂ K ⊂ Bn

2

for an absolute positive constant c.

Proof of the theorem. By Remark 2 it is enough to prove the theorem
for M , the median of K. Consider the p-convex body K0 = K ∩ (1/M)Bn

2 .
Clearly ν({x ∈ Sn−1 : ‖x‖ = M}) ≥ 1/2. Thus M is the median of K0 and
is the median of K1 := convK0. Then, by the corresponding “convex” result,
for every λ ∈ (0, 1) with high probability there exists an orthogonal projection
P of rank [(1− λ)n] such that

√
λ

2M
PBn

2 ⊂ PK1

(see [4] for the best possible constant and for the measure estimates). But
PK1 = P convK0 = convPK0. Applying Lemma 2.2 to the body MPK0, we
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get

(c/p)−(2−p)/p2
(√

λ/2
)2(1/p−1/2)

PBn
2 ⊂ MPK0,

where c is an absolute positive constant. Since PK0 ⊂ PK, we obtain the
desired result. �
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