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Abstract

Let X1, . . . , Xn be independent non-negative random variables with cumula-
tive distribution functions F1, F2, . . . , Fn, each satisfying certain (rather mild) con-
ditions. We show that the median of k-th smallest order statistic of the vector
(X1, . . . , Xn) is equivalent to the quantile of order (k − 1/2)/n with respect to the
averaged distribution F = 1

n

∑n
i=1 Fi.
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1 Introduction

The goal of this note is to provide sharp estimates for order statistics of independent, not
necessarily identically distributed random variables, whose distributions satisfy certain
(rather mild) conditions. Order statistics are among very important objects in probability
and statistics with many applications. We refer to [AN, BC, DN] and references therein
for information on the subject, especially in the case of i.i.d. random variables. The
case of independent but not identically distributed random variables is less studied, we
refer to [DN, Chapter 5] for some results in this direction. Understanding this setting
is important in some applications, for example in connection with the Mallat–Zeitouni
problem [MZ, LT], the study of asymptotic behaviour of some classes normed spaces
[GLSW1], some problems in reconstruction [GLMP], to name a few.

Given 1 ≤ k ≤ n and a sequence of real numbers a1, a2, . . . , an, let k- mini≤n ai and
k- maxi≤n ai denote its k-th smallest and k-th largest elements, in particular,

k- min
i≤n

ai = (n− k + 1)- max
i≤n

ai.

Let F be cdf (cumulative distribution function) of a non-negative random variable.
We employ the following condition:

there exists K > 1 such that F (Kt)
1−F (Kt)

≥ 2F (t)
1−F (t)

for all t > 0 (1)

(see the next section for discussion and examples).

The main result of this note, Theorem 3.1, states that given K > 1, 1 ≤ k ≤ n, and
independent non-negative random variables X1, . . . , Xn with cdf’s F1, F2, . . . , Fn, each
satisfying condition (1) with parameter K, one has

K−10 qF

(
k − 1/2

n

)
≤ Med

(
k- min

1≤i≤n
Xi

)
≤ K13 qF

(
k − 1/2

n

)
,
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where qF (t) is the quantile of order t with respect to the averaged distribution F =
1
n

∑n
i=1 Fi.

This result improves and complements the results from [GLSW2, GLSW3, GLSW4],
where, under somewhat stronger conditions on distributions, the authors proved estimates
for the corresponding expectations up to a factor logarithmic in k. More precisely, in
[GLSW2, GLSW3] it was shown that given α, β, p > 0, 1 ≤ k ≤ n, real numbers 0 < x1 ≤
x2 ≤ . . . ≤ xn, and independent random variables ξ1, . . . , ξn satisfying

∀t > 0 P (|ξ| ≤ t) ≤ αt and P (|ξ| > t) ≤ e−βt

one has

1

21/p 4α
max
1≤j≤k

k + 1− j∑n
i=j 1/xi

≤
(
E k- min

1≤i≤n
|xiξi|p

)1/p

≤ C(p, k) β−1 max
1≤j≤k

k + 1− j∑n
i=j 1/xi

,

where C(p, k) := C max{p, ln(k+1)}, and C is an absolute positive constant. In [GLSW4]
this was extended further to a larger class of distributions, namely it was shown that the
expectation above is equivalent to some Orlicz norm of the sequence (1/xi)i, again up to
a factor logarithmic in k.

We would also like to mention that order statistics of random vectors with indepen-
dent but not identically distributed coordinates were studied in [Sen], where a result of
Hoeffding [Ho] was used, in particular, to estimate the difference between the median of
k- min1≤i≤n(Xi) and the median of the k-th order statistic of a random vector with i.i.d.
coordinates distributed according to the law F = 1

n

∑n
i=1 Fi (see also [DN, pp 96–97]).

However, the results of [Sen] do not seem to directly imply the relations which we prove
in Theorem 3.1.

2 Notation and preliminaries

Given a subset A ⊂ N, we denote its cardinality by |A|. Next, for a natural number n
and a set E ⊂ {1, 2, . . . , n}, we denote by Ec the complement of E inside {1, 2, . . . , n}.
Similarly, for an event E we denote by Ec the complement of the event. Further, we say
that a collection of sets (Aj)j≤k is a partition of {1, 2, . . . , n} if each Aj is non-empty, the
sets are pairwise disjoint and their union is {1, 2, . . . , n}. The canonical Euclidean norm
and the canonical inner product in Rn will be denoted by | · | and 〈·, ·〉, respectively. We
adopt the conventions 1/0 =∞ and 1/∞ = 0 throughout the text.

Let ξ be a real-valued random variable. As usual, we use the abbreviation cdf for
the cumulative distribution function (that is, the cdf of ξ is Fξ(t) = P(ξ ≤ t)). Given
r ∈ [0, 1], by q(r) = qF (r) = qξ(r) we denote a quantile of order r, that is a number
satisfying

P {ξ < q(r)} ≤ r and P {ξ ≤ q(r)} ≥ r

(note that in general q(r) is not uniquely defined).
Now we discuss our main condition on the distributions, the condition (1). Clearly, if

the cdf of a non-negative random variable ξ satisfies condition (1) with some K then for
every x > 0 the cdf of xξ satisfies (1) with the same K. Note that (1) is equivalent to

µ
(
(t,Kt]

)
≥ µ

(
[0, t]

)
µ
(
(Kt,∞)

)
, t > 0, (2)
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where µ is the probability measure on R (actually, on R+) induced by F . It is not
difficult to see that the uniform distribution on [0, 1] satisfies the condition (1) with
K = 2. Another example of a random variable satisfying (1) (with K = 21/p) is a random
variable ξ taking values in [1,∞) with P(ξ ≥ 1) = 1/tp, t ≥ 1, where p > 0 is a fixed
parameter. Next we show that the absolute value of any log-concave random variable
satisfies (1). In particular, this includes Gaussian and exponential distributions.

Lemma 2.1. Let η be a log-concave variable. Then the cdf of |η| satisfies (1) with K = 3.

The lemma is an immediate consequence of the following statement and the fact that
conditions (1) and (2) are equivalent.

Lemma 2.2. Let µ0 be a non-degenerate log-concave probability measure on R and let
t > 0. Then

µ0

(
(t,∞)

)
µ0

(
(t, 3t]

)
≥ µ0

(
[−t, t]

)
µ0

(
(3t,∞)

)
and

µ0

(
(−∞,−t)

)
µ0

(
[−3t,−t)

)
≥ µ0

(
[−t, t]

)
µ0

(
(−∞,−3t)

)
.

In particular, we have

µ
(
(t, 3t]

)
= µ0

(
[−3t,−t) ∪ (t, 3t]

)
≥ µ0

(
[−t, t]

)
µ0

(
(−∞,−3t) ∪ (3t,∞)

)
= µ

(
[0, t]

)
µ
(
(3t,∞)

)
,

where µ is defined by µ(S) := µ0(−S ∪ S), S ⊂ R+.

Proof. We prove the first inequality only, the second one is similar. Note that

(t,∞) = 1
2

[−t,∞) + 1
2

(3t,∞).

By log-concavity of µ0 this implies

µ0
2
(
(t,∞)

)
≥ µ0

(
[−t,∞)

)
µ0

(
(3t,∞)

)
=
(
µ0

(
[−t, t]

)
+ µ0

(
(t,∞)

))
µ0

(
(3t,∞)

)
.

Thus
µ0

(
(t,∞)

) (
µ0

(
(t,∞)

)
− µ0

(
(3t,∞)

))
≥ µ0

(
[−t, t]

)
µ0

(
(3t,∞)

)
,

which implies the result.

Remark 2.3. We would also like to notice that (1) implies that

F (t) ≥ 2F (t/K2), whenever F (t) ≤ 1/2.

This (weaker) assumption on F was employed in [LT].
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3 Main result

In this section we prove our main result, stating that medians of order statistics in case
of independent components are equivalent to corresponding quantiles of an averaged dis-
tribution.

Theorem 3.1. Let K > 1 and k ≤ n. Let X1, . . . , Xn be independent non-negative
random variables with cdf ’s F1, F2, . . . , Fn, each satisfying condition (1) with parameter
K. Set F = 1

n

∑n
i=1 Fi. Then for 0 < t < K−5 one has

P
{
k- min

1≤i≤n
Xi < t qF

(k − 1/2

n

)}
≤ 4 t1/(4 lnK),

and for t > K5 one has

P
{
k- min

1≤i≤n
Xi > t qF

(k − 1/2

n

)}
≤ 4 t−1/(6 lnK).

In particular,

K−10 qF

(
k − 1/2

n

)
≤ Med

(
k- min

1≤i≤n
Xi

)
≤ K13 qF

(
k − 1/2

n

)
.

In the proof of the theorem, we will use two following auxiliary statements.

Lemma 3.2. Let F : (0,∞) → [0, 1] be a non-decreasing function satisfying (1). Let
` ≥ 1, γ ∈ (0, 1), and t > 0. Then

F (t) ≥ 2`(1− F (t))F
(
t/K`

)
(3)

and, assuming that F (t) ≥ 1− γ,

1− F
(
t/K`

)
≥ 2`

2`γ + 1
(1− F (t)). (4)

Proof. Applying (1) ` times we obtain

F (t)

1− F (t)
≥ 2` F (t/K`)

1− F (t/K`)
,

which implies (3). Fix a parameter β ∈ (0, 1), which will be specified later. If F
(
t/K`

)
≥

β then the above inequality implies

1− F
(
t/K`

)
≥ 2` β (1− F (t)).

Otherwise, if F
(
t/K`

)
< β, we get

1− F
(
t/K`

)
≥ 1− β ≥ 1− β

γ
(1− F (t)).

Choosing β := 1/(2`γ + 1), we get (4) and complete the proof.
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The next simple lemma can be verified by considering the expectation and the variance
of the sum of random Bernoulli variables and using the Chebyshev inequality.

Lemma 3.3. Let η1, . . . , ηn be independent Bernoulli 0/1 random variables with probabil-
ities of success p1, p2, . . . , pn. Then for every t > 0 we have

P
{∣∣∣ n∑

i=1

ηi −
n∑
i=1

pi

∣∣∣ ≥ t
}
≤ 1

t2

n∑
i=1

pi.

Proof of Theorem 3.1. We start with the first bound. Take any positive q < qF
(
k−1/2
n

)
.

By definition of the quantile, we have
∑n

i=1 Fi(q) ≤ k − 1/2. To estimate k- mini≤nXi

from below it is enough to show that the set of indices i corresponding to “small” Xi’s
has cardinality at most k − 1.

Fix ` ≥ 5 such that K−`−1 ≤ t < K−` and put γ := 1/2`/2, t0 := q/K`. Further, set

I := {i ≤ n : Fi(q) < 1− γ} and Ic := {i ≤ n : Fi(q) ≥ 1− γ}.

We want to estimate the number of indices i ∈ I corresponding to “small” Xi. Denote

A :=
∑
i∈I

Fi(q) and B :=
∑
i∈I

Fi(t0).

Applying (3) to Fi, i ∈ I, we get that A ≥ 2`γB. Therefore, if A ≤ 2` γ/(2` γ − 1) then

P {∃i ∈ I : Xi ≤ t0} ≤
∑
i∈I

P {Xi ≤ t0} = B ≤ A

2` γ
≤ 1

2` γ − 1
.

If A > 2` γ/(2` γ − 1) then, applying Lemma 3.3, we get

P
{
|{i ∈ I : Xi ≤ t0}| < A

}
= P

{∑
i∈I

χ{Xi≤t0} < A
}

≥ 1− B

(A−B)2

≥ 1− 2` γ

A(2` γ − 1)2

≥ 1− 1

2` γ − 1
.

Thus, in both cases we have

P
{
|{i ∈ I : Xi ≤ t0}| <

∑
i∈I

Fi(q)
}
≥ 1− 1

2` γ − 1
. (5)

Next, we estimate the number of indices i ∈ Ic corresponding to “small” Xi’s. If
a :=

∑
i∈Ic(1− Fi(q)) < 1/2, then we have

|Ic| < 1

2
+
∑
i∈Ic

Fi(q) ≤ k −
∑
i∈I

Fi(q),
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and from (5) we obtain

P
{
|{i ≤ n : Xi ≤ t0}| < k

}
≥ 1− 1

2` γ − 1
.

Now, assume that a ≥ 1/2. Set b :=
∑

i∈Ic(1− Fi(t0)). Applying (4) to Fi, i ∈ Ic, we get

b ≥ 2`

2`γ+1
a. Note that

∑
i∈Ic Fi(q) = |Ic| − a. Therefore, by Lemma 3.3 we obtain

P
{
|{i ∈ Ic : Xi ≤ t0}| <

∑
i∈Ic

Fi(q)
}

= P
{∑
i∈Ic

χ{Xi≤t0} < |Ic| − a
}

= P
{
b−

∑
i∈Ic

χ{Xi>t0} < b− a
}

≥ 1− b

(b− a)2

≥ 1− 2 · 2`(2`γ + 1)

(2` − 2`γ − 1)2
.

Combining the last relation with (5) and using that
∑

i≤n Fi(q) ≤ k− 1/2 < k, we obtain

P
{
|{i ≤ n : Xi ≤ t0}| < k

}
≥ 1− 1

2` γ − 1
− 2 · 2`(2`γ + 1)

(2` − 2`γ − 1)2
≥ 1− 4

2`/2
,

where in the last inequality we used the assumption ` ≥ 5 and the identity γ = 1/2`/2.
This proves

P
{
k- min

1≤i≤n
Xi ≤ q/K`

}
≤ 4

2`/2
.

Finally, by the choice of ` we have ` ≥ (4 ln(1/t))/(5 lnK), which implies the first part of
the theorem.

The second part is somewhat similar. To make comparison with the first part of the
proof straightforward, we will use the same letters for corresponding sets or numbers, just

adding a bar. Let q̄ := qF

(
k−1/2
n

)
. By definition, we have

∑n
i=1 Fi(q̄) ≥ k − 1/2. To

estimate k- mini≤nXi from above we will show that the set of indices i corresponding to
“small” Xi typically has cardinality at least k. Fix ¯̀≥ 5 such that such that K

¯̀ ≤ t <
K

¯̀+1, and set γ̄ := 2/4
¯̀/3, t̄0 := K

¯̀
q̄. Further, let

Ī := {i ≤ n : Fi(t̄0) < 1− γ̄} and Īc := {i ≤ n : Fi(t̄0) ≥ 1− γ̄}.

Let us bound the number of indices i ∈ Ī corresponding to “small” Xi. Denote

Ā :=
∑
i∈Ī

Fi(q̄) and B̄ :=
∑
i∈Ī

Fi(t̄0).
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Assume that Ā ≥ 1/2. Applying Lemma 3.3, we get

P
{
|{i ∈ Ī : Xi ≤ t̄0}| > Ā

}
= P

{∑
i∈Ī

χ{Xi≤t̄0} > Ā
}

= P
{
B̄ −

∑
i∈Ī

χ{Xi≤t̄0} < B̄ − Ā
}

≥ 1− B̄

(B̄ − Ā)2

≥ 1− 2
¯̀+1 γ̄

(2¯̀ γ̄ − 1)2
,

where we used the estimate B̄ ≥ 2
¯̀
γ̄Ā, which follows from (3). Thus, in both cases

Ā < 1/2 and Ā ≥ 1/2 we have

P
{
|{i ∈ Ī : Xi ≤ t̄0}| >

∑
i∈Ī

Fi(q̄)− 1/2
}
≥ 1− 2

¯̀+1 γ̄

(2¯̀ γ̄ − 1)2
. (6)

Next, we estimate the number of indices i ∈ Īc corresponding to “small” Xi’s. Fix

λ :=

√
2¯̀(2¯̀γ̄ + 1)/(2

¯̀− 2
¯̀
γ̄ − 1) < 1.

If ā :=
∑

i∈Īc(1− Fi(q̄)) < λ, then |Īc| < λ+
∑

i∈Īc Fi(q̄). In this situation we have

|{i ∈ Īc : Xi ≤ t̄0}| ≥
∑
i∈Īc

Fi(q̄)

if and only if Xi ≤ t̄0 for all i ∈ Īc. Note also that for every a1, . . . , am ∈ (0, 1] one has

if
m∑
i=1

ai ≥ m− λ then
m∏
i=1

ai ≥ 1− λ.

This and independence of Xi’s imply

P
{
|{i ∈ Īc : Xi ≤ t̄0}| ≥

∑
i∈Īc

Fi(q̄)
}

=
∏
i∈Īc

P
{
Xi ≤ t̄0

}
≥
∏
i∈Īc

P
{
Xi ≤ q̄

}
≥ 1− λ.

Together with (6), it gives

P
{
|{i ≤ n : Xi ≤ t̄0}| >

n∑
i=1

Fi(q̄)− 1/2
}
≥ 1− 2

¯̀+1 γ̄

(2¯̀ γ̄ − 1)2
− λ.

It remains to consider the case ā ≥ λ. Set

b̄ :=
∑
i∈Īc

(1− Fi(t̄0)).
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Applying (4) to Fi, i ∈ Īc, we get that ā ≥ 2
¯̀

2¯̀γ̄+1
b̄. Note that

∑
i∈Īc Fi(q̄) = |Īc| − ā.

Therefore, by Lemma 3.3, we obtain

P
{
|{i ∈ Īc : Xi ≤ t̄0}| >

∑
i∈Īc

Fi(q̄)
}

= P
{∑
i∈Īc

χ{Xi≤t̄0} > |Īc| − ā
}

= P
{∑
i∈Īc

χ{Xi>t̄0} − b̄ < ā− b̄
}

≥ 1− b̄

(ā− b̄)2

≥ 1− 2
¯̀
(2

¯̀
γ̄ + 1)

(2¯̀− 2¯̀γ̄ − 1)2 λ
.

Combining this with (6), we obtain

P
{
|{i ≤ n : Xi ≤ t̄0}| >

n∑
i=1

Fi(q̄)− 1/2
}
≥ 1− 2

¯̀+1 γ̄

(2¯̀ γ̄ − 1)2
− 2

¯̀
(2

¯̀
γ̄ + 1)

(2¯̀− 2¯̀γ̄ − 1)2 λ
.

Since ¯̀≥ 5 and in view of the definitions of γ̄ and λ, in both cases ā < λ and ā ≥ λ one
has

P
{
|{i ≤ n : Xi ≤ t̄0}| >

n∑
i=1

Fi(q̄)− 1/2
}
≥ 1− 4

2¯̀/3
.

Note that
∑n

i=1 Fi(q̄)− 1/2 ≥ k − 1, thus the last estimate implies

P
{
k- min

1≤i≤n
Xi > K

¯̀
q̄
}
≤ 4

2¯̀/3
.

Finally, observe that by the choice of ¯̀ we have ¯̀≥ (4 ln t)/(5 lnK), which implies the
second estimate in the theorem.
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