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Abstract

Let Mn be an n × n random matrix with i.i.d. Bernoulli(p) entries. We show that there is a
universal constant C ≥ 1 such that, whenever p and n satisfy C log n/n ≤ p ≤ C−1,

P
{
Mn is singular

}
= (1 + on(1))P

{
Mn contains a zero row or column

}
= (2 + on(1))n (1− p)n,

where on(1) denotes a quantity which converges to zero as n → ∞. We provide the corresponding
upper and lower bounds on the smallest singular value of Mn as well.
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1 Introduction

Invertibility of discrete random matrices attracts considerable attention in the literature. The classical
problem in this direction — estimating the singularity probability of a square random matrix Bn with i.i.d.
±1 entries — was first addressed by Komlós in the 1960-es. Komlós [21] showed that P{Bn is singular}
decays to zero as the dimension grows to infinity. A breakthrough result of Kahn–Komlós–Szemerédi
[19] confirmed that the singularity probability of Bn is exponentially small in the dimension. Further
improvements on the singularity probability were obtained by Tao–Vu [47, 48] and Bourgain–Vu–Wood
[7]. An old conjecture states that P{Bn is singular} =

(
1
2

+ on(1)
)n

. The conjecture was resolved in [51].
Other models of non-symmetric discrete random matrices considered in the literature include adjacency

matrices of d-regular digraphs, as well as the closely related model of sums of independent uniform permu-
tation matrices [22, 9, 10, 25, 26, 27, 28, 29, 2]. In particular, the recent breakthrough works [16, 38, 39]
confirmed that the adjacency matrix of a uniform random d–regular digraph of a constant degree d ≥ 3 is
non-singular with probability decaying to zero as the number of vertices of the graph grows to infinity. A
closely related line of research deals with the rank of random matrices over finite fields. We refer to [36]
for some recent results and further references.

The development of the Littlewood–Offord theory and a set of techniques of geometric functional anal-
ysis reworked in the random matrix context, produced strong invertibility results for a broad class of
distributions. Following works [50, 42] of Tao–Vu and Rudelson, the paper [44] of Rudelson and Vershynin
established optimal small ball probability estimates for the smallest singular value in the class of square
matrices with i.i.d. subgaussian entries, namely, it was shown that any n×n matrix A with i.i.d. subgaus-
sian entries of zero mean and unit variance satisfies P{smin(A) ≤ t n−1/2} ≤ Ct+ 2 exp(−cn) for all t > 0
and some C, c > 0 depending only on the subgaussian moment. The assumptions of identical distribution
of entries and of bounded subgaussian moment were removed in subsequent works [40, 33, 34]. This line
of research lead to positive solution of the Bernoulli matrix conjecture mentioned in the first paragraph.
Let us state the result of [51] for future reference.

Theorem (Invertibility of dense Bernoulli matrices, [51]).

• For each n, let Bn be the n × n random matrix with i.i.d. ±1 entries. Then for any ε > 0 there is
C depending only on ε such that the smallest singular value smin(Bn) satisfies

P
{
smin(Bn) ≤ tn−1/2

}
≤ Ct+ C(1/2 + ε)n, t > 0.

In particular, P
{
Bn is singular

}
= (1/2 + on(1))n, where the quantity on(1) tends to zero as n grows

to infinity.
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• For each ε > 0 and p ∈ (0, 1/2] there is C > 0 depending on ε and p such that for any n and for
random n× n matrix Mn with i.i.d. Bernoulli(p) entries,

P
{
smin(Mn) ≤ tn−1/2

}
≤ Ct+ C(1− p+ ε)n, t > 0.

In particular, for a fixed p ∈ (0, 1/2], we have P
{
Mn is singular

}
= (1− p+ on(1))n.

Sparse analogs of the Rudelson–Vershynin invertibility theorem [44] were obtained, in particular, in
works [49, 14, 32, 3, 4, 5], with the strongest small ball probability estimates in the i.i.d. subgaussian setting
available in [3, 4, 5]. Here, we state a result of Basak–Rudelson [3] for Bernoulli(pn) random matrices.

Theorem (Invertibility of sparse Bernoulli matrices, [3]). There are universal constants C, c > 0 with the
following property. Let n ∈ N and let pn ∈ (0, 1) satisfy C log n/n ≤ pn ≤ 1/2. Further, let Mn be the
random n× n matrix with i.i.d. Bernoulli(pn) entries (that is, 0/1 random variables with expectation pn).
Then

P
{
smin(Mn) ≤ t exp

(
− C log(1/pn)/ log(npn)

)√
pn/n

}
≤ Ct+ 2 exp(−cnpn), t > 0.

The singularity probabilities implied by the results [51, 3] may be regarded as suboptimal in a certain
respect. Indeed, while [51] produced an asymptotically sharp base of the power in the singularity probabil-
ity of Bn, the estimate of [51] is off by a factor (1 + on(1))n which may (and in fact does, as analysis of the
proof shows) grow to infinity with n superpolynomially fast. Further, the upper bound on the singularity
probability of sparse Bernoulli matrices implied by [3] captures an exponential dependence on npn, but
does not recover an asymptotically optimal base of the power.

A folklore conjecture for matrices Bn asserts that P{Bn is singular} = (1 + on(1))n221−n, where the
right hand side of the expression is the probability that two rows or two columns of the matrix Bn are
equal up to a sign (see, for example, [19]). This conjecture can be naturally extended to the model with
Bernoulli(pn) (0/1) entries as follows.

Conjecture 1.1 (Stronger singularity conjecture for Bernoulli matrices). For each n, let pn ∈ (0, 1/2],
and let Mn be the n× n matrix with i.i.d. Bernoulli(pn) entries. Then

P{Mn is singular}
= (1 + on(1))P

{
a row or a column of Mn equals zero, or two rows or columns are equal

}
.

In particular, if lim sup pn < 1/2 then

P{Mn is singular} = (1 + on(1))P
{

either a row or a column of Mn equals zero
}
.

Conceptually, the above conjecture asserts that the main causes for singularity are local in the sense
that the linear dependencies typically appear within small subsets of rows or columns. In a special regime
npn ≤ lnn + on(ln lnn), the conjecture was positively resolved in [5] (note that if npn ≤ lnn then the
matrix has a zero row with probability at least 1−1/e−on(1)). However, the regime lim inf(npn/ log n) > 1
was not covered in [5].

The main purpose of our paper is to develop methods capable of capturing the singularity probability
with a sufficient precision to answer the above question. Interestingly, this appears to be more accessible
in the sparse regime, when pn is bounded above by a small universal constant (we discuss this in the next
section in more detail). It is not difficult to show that when lim inf(npn/ lnn) > 1, the events that a given
row or a given column equals zero, almost do not intersect, so that

P
{

either a row or a column of Mn equals zero
}

= (2 + on(1))n (1− pn)n.

Our main result can be formulated as follows.
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Theorem 1.2. There is a universal constant C ≥ 1 with the following property. Let n ≥ 1 and let Mn be
an n× n random matrix such that

The entries of Mn are i.i.d. Bernoulli(p), with p = pn satisfying C lnn ≤ np ≤ C−1n. (A)

Then
P
{
Mn is singular

}
= (2 + on(1))n (1− p)n,

where on(1) is a quantity which tends to zero as n→∞. Moreover, for every t > 0,

P
{
smin(Mn) ≤ t exp(−3 ln2(2n))

}
≤ t+ (1 + on(1))P

{
Mn is singular

}
= t+ (2 + on(1))n (1− p)n.

In fact, our approach gives much better estimates on smin in the regime when pn is constant, see
Theorem 7.1 below. At the same time, we note that obtaining small ball probability estimates for smin

was not the main objective of this paper, and the argument was not fully optimized in that respect.
Geometrically, the main result of our work asserts that (under appropriate assumptions on pn) the

probability that a collection of n independent random vectors X
(n)
1 , . . . , X

(n)
n in Rn, with i.i.d Bernoulli(pn)

components is linearly dependent, is equal (up to (1 + on(1)) factor) to probability of the event that either

X
(n)
i is zero for some i ≤ n or X

(n)
1 , . . . , X

(n)
n are contained in the same coordinate hyperplane:

P
{
X

(n)
1 , . . . , X

(n)
n are linearly dependent

}
= (1 + on(1))P

{
X

(n)
i = 0 for some i ≤ n

}
+ (1 + on(1))P

{
∃ a coordinate hyperplane H such that X

(n)
i ∈ H for all i ≤ n

}
.

Thus, the linear dependencies between the vectors, when they appear, typically have the prescribed struc-
ture, falling into one of the two categories described above with the (conditional) probability 1

2
+ on(1).

The paper is organized as follows. In the next section, we give an overview of the proof of the main
result. In Section 3, we gather some preliminary facts and important notions to be used later. In Section 4,
we consider new anti-concentration inequalities for random 0/1 vectors with prescribed number of non-zero
components, and introduce a functional (the u-degree of a vector) which enables us to classify vectors on
the sphere according to anti-concentration properties of inner products with the random 0/1 vectors. In
the same section, we prove a key technical result — Theorem 2.2 — which states, roughly speaking, that
with very high probability a random unit vector orthogonal to n−1 columns of Mn is either close to being
sparse or to being a constant multiple of (1, 1, . . . , 1), or the vector is very unstructured, i.e., has a very
large u-degree.

In Section 5, we consider a special regime of constant probability of success p. In this regime, estimating
the event that Mn has an “almost null” vector which is either close to sparse or almost constant, is relatively
simple. The reader who is interested only in the regime of constant p can thus skip the more technical
Section 6 and have the proof of the main result as a combination of the theorems in Sections 4 and 5. In
Section 6, we consider the entire range for p. Here, the treatment of “almost null” vectors which are either
almost constant or close to sparse, is much more challenging and involves a careful analysis of multiple
cases. Finally, in Section 7 we establish an invertibility via distance lemma and prove the main result of
the paper. Some further questions are discussed in Section 8.

2 Overview of the proof

In this section, we provide a high-level overview of the proof; technical details will be discussed further in
the text. The proof utilizes some known approaches to the matrix invertibility, which involve, in particular,
a decomposition of the space into structured and unstructured parts, a form of invertibility via distance
argument, small ball probability estimates based on the Esseen lemma, and various forms of the ε–net
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argument. The novel elements of the proof are anti-concentration inequalities for random vectors with a
prescribed cardinality of the support, a structural theorem for normals to random hyperplanes spanned
by vectors with i.i.d. Bernoulli(p) components, and a sharp analysis of the matrix invertibility over the
set of structured vectors. We will start the description with our use of the partitioning trick, followed by
a modified invertibility-via-distance lemma, and then consider the anti-concentration inequality and the
theorem for normals (Subsection 2.1) as well as invertibility over the structured vectors (Subsection 2.2).

The use of decompositions of the space Rn into structured and unstructured vectors has become rather
standard in the literature. A common idea behind such partitions is to apply the Littlewood–Offord theory
to analyse the unstructured vectors and to construct a form of the ε–net argument to treat the structured
part. Various definitions of structured and unstructured have been used in works dealing with the matrix
invertibility. One of such decomposition was introduced in [31] and further developed in [44]. In this
splitting the structured vectors are compressible, having a relatively small Euclidean distance to the set of
sparse vectors, while the vectors in the complement are incompressible, having a large distance to sparse
vectors and, as a consequence, many components of roughly comparable magnitudes. In our work, the
decomposition of Rn is closer to the one introduced in [27, 30].

Let x∗ denote a non-increasing rearrangement of absolute values of components of a vector x, and let
r, δ, ρ ∈ (0, 1) be some parameters. Further, let g be a non-decreasing function from [1,∞) into [1,∞); we
shall call it the growth function. At this moment, the choice of the growth function is not important; we
can assume that g(t) grows roughly as tln t. Define the set of gradual non-constant vectors as

Vn = Vn(r,g, δ, ρ) :=
{
x ∈ Rn : x∗brnc = 1, x∗i ≤ g(n/i) for all i ≤ n, and

∃Q1, Q2 ⊂ [n] such that |Q1|, |Q2| ≥ δn and max
i∈Q2

xi ≤ min
i∈Q1

xi − ρ
}
. (1)

In a sense, constant multiples of the gradual non-constant vectors occupy most of the space Rn, they play
role of the unstructured vectors in our argument. By negation, the structured vectors,

Sn = Sn(r,g, δ, ρ) := Rn \
⋃
λ≥0

(λVn(r,g, δ, ρ)), (2)

are either almost constant (with most of components nearly equal) or have a very large ratio of x∗i and
x∗brnc for some i < rn.

For simplicity, we only discuss the problem of singularity at this moment. As Mn and M>
n are equidis-

tributed, to show that P
{
Mn is singular

}
= (2 + on(1))n (1− p)n, it is sufficient to verify that

P
({
Mnx = 0 for some x ∈ Vn

}
∩
{
M>

n x 6= 0 for all x ∈ Sn
})

= on(n) (1− p)n, (3)

and
P
{
Mnx = 0 for some x ∈ Sn

}
= (1 + on(1))n (1− p)n.

The first relation is dealt with by using a variation of the invertibility via distance argument which was
introduced in [44] to obtain sharp small ball probability estimates for the smallest singular value. In
the form given in [44], the argument reduces the problem of invertibility over unstructured vectors to
estimating distances of the form dist(Ci(Mn), Hi(Mn)), where Ci(Mn) is the i–th column of Mn, and
Hi(Mn) is the linear span of columns of Mn except for the i–th. In our setting, however, the argument
needs to be modified to pass to estimating the distance conditioned on the size of the support of the
column, as this allows using much stronger anti-concentration inequalities (see the following subsection).
By the invariance of the distribution of Mn under permutation of columns, it can be shown that in order
to prove the relation (3), it is enough to verify that

P
{
|supp C1(Mn)| ∈ [pn

8
, 8pn] and 〈Y,C1(Mn)〉 = 0 and Y/Y∗brnc ∈ Vn

}
= on(n) (1− p)n, (4)
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where Y is a non-zero random vector orthogonal to and measurable with respect to H1(Mn) (see Lemma 7.4
and the beginning of the proof of Theorem 1.2). In this form, the question can be reduced to studying the
anti-concentration of the linear combinations

∑n
i=1 Yibi, where the Bernoulli random variables b1, . . . , bn

are mutually independent with Y and conditioned to sum up to a fixed number in [pn/8, 8pn]. This
intermediate problem is discussed in the next subsection.

The approach to the set of structured vectors, Sn, will be discussed in Subsection 2.2.

2.1 New anti-concentration inequalities for random vectors with prescribed
support cardinality

The Littlewood–Offord theory — the study of anti-concentration properties of random variables — has
been a crucial ingredient of many recent results on invertibility of random matrices, starting with the
work of Tao–Vu [50]. In particular, the breakthrough result [44] of Rudelson–Vershynin mentioned in the
introduction, is largely based on studying the Lévy function Q(〈C1(A),Y〉, t), with C1(A) being the first
column of the random matrix A and Y — a random unit vector orthogonal to the remaining columns of
A.

We recall that given a random vector X taking values in Rn, the Lévy concentration function Q(X, t)
is defined by

Q(X, t) := sup
y∈Rn

P
{
‖X − y‖ ≤ t

}
, t ≥ 0;

in particular for a scalar random variable ξ we have Q(ξ, t) := sup
λ∈R

P{|ξ − λ| ≤ t}. A common approach

is to determine structural properties of a fixed vector which would imply desired upper bounds on the
Lévy function of its scalar product with a random vector (say, a matrix’ column). The classical result of
Erdős–Littlewood–Offord [12, 24] asserts that whenever X is a vector in Rn with i.i.d. ±1 components,
and y = (y1, . . . , yn) ∈ Rn is such that |yi| ≥ 1 for all i, we have

Q(〈X, y〉, t) ≤ Ct n−1/2 + Cn−1/2,

where C > 0 is a universal constant. It can be further deduced from the Lévy–Kolmogorov–Rogozin
inequality [41] that the above assertion remains true whenever X is a random vector with independent
components Xi satisfying Q(Xi, c) ≤ 1 − c for some constant c > 0. More delicate structural properties,
based on whether components of y can be embedded into a generalized arithmetic progression with pre-
scribed parameters were employed in [50] to prove superpolynomially small upper bounds on the singularity
probability of discrete random matrices.

The Least Common Denominator (LCD) of a unit vector introduced in [44] played a central role in
establishing the exponential upper bounds on the matrix singularity under more general assumptions on
the entries’ distributions. We recall that the LCD of a unit vector y in Rn can be defined as

LCD(y) := inf
{
θ > 0 : dist(θy,Zn) ≤ min(c1‖θy‖, c2

√
n)
}

for some parameters c1, c2 ∈ (0, 1). The small ball probability theorem of Rudelson and Vershynin [44]
states that given a vector X with i.i.d. components of zero mean and unit variance satisfying some addi-
tional mild assumptions,

Q(〈X, y〉, t) ≤ Ct+
C ′

LCD(y)
+ 2e−c

′n (5)

for some constants C,C ′, c′ > 0 (see [45] for a generalization of the statement). The LCD, or its relatives,
were subsequently used in studying invertibility of non-Hermitian square matrices under broader assump-
tions [40, 33, 34], and delocalization of eigenvectors of non-Hermitian random matrices [46, 37, 35], among
many other works.
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Anti-concentration properties of random linear combinations naturally play a central role in the current
work, however, the measures of unstructuredness of vectors existing in the literature do not allow to
obtain the precise estimates we are aiming for. Here, we develop a new functional for dealing with linear
combinations of dependent Bernoulli variables.

Given n ∈ N, 1 ≤ m ≤ n/2, a vector y ∈ Rn and parameters K1, K2 ≥ 1, we define the degree of
unstructuredness (u-degree) of vector y by

UDn(y,m,K1, K2) := sup

{
t > 0 : Anm

∑
S1,...,Sm

t∫
−t

m∏
i=1

ψK2

(∣∣E exp
(
2πi yη[Si] m

−1/2s
)∣∣) ds ≤ K1

}
, (6)

where the sum is taken over all sequences (Si)
m
i=1 of disjoint subsets S1, . . . , Sm ⊂ [n], each of cardinality

bn/mc and

Anm =

(
(bn/mc)!

)m
(n−mbn/mc)!
n!

· (7)

Here η[Si], i ≤ m, denote mutually independent integer random variables uniformly distributed on respec-
tive Si’s. The function ψK2 in the definition acts as a smoothing of max( 1

K2
, t), with ψK2(t) = 1

K2
for all

t ≤ 1
2K2

and ψK2(t) = t for all t ≥ 1
K2

(we prefer to skip discussion of this purely technical element of the
proof in this section, and refer to the beginning of Section 4 for the full list of conditions imposed on ψK2).

The functional UDn(y,m,K1, K2) can be understood as follows. The expression inside the supremum
is the average value of the integral

t∫
−t

m∏
i=1

ψK2

(∣∣E exp
(
2πi yη[Si] m

−1/2s
)∣∣) ds,

with the average taken over all choices of sequences (Si)
m
i=1. The function under the integral, disregarding

the smoothing ψK2 , is the absolute value of the characteristic function of the random variable 〈y, Z〉,
where Z is a random 0/1–vector with exactly m ones, and with the i-th one distributed uniformly on
Si. A relation between the magnitude of the characteristic function and anti-concentration properties
of a random variable (the Esseen lemma, see Lemma 3.12 below) has been commonly used in works on
the matrix invertibility (see, for example, [43]), and determines the shape of the functional UDn(·). The
definition of the u-degree is designed specifically to work with random 0/1–vectors having a fixed sum
(equal to m). The next statement follows from the definition of UDn(·) and the Esseen lemma.

Theorem 2.1 (A Littlewood–Offord-type inequality in terms of the u-degree). Let m,n be positive integers
with m ≤ n/2, and let K1, K2 ≥ 1. Further, let v ∈ Rn, and let X = (X1, . . . , Xn) be a random 0/1–vector
in Rn uniformly distributed on the set of vectors with m ones and n−m zeros. Then

Q
( n∑
i=1

viXi,
√
mτ
)
≤ C2.1

(
τ + UDn(v,m,K1, K2)−1

)
for all τ > 0,

where C2.1 > 0 may only depend on K1.

The principal difference distinguishing the u-degree and the above theorem from the notion of the
LCD and (5) is that the former allows one to obtain stronger anti-concentration inequalities in the same
regime of sparsity, assuming that the coefficient vector y is sufficiently unstructured. In fact, under certain
conditions, sparse random 0/1 vectors with prescribed support cardinality admit stronger anti-concentration
inequalities compared to the i.i.d. model.
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The last principle can be illustrated by taking the coefficient vector y as a “typical” vector on the
sphere Sn−1. First, assume that b1, . . . , bn are i.i.d. Bernoulli(p) , with p < 1/2. Then it is easy to see that
for almost all (with respect to normalized Lebesgue measure) vectors y ∈ Sn−1,

Q
( n∑
i=1

yibi, 0
)

= (1− p)n.

In words, for a typical coefficient vector y on the sphere, the linear combination
∑n

i=1 yibi takes distinct
values for any two distinct realizations of (b1, . . . , bn), and thus the Lévy function at zero is equal to the
probability measure of the largest atom of the distribution of

∑n
i=1 yibi which corresponds to all bi equal to

zero. In contrast, if the vector (b1, . . . , bn) is uniformly distributed on the set of 0/1–vectors with support
of size d = pn, then for almost all y ∈ Sn−1, the random sum

∑n
i=1 yibi takes

(
n
d

)
distinct values. Thus,

Q
( n∑
i=1

vibi, 0
)

=

(
n

np

)−1

,

where
(
n
np

)−1 � (1− p)n for small p.
The above example provides only qualitative estimates and does not give an information on the location

of the atoms of the distribution of
∑n

i=1 yibi. The notion of the u-degree addresses this problem. The
following theorem, which is the main result of Section 4, asserts that with a very large probability the
normal vector to the (say, last) n − 1 columns of our matrix Mn is either very structured or has a very
large u-degree, much greater than the critical value (1− p)−n.

Theorem 2.2. Let r, δ, ρ ∈ (0, 1), s > 0, R ≥ 1, and let K3 ≥ 1. Then there are n0 ∈ N, C ≥ 1 and
K1 ≥ 1, K2 ≥ 4 depending on r, δ, ρ, R, s,K3 such that the following holds. Let n ≥ n0, p ≤ C−1, and
s lnn ≤ pn. Let g : [1,∞)→ [1,∞) be an increasing (growth) function satisfying

∀a ≥ 2 ∀t ≥ 1 : g(a t) ≥ g(t) + a and
∞∏
j=1

g(2j)j 2−j ≤ K3. (8)

Assume that Mn is an n × n Bernoulli(p) random matrix. Then with probability at least 1 − exp(−Rpn)
one has

{Set of normal vectors to C2(Mn), . . . ,Cn(Mn)} ∩ Vn(r,g, δ, ρ) ⊂
{x ∈ Rn : x∗brnc = 1, UDn(x,m,K1, K2) ≥ exp(Rpn) for all pn/8 ≤ m ≤ 8pn}.

We would like to emphasize that the parameter s in this theorem can take values less than one, in
the regime when the matrix Mn typically has null rows and columns. In this respect, the restriction
p ≥ C lnn/n in the main theorem comes from the treatment of structured vectors.

The proof of Theorem 2.2 is rather involved, and is based on a double counting argument and specially
constructed lattice approximations of the normal vectors. We refer to Section 4 for details. Here, we
only note that, by taking R as a sufficiently large constant, the theorem implies the relation (4), hence,
accomplishes the treatment of unstructured vectors.

2.2 Almost constant, steep and R-vectors

In this subsection we discuss our treatment of the set of structured vectors, Sn. In the proof we partition
the set Sn into several subsets and work with them separately. In a simplistic form, the structured vectors
are dealt with in two ways: either by constructing discretizations and taking the union bound (variations
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of the ε–net argument), or via deterministic estimates in the case when there are only few very large
components in the vector. We note here that the discretization procedure has to take into account the non-
centeredness of our random matrix model: while in case of centered matrices with i.i.d. components (and
under appropriate moment conditions) the norm of the matrix is typically of order

√
n times the standard

deviation of an entry, for our Bernoulli(p) model it has order pn (i.e., roughly
√
pn times the standard

deviation of an entry), which makes a direct application of the ε–net argument impossible. Fortunately,
this large norm is attained only in one direction — the direction of the vector 1 = (1, 1, . . . , 1) while on the
orthogonal complement of 1 the typical norm is

√
pn. Therefore it is enough to take a standard net in the

Euclidean norm and to make it denser in that one direction, which almost does not affect the cardinality
of the net. We refer to Section 3.6 for details.

Let us first describe our approach in the (simpler) case when p ∈ (q, c), where c is a small enough
absolute constant and q ∈ (0, c) is a fixed parameter (independent of n). We introduce four auxiliary sets
and show that the set of unit structured vectors, Sn ∩ Sn−1, is contained in the closure of their union.

The first set, B1, consists of unit vectors close to vectors of the canonical basis, specifically, unit vectors
x satisfying x∗1 > 6pnx∗2, where x∗ denotes the non-inreasing rearrangement of the vector (|xi|)i≤n. For
any such vector x the individual bound is rather straightforward — conditioned on the event that there
are no zero columns in our matrix M , and that the Euclidean norms of the matrix rows are not too large,
we get Mx 6= 0. This class is the main contributor to the bound (1 + on(1))n(1− p)n for non-invertibility
over the structured vectors Sn.

For the other three sets we use anti-concentration probability estimates and discretizations. An appli-
cation of Rogozin’s lemma (Proposition 3.9) implies that probability of having small inner product of a
given row of our matrix with x is small, provided that there is a subset A ⊂ [n] such that the maximal
coordinate of PAx is bounded above by c

√
p‖PAx‖, where ‖ · ‖ denotes the standard Euclidean norm and

PA is the coordinate projection onto RA. Combined with the tensorization Lemma 3.8 this implies expo-
nentially (in n) small probability of the event that ‖Mx‖ is close to zero — see Proposition 3.10 below.
Specifically, we define B2 as the set of unit vectors satisfying the above condition with A = [n], that is,
satisfying x∗1 ≤ c

√
p, and for B3 we take all unit vectors satisfying the condition with A = σx([2, n]),

that is, satisfying x∗2 ≤ c
√
p‖Pσx([2,n])x‖, where σx is a permutation satisfying x∗i = |xσx(i)|, i ≤ n. For

vectors from these two sets we have very good individual probability estimates, but, unfortunately, the
complexity of both sets is large — they don’t admit nets of small cardinality. To overcome this issue, we
have to redefine these sets by intersecting them with specially chosen sets of vectors having many almost
equal coordinates. For the precise definition of such sets, denoted by U(m, γ), see Subsection 3.6. A set
U(m, γ) is a variant of the class of almost constant vectors, AC(ρ) (see (9) below), introduced to deal with
general p. Having a large part of coordinates of a vector almost equal to each other reduces the complexity
of the set making possible to construct a net of small cardinality. This resolves the problem and allows
us to deal with these two classes of sets. The remaining class of vectors, B4, consists of vectors x with
x∗1 ≥ x∗2 ≥ c

√
p‖Pσx([2,n])x‖, i.e., vectors with relatively big two largest components. For such vectors we

produce needed anti-concentration estimates for the matrix-vector products by using only these two com-
ponents, i.e., we consider anti-concentration for the vector PAx, where A = σx({1, 2}). Since the Rogozin
lemma is not suitable for this case, we compute the anti-concentration directly in Proposition 3.11. As for
the classes B2,B3, we actually intersect the fourth class with appropriately chosen sets of almost constant
vectors in order to control cardinalities of the nets. The final step is to show that the set Sn is contained
in the union of four sets described here. Careful analysis of this approach shows that the result can be
proved with all constants and parameters r, δ, ρ depending only on q. Thus, it works for p being between
the two constants q and c.

The case of small p, that is, the case C(lnn)/n ≤ p ≤ c, requires a more sophisticated splitting of
Sn — we split it into steep vectors and R-vectors. The definition and the treatment of steep vectors
essentially follows [27, 30], with corresponding adjustments for our model. The set of steep vectors consists
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of vectors having a large jump between order statistics measured at certain indices. The first subclass
of steep vectors, T0, is the same as the class B1 described above — vectors having very large maximal
coordinate — and is treated as B1. Similarly to the case of constant p, this class is the main contributor to
the bound (1 + on(1))n(1− p)n for non-invertibility over structured vectors. Next we fix certain m ≈ 1/p
and consider a sequence n0 = 2, nj+1/nj = `0, j ≤ s0− 1, ns0+1 = m for some specially chosen parameters
`0 and s0 depending on p and n. The class T1 will be defined as the class of vectors such that there exists
j with x∗nj+1

> 6pnx∗nj . To work with vectors from this class, we first show that for a given j the event
that for every choice of two disjoint sets |J1| = nj and |J2| = nj+1 − nj, a random Bernoulli(p) matrix
has a row with exactly one 1 in components indexed by J1 and no 1’s among components indexed by
J2, holds with a very high probability. Then, conditioned on this event, for every x ∈ T1, we choose J1

corresponding to x∗i , i ≤ nj, and J2 corresponding to x∗i , nj < i ≤ nj+1, and the corresponding row. Then
the inner product of this row with x will be large in absolute value due to the jump (see Lemma 6.9 for
the details). Thus, conditioned on the described event, for every x ∈ T1 we have a good lower bound on
‖Mx‖. Then next two classes of steep vectors, T2 and T3, consist of vectors having a jump of order C

√
pn,

namely, vectors in T2 satisfy x∗m > C
√
pnx∗k and vectors in T3 satisfy x∗k > C

√
pnx∗` , where k ≈

√
n/p and

` = brnc (r is the parameter from the definition of Vn(r,g, δ, ρ)). Trying to apply the same idea for these
two subclasses one sees that the size of corresponding sets J1 and J2 is too large to have exactly one 1
among a row’s components indexed by J1 ∪ J2 with a high probability. Therefore the proof of individual
probability bounds is delicate and technical as a construction of corresponding nets for T2, T3. We discuss
the details in Subsection 6.6.

The class of R-vectors consists of non-steep vectors to which Rogozin’s lemma (Proposition 3.9) can
be applied when we project a vector on n− k smallest coordinates with m < k ≤ n/ ln2(pn), thus vectors
from this class satisfy ‖PAx‖ ≤ c

√
p‖PAx‖∞ for A = σx([k, n] (we will take union over all choices of

integer k in the interval (m,n/ ln2(pn)]). Thus, the individual probability bounds for R-vectors will follow
from Rogozin’s lemma together with tensorization lemma as for classes B2, B3, described above. Thus the
remaining part is to construct a good net for R-vectors. For simplicity, dealing with such vectors, we fix
the normalization x∗brnc = 1. Since vectors are non-steep, we have a certain control of largest coordinates
and, thus, on the Euclidean norm of a vector. The upper bound on k is chosen in such a way that the
cardinality on a net corresponding to largest coordinates of a vector is relatively small (it lies in n/ ln2(pn)-
dimensional subspace). For the purpose of constructing of a net of small cardinality, we need to control
the Euclidean norm of PAx for an R-vector. Therefore we split R-vectors into level sets according to the
value of ‖PAx‖. There will be two different types of level sets — vectors with relatively large Euclidean
norm of PAx and vectors with small ‖PAx‖. A net for level sets with large ‖PAx‖ is easier to construct,
since we can zero all coordinates starting with x∗brnc = 1. If the Euclidean norm is small, we cannot do

this, so we intersect this subclass with almost constant vectors (in fact we incorporate this intersection
into the definition of R-vectors), defined by

AC(ρ) := {x ∈ Rn : ∃λ ∈ R s. t. |λ| = x∗brnc and |{i ≤ n : |xi − λ| ≤ ρ|λ|}| > n− brnc}. (9)

As in the case of constant p, this essentially reduces the dimension corresponding to almost constant part
to one and therefore reduce the cardinality of a net. The rather technical construction of nets is presented
in Subsection 6.3. In some aspects the construction follows ideas developed in [27].

3 Preliminaries

3.1 General notation

By universal or absolute constants we always mean numbers independent of all involved parameters,
in particular independent of p and n. Given positive integers ` < k we denote sets {1, 2, . . . , `} and
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{`, `+ 1, . . . , k} by [`] and [`, k] correspondingly. Having two functions f and g we write f ≈ g if there are
two absolute positive constants c and C such that cf ≤ g ≤ Cf . As usual, Πn denotes the permutation
group on [n].

For every vector x = (xi)
n
i=1 ∈ Rn, by (x∗i )

n
i=1 we denote the non-increasing rearrangement of the

sequence (|xi|)ni=1 and we fix one permutation σx satisfying |xσx(i)| = x∗i , i ≤ n. We use 〈·, ·〉 for the
standard inner product on Rn, that is 〈x, y〉 =

∑n
i=1 xiyi. Further, we write ‖x‖∞ = maxi |xi| and

‖x‖ = (
∑n

i=1 |xi|2)
1/2

for the `∞- and `2-norms of x. We also denote 1 = (1, 1, . . . , 1).

3.2 Lower bound on the singularity probability

Here, we provide a simple argument showing that for the sequence of random Bernoulli(pn) matrices (Mn),
with pn satisfying (npn − lnn) −→∞ as n→∞, we have

P
{
Mn contains a zero row or column

}
≥ (2− on(1))n (1− p)n.

Our approach is similar to that applied in [5] in a related context.
Fix n > 1 and write p = pn. Let 1R be the indicator of the event that there is a zero row in the matrix

Mn, and, similarly, let 1C be the indicator of the event that Mn has a zero column. Then, obviously,

E1R = E1C = 1−
(
1− (1− p)n

)n
,

hence,
E(1R + 1C)2 ≥ 2− 2

(
1− (1− p)n

)n
.

On the other hand,

E1R 1C ≤
n∑
i=1

n∑
j=1

P
{
i–th row and j–th column of Mn are zero

}
= n2(1− p)2n−1,

implying

E(1R + 1C)2 = P
{
1R + 1C = 1

}
+ 4P

{
1R 1C = 1

}
≤ P

{
1R + 1C = 1

}
+ 4n2(1− p)2n−1.

Therefore,

P
{
Mn contains a zero row or column

}
≥ P

{
1R + 1C = 1

}
≥ E(1R + 1C)2 − 4n2(1− p)2n−1

≥ 2− 2
(
1− (1− p)n

)n − 4n2(1− p)2n−1.

It remains to note that, with our assumption on the growth rate of p = pn, we have n(1−p)n −→ 0, which
implies

1

n(1− p)n
(
2− 2

(
1− (1− p)n

)n − 4n2(1− p)2n−1
)
−→ 2.

3.3 Gradual non-constant vectors

For any r ∈ (0, 1), we define Υn(r) as the set of all vectors x in Rn with x∗brnc = 1. We will call these vectors

r-normalized. By a growth function g we mean any non-decreasing function from [1,∞) into [1,∞).
Let g be an arbitrary growth function. We will say that a vector x ∈ Υn(r) is gradual (with respect to

the function g) if x∗i ≤ g(n/i) for all i ≤ n. Further, if x ∈ Υn(r) satisfies

∃Q1, Q2 ⊂ [n] such that |Q1|, |Q2| ≥ δn and max
i∈Q2

xi ≤ min
i∈Q1

xi − ρ (10)
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then we say that the vector x is essentially non-constant or just non-constant (with parameters δ, ρ). Recall
that the set Vn = Vn(r,g, δ, ρ) was defined in (1) as

Vn =
{
x ∈ Υn(r) : x is gradual with g and satisfies (10)

}
.

Vectors from this set we call gradual non-constant vectors.

Recall that the set Sn = Sn(r,g, δ, ρ) of structured vectors was defined in (2) as the complement of scalar
multiples of Vn(r,g, δ, ρ). The next simple lemma will allow us to reduce analysis of {x/‖x‖ : x ∈ Sn} to
the treatment of the set {x/‖x‖ : x ∈ Υn(r) \ Vn}.
Lemma 3.1. For any choice of parameters r,g, δ, ρ, the set {x/‖x‖ : x ∈ Sn} is contained in the closure
of the set {x/‖x‖ : x ∈ Υn(r) \ Vn}.
Proof. Let y be a unit vector such that y = x/‖x‖ for some x ∈ Sn. If x∗brnc 6= 0 then y = z/‖z‖, where

z = x/x∗brnc ∈ Υn(r) \ Vn. If x∗brnc = 0, we can consider a sequence of vectors (x(j))j≥1 in Rn defined by

x(j)i =

{
xi, if |xi| > 1/j,

1/j, if |xi| ≤ 1/j.

Let
y(j) := x(j)/x(j)∗brnc = jx(j) ∈ Υn(r), j ≥ 1.

Clearly, y(j)∗1 = jx∗1 −→∞, so for all sufficiently large j we have y(j) /∈ Vn. Thus, for all large j,

y(j)/‖y(j)‖ ∈ {z/‖z‖ : z ∈ Υn(r) \ Vn},

whereas y(j)/‖y(j)‖ = x(j)/‖x(j)‖ −→ x/‖x‖. This implies the desired result.

We will need two following lemmas. The first one states that vectors which do not satisfy (10) are
almost constant (that is, have large part of coordinates nearly equal to each other). The second one is a
simple combinatorial estimate, so we omit its proof.

Lemma 3.2. Let n ≥ 1, δ, ρ, r ∈ (0, 1). Denote k = dδne and m = brnc and assume n ≥ 2m > 4k.
Assume x ∈ Υn(r) does not satisfy (10). Then there exist A ⊂ [n] of cardinality |A| > n−m and λ with
|λ| = 1 such that |xi − λ| < ρ for every i ∈ A.

Proof. By (x#
i )ni=1 denote the non-increasing rearrangement of (xi)

n
i=1 (we would like to emphasize that we

do not take absolute values). Note that there are two subsets Q1, Q2 ⊂ [n] with |Q1|, |Q2| ≥ k satisfying
maxi∈Q2 xi ≤ mini∈Q1 xi− ρ if and only if x#

k − x
#
n−k+1 ≥ ρ. Therefore, using that x does not satisfy (10),

we observe x#
k − x

#
n−k+1 < ρ. Next consider the set

A := {x#
i : k < i ≤ n− k}.

Then |A| = n− 2k > n−m. Since x∗m = 1 we obtain that

|{i : |xi| > 1}| < m ≤ n−m and |{i : |xi| < 1}| ≤ n−m.

Therefore, there exist two indices j, ` ∈ A such that either xj < −1 < x` < 1 in which case we take λ = −1

or −1 < x` < 1 < xj in which case we take λ = 1. Then for every i ∈ A, |xi− λ| < x#
k − x

#
n−k+1 < ρ. This

completes the proof.

Lemma 3.3. For any δ ∈ (0, 1] there are nδ ∈ N, cδ > 0 and Cδ ≥ 1 depending only on δ with the
following property. Let n ≥ nδ and let m ∈ N satisfy n/m ≥ Cδ. Denote by S the collection of sequences
(S1, . . . , Sm) ⊂ [n] with |Si| = bn/mc and Si ∩ Sj = ∅ for all i 6= j. Let Anm be as in (7). Then for any
pair Q1, Q2 of disjoint subsets of [n] of cardinality at least δn each, one has∣∣∣{(S1, . . . , Sm) ∈ S : min(|Si ∩Q1|, |Si ∩Q2|) ≥

δ

2
bn/mc for at most cδm indices i

}∣∣∣ ≤ e−cδnA−1
nm.
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3.4 Auxiliary results for Bernoulli r.v. and random matrices

Let p ∈ (0, 1), δ is Bernoulli random variable taking value 1 with probability p and 0 with probability
1− p. We say that δ is a Bernoulli(p) random variable. A random matrix with i.i.d. entries distributed as
δ will be called Bernoulli(p) random matrix.

Here we provide four lemmas needed below. We start with notations for random matrices used through-
out the paper. The class of all n × n matrices having 0/1 entries we denote by Mn. We will consider
a probability measure on Mn induced by the distribution of an n × n Bernoulli(p) random matrix. We
will use the same notation P for this probability measure; the parameter p will always be clear from the
context. Let M = {µij} ∈ Mn. By Ri = Ri(M) we denote the i-th row of M , and by Ci(M) — the i-th
column, i ≤ n. By ‖M‖ we always denote the operator norm of M acting as an operator `2 → `2. This
norm is also called spectral norm and equals the largest singular number.

We will need the following form of Bennett’s inequality.

Lemma 3.4. Let n ≥ 1, 0 < q < 1, and δ be a Bernoulli(q) random variable. Let δi and δij, i, j ≤ n, be
independent copies of δ. Define the function h(u) := (1 + u) ln(1 + u)− u, u ≥ 0. Then for every t > 0,

max

(
P

(
n∑
i=1

δi > qn+ t

)
,P

(
n∑
i=1

δi < qn− t

))
≤ exp

(
− nq(1− q)

max2(q, 1− q)
h

(
tmax(q, 1− q)
nq(1− q)

))
.

In particular, for 0 < ε ≤ q ≤ 1/2,

max

(
P

(
n∑
i=1

δi > (q + ε)n

)
,P

(
n∑
i=1

δi < (q − ε)n

))
≤ exp

(
− nε2

2q(1− q)

(
1− ε

3q

))
,

and for q ≤ 1/2, τ > e,

P

(
n∑
i=1

δi > (τ + 1)qn

)
≤ exp (−τ ln(τ/e)qn) .

Furthermore, for 50/n ≤ q ≤ 0.1,

P
(
qn/8 ≤

n∑
i=1

δi ≤ 8qn
)
≥ 1− (1− q)n/2.

Moreover, if n ≥ 30 and (4 lnn)/n ≤ p = q ≤ 1/2 then denoting

Esum :=
{
M = {δij}i,j≤n ∈Mn :

n∑
j=1

δij ≤ 3.5pn for every i ≤ n
}

we have P(Esum) ≥ 1− exp(−1.5np).

Proof. Recall that Bennett’s inequality states that for mean zero independent random variables ξ1, . . . ,
ξn satisfying ξi ≤ ρ (for a certain fixed ρ > 0) almost surely for i ≤ n, one has for every t > 0,

P

(
n∑
i=1

ξi > t

)
≤ exp

(
−σ

2

ρ2
h

(
ρt

σ2

))
,

where σ2 =
∑n

i=1 Eξ2
i (see e.g. Theorem 1.2.1 on p. 28 in [8] or Exercise 2.2 on p. 11 in [11] or

Theorem 2.9 in [6]). Take ξi = δi − q, ξ′i = −ξi, i ≤ n. Then for every i ≤ n, ξ′i and ξi are centered,
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|ξ′i| = |ξi| = max(q, 1− q), and σ2 = nq(1− q). Applying the Bennett’s inequality with ρ = max(q, 1− q)
twice — to ξi and ξ′i, we observe the first inequality. To prove the second inequality, we take t = εn and
use that h(·) is an increasing function satisfying h(u) ≥ u2/2− u3/6 on R+. The third inequality follows
by taking t = τqn and using h(u) ≥ u ln(u/e).

For the “furthermore” part, we apply the third inequality with τ = 7, to get

P
{ n∑

i=1

δi > 8qn
}
≤ exp(−6qn).

On the other hand, using q ≤ 0.1,

P
{ n∑

i=1

δi < qn/8
}

=

bqn/8c∑
i=0

(
n

i

)
qi(1− q)n−i ≤ (1− q)n +

bqn/8c∑
i=1

(
enq

i(1− q)

)i
(1− q)n

≤ (1− q)n +
qn

8

(
8e

1− q

)qn/8
(1− q)n ≤ (1− q)n +

qn

8

(
80e

9

)qn/8
(1− q)n.

Since (80e/9)1/8 ≤ e0.4, (1− q)n ≤ exp(−qn), qn ≥ 50, and lnx ≤ x/e on [0,∞), this implies

P
(
qn/8 ≤

n∑
i=1

δi < qn/8
)
≤ exp(−6qn) + (1 + exp(0.45qn))(1− q)n ≤ (1− q)n/2.

Finally, to get the last inequality, we take t = 2.5qn = 2.5pn, then

P

(
n∑
j=1

δij > 3.5pn

)
≤ exp

(
− np

1− p
h (2.5)

)
≤ exp (−np (3.5 ln 3.5− 2.5)) ≤ exp (−1.8np) .

Since under our assumptions, n exp (−1.8np) ≤ exp (−1.5np), the bound on P(Esum) follows by the union
bound.

We need the following simple corollary of Bennet’s inequality.

Lemma 3.5. For any R ≥ 1 there is C3.5 = C3.5(R) ≥ 1 with the following property. Let n ≥ 1 and
p ∈ (0, 1) satisfy C3.5p ≤ 1 and C3.5 ≤ pn. Further, let M be an n × n be Bernoulli(p) random matrix.
Then with probability at least 1− exp(−n/C3.5) one has

8pn ≥ |supp Ci(M)| ≥ pn/8 for all but b(pR)−1c indices i ∈ [n] \ {1}.

Proof. For each i ∈ [n] \ {1}, let ξi be the indicator of the event{
8pn < |supp Ci(M)| or |supp Ci(M)| < pn/8

}
.

By Lemma 3.4, E ξi ≤ e−pn/2. Since ξi’s are independent, by Markov’s inequality,

P
{ n∑

i=2

ξi ≥
1

pR

}
≤
(

n− 1

b(pR)−1c

)(
e−pn/2

)b(pR)−1c ≤
(

n− 1

b(pR)−1c

)
e−n/(4R).

The result follows.

The following lemma provides a bound on the norm of a random Bernoulli matrix. It is similar to [5,
Theorem 1.14], where the case of symmetric matrices was treated. For the sake of completeness we sketch
its proof.
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Lemma 3.6. Let n be large enough and (4 lnn)/n ≤ p ≤ 1/2. Let M = (δij)i,j be a Bernoulli(p) random
matrix. Then for every t ≥ 30 one has

P
{
‖M − EM‖ ≥ 2t

√
np
}
≤ 4e−t

2pn/4 and P
{
‖M‖ ≥ 2t

√
np+ pn

}
≤ 4e−t

2pn/4.

In particular, taking t =
√
pn,

P
(
‖M1‖ ≥ 3pn3/2

)
≤ 4 exp(−n2p2/4). (11)

Proof. Given an n × n random matrix T = (tij)i,j with independent entries taking values in [0, 1]. We
consider it as a vector in Rm with m = n2. Then the Hilbert–Schmidt norm of T is the standard Euclidean
norm on Rm. Let f be any function in Rm which is convex and is 1-Lipschitz with respect to the standard
Euclidean norm. Then Talagrand’s inequality (see e.g. Corollary 4.10 and Proposition 1.8 in [23]) gives
that for every s > 0,

P
(
f(T ) ≥ Ef(T ) + s+ 4

√
π
)
≤ 4 exp(−s2/4).

We apply this inequality twice, first with the function f(T ) := ‖T‖ to the matrix T := M − EM . At the
end of this proof we show that E‖M −EM‖ ≤ 20

√
pn. Therefore, taking s = t

√
pn with t ≥ 30, we obtain

the first bound. For the second bound, note that all entries of EM equal p, hence ‖EM‖ = pn. Thus, the
second bound follows by the triangle inequality.

It remains to prove that E‖M−EM‖ ≤ 20
√
pn. Recall that δij are the entries of M . Let δ′ij, i, j ≤ n be

independent copies of δij and set M ′ := (δ′ij)i,j. Denote by rij independent Rademacher random variables
and by gij independent standard Gaussian random variables. We assume that all our variables are mutually
independent and set ξij := δij − δ′ij. Since for every i, j ≤ n, ξij is symmetric, it has the same distribution

as |ξij|rij and the same as
√

2/π|ξij|rijE|gij|. Then we have

Eδ‖M − EM‖ = Eδ‖M − Eδ′M ′‖ ≤ EδEδ′‖M −M ′‖ = Eξ‖(ξij)i,j‖ =
√

2/π Eξ,r‖(ξijrijEg|gij|)i,j‖

≤
√

2/π Eξ,r,g‖(ξijrij|gij|)i,j‖ =
√

2/π EξEg‖(ξij|gij|)i,j‖.

Applying a result of Bandeira and Van Handel (see the beginning of Section 3.1 in [1]), we obtain

Eδ‖M − EM‖ ≤ Eξ(4 max(σ1, σ2) + 15σ∗
√

ln(2n)),

where

σ1 = max
i≤n

√√√√ n∑
j=1

ξ2
ij, σ2 = max

j≤n

√√√√ n∑
i=1

ξ2
ij, and σ∗ = max

i,j≤n
|ξij| ≤ 1.

Note that ξ2
ij are Bernoulli(q) random variables with q = 2p(1− p). Since (4 lnn)/n ≤ p ≤ 1/2 we have

(4 lnn)/n ≤ p ≤ q ≤ 1/2. Applying the “moreover part” of Lemma 3.4, we obtain that

P
(

max(σ1, σ2) >
√

7pn
)
≤ 2 exp(−1.5nq) ≤ 2/n6.

Moreover, since ξ2
ij ≤ 1, we have also max(σ1, σ2) ≤

√
n. Therefore,

Eξ(4 max(σ1, σ2) + 15σ∗
√

ln(2n)) ≤ 4
√

7pn+ 8/n5 + 15
√

ln(2n) ≤ 20
√
pn.

As an elementary corollary of the above lemma, we have the following statement where the restriction
pn ≥ 4 lnn is removed.
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Corollary 3.7. For every s > 0 and R ≥ 1 there is C3.7 ≥ 1 depending on s, R with the following property.
Let n ≥ 16/s be large enough and let p ∈ (0, 1/4] satisfy s lnn ≤ pn. Let Mn be an n × n Bernoulli(p)
random matrix. Then

P
{
‖Mn − EMn‖ ≤ C3.7

√
pn
}
≥ 1− exp(−Rpn).

Proof. Let w := max(1, d8/se), ñ := w n, and let M̃n be ñ × ñ Bernoulli(p) matrix. Assuming that n is
sufficiently large, we get

p ñ = wpn ≥ smax(1, d8/se) lnn ≥ 4 ln ñ.

Thus, the previous lemma is applicable, and we get

P
{
‖M̃n − EM̃n‖ ≤ C3.7

√
pn
}
≥ 1− exp(−Rpn),

for some C3.7 > 0 depending only on s, R. Since the norm of a matrix is not less than the norm of any of
its submatrices, and because any n×n submatrix of M̃n is equidistributed with Mn, we get the result.

3.5 Anti-concentration

In this subsection we combine anti-concentration inequalities with the following tensorization lemma (see
Lemma 3.2 in [51], Lemma 2.2 in [44] and Lemma 5.4 in [42]). We also provide Esseen’s lemma.

Lemma 3.8 (Tensorization lemma). Let λ, γ > 0. Let ξ1, ξ2, . . . , ξm be independent random variables.
Assume that for all j ≤ m, P(|ξj| ≤ λ) ≤ γ. Then for every ε ∈ (0, 1) one has

P(‖(ξ1, ξ2, ..., ξm)‖ ≤ λ
√
εm) ≤ (e/ε)εmγm(1−ε).

Moreover, if there exists ε0 > 0 and K > 0 such that for every ε ≥ ε0 and for all j ≤ m one has
P(|ξj| ≤ ε) ≤ Kε then there exists an absolute constant C3.8 > 0 such that for every ε ≥ ε0,

P(‖(ξ1, ξ2, ..., ξm)‖ ≤ ε
√
m) ≤ (C3.8Kε)

m.

Recall that for a real-valued random variable ξ its Lévy concentration function Q(ξ, t) is defined as

Q(ξ, t) := sup
λ∈R

P
{
|ξ − λ| ≤ t

}
, t > 0.

We will need bounds on the Lévy concentration function of sums of independent random variables. Such
inequalities were investigated in many works, starting with Lévi, Doeblin, Kolmogorov, Rogozin. We quote
here a result due to Kesten [20], who improved Rogozin’s estimate [41].

Proposition 3.9. There exists an absolute positive constant C such that the following holds. Let ξ1, ξ2, . . . , ξm
be independent random variables and λ, λ1, ..., λm > 0 satisfy λ ≥ maxi≤m λi. Then

Q
( m∑
i=1

ξi, λ
)
≤ C λ maxi≤mQ(ξi, λ)√∑m

i=1 λ
2
i (1−Q(ξi, λi))

.

This proposition together with Lemma 3.8 immediately implies the following consequence, in which,
given A ⊂ [m] and x ∈ Rm, xA denotes coordinate projection of x on RA.

Proposition 3.10. There exists an absolute constant C0 ≥ 1 such that the following holds. Let p ∈ (0, 1/2].
Let δ be a Bernoulli(p) random variable. Let δj, j ≤ n, and δij, i, j ≤ n, be independent copies of δ. Let
M = (δij)ij. Let A ⊂ [n] and x ∈ Rn be such that ‖xA‖∞ ≤ C−1

0

√
p ‖xA‖. Then

P
(
‖Mx‖ ≤

√
pn

3
√

2C0

‖xA‖
)
≤ e−3n.

Moreover, if λ :=
√
p ‖xA‖
3C0

≤ 1/3 then Q
(∑n

j=1 δjxj, λ
)
≤ e−8.
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Proof. We start with the “moreover” part. Assume
√
p ‖xA‖ ≤ C0. Let λj = |xj|/3. Clearly, for every

j ≤ n, Q(xjδj, |xj|/3) = Q(δj, 1/3) = 1− p. Independence of δi’s and Proposition 3.9 imply that for every
λ satisfying maxj∈A λj ≤ λ ≤ 1/3 one has

Q
( n∑
j=1

xjδj, λ
)
≤ Q

(∑
j∈A

xjδj, λ
)
≤ C λ√∑

j∈A λ
2
j p

=
3C λ
√
p ‖xA‖

.

Choosing C0 = Ce8 and λ =
√
p ‖xA‖/(3C0) (note that the assumption on ‖xA‖∞ ensures that λ ≥ λj for

all j ∈ A) we obtain the “moreover” part.

Now apply Lemma 3.8 with ξi = (Mx)i =
∑n

j=1 xjδij, ε = 1/2, γ = e−8, m = n. We have

P
(
‖Mx‖ ≤ λ

√
n/2
)
≤ (2e)n/2 exp(−4n) ≤ exp(−3n).

This implies the bound under assumption
√
p ‖xA‖ ≤ C0, which can be removed by normalizing x.

We also will need the following combination of a simple anti-concentration fact with Lemma 3.8.

Proposition 3.11. Let p ∈ (0, 1/2] and α > 0. Let δ be a Bernoulli(p) random variable. Let δj, j ≤ n,
and δij, i, j ≤ n, be independent copies of δ. Let M = (δij)ij. Let x ∈ Rn be such that x∗2 ≥ α. Then

Q
( n∑
j=1

xjδj, α/2.01
)
≤ 4−p and P

(
‖Mx‖ ≤

α
√
pn

10
√

ln(e/p)

)
≤ exp(−1.2pn).

Proof. Without loss of generality we assume that x∗1 = |x1| and x∗2 = |x2|. Note that x1δ1 + x2δ2 takes
values in E1 := {0, x1 +x2} with probability (1− p)2 + p2 and in E2 := {x1, x2} with probability 2p(1− p).
Using that p ≤ 1/2, we observe

max{(1− p)2 + p2, 2p(1− p)} ≤ 4−p.

Since the distance between sets E1 and E2 equals to min{|x1|, |x2|} = |x2| and since we clearly have
Q
(∑n

j=1 xjδj, λ
)
≤ Q

(∑2
j=1 xjδj, λ

)
, the first inequality follows.

We now apply Lemma 3.8 with ξi = (Mx)i =
∑n

j=1 xjδij, ε = p/(24 ln(e/p)), γ = 4−p, m = n. Note
that ε ≤ 1/(48 ln 2e) ≤ 0.02, and x ≥ e lnx for x ≥ 0, hence

p(1− ε) ln 4− ε ln(e/ε) ≥ p 0.98 ln 4− p

24 ln(e/p)
ln

(
24e ln(e/p)

p

)
≥ 1.35p− p

24

(
ln 24

ln 2e
+ 1 +

ln ln(e/p)

ln(e/p)

)
≥ 1.2p.

Thus Lemma 3.8 yields

P
(
‖Mx‖ ≤

α
√
pn

2.01
√

24 ln(e/p)

)
≤ (e/ε)εn4−pn(1−ε)) ≤ exp(−1.2pn).

This completes the proof.

Finally we state Esseen’s lemma [13], needed to prove Theorem 2.1.

Lemma 3.12 (Esseen). There exists an absolute constant C > 0 such that the following holds. Let ξi,
i ≤ m, be independent random variables. Then for every τ > 0,

Q
( m∑
i=1

ξi, τ
)
≤ C

1∫
−1

m∏
i=1

|E exp(2πiξis/τ)| ds.
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3.6 Net argument

Here we discuss special nets that will be used and corresponding approximations. We fix the following
notations. Let e = 1/

√
n be the unit vector in the direction of 1. Let Pe be the projection on e⊥ and

P⊥e be the projection on e, that is P⊥e = 〈·, e〉 e. Similarly, for j ≤ n, let Pj be the projection on e⊥j and
P⊥j be the projection on ej. Recall that for x ∈ Rn, the permutation σx satisfies |xσx(i)| = x∗i , i ≤ n.

Define a (non-linear) operator Q : Rn → Rn by Qx = PF (x)x — the coordinate projection on RF (x), where
F (x) = σx([2, n]), in other words Q annihilates the largest coordinate of a vector. Consider the triple
norm on Rn defined by

|||x|||2 := ‖Pex‖2 + pn‖P⊥e x‖2

(note that ‖P⊥e x‖ = | 〈x, e〉 |). We will use the following notion of shifted sparse vectors. Given m ≤ n
and a parameter γ > 0, define

U(m, γ) :=
{
x ∈ Rn : ∃A ⊂ [n], |A| = n−m, ∃|λ| ≤ 2√

m
∀i ∈ A one has |xi − λ| ≤

γ√
n

}
.

Further, given another parameter β > 0, define the set

V (β) := {x ∈ Rn : ‖x‖∞ ≤ 1 and ‖Qx‖ ≤ β}.

Lemma 3.13. Let 0 < 8γ ≤ ε ≤ β and 1 ≤ m ≤ n. Then there exists an ε-net in V (β) ∩ U(m, γ) with
respect to ||| · ||| of cardinality at most

210√p n2

ε2
√
m

(
9β

ε

)m(
n

m

)
.

Proof. Denote V := V (β)∩U(m, γ). For each x ∈ V let A(x) be the set from the definition of U(m, γ) (if
the choice of A(x) is not unique, we fix one of them).

Fix E ⊂ [n] of cardinality m. We first consider vectors x ∈ V satisfying A(x) = Ec. Fix j ≤ n and
denote

Vj = Vj(E) := {x ∈ V : j = σx(1) and A(x) = Ec}

(thus x∗1 = |xj| on Vj). We now construct a net for Vj. It will be obtained as the sum of four nets,
where the first one deals with just one coordinate, j, annihilating the maximal coordinate; the second
one deals with the non-constant part of the vector, consisting of at most m coordinates (excluding x∗1);
the third one deals with almost constant coordinates (corresponding to A(x)); and the fourth net deals
with the direction of the constant vector. This way, three of our four nets are 1-dimensional. Let PW be
the coordinate projection onto RW , where W = E \ {j}. Note that the definition of V (β) implies that
‖PW (x)‖ ≤ β for every x ∈ Vj. Let, as before, P⊥j be the projection onto ej.

Let N1 be an ε/4-net in P⊥j (Vj) ⊂ [−1, 1]ej of cardinality at most 8/ε. Let N2 be an ε/4-net (with
respect to the Euclidean metric) in PW (Vj) of cardinality at most (1 + 8β/ε)m .

Further, letN ′3 be an ε/(8
√
n)-net in the segment [−2/

√
m, 2/

√
m] (approximating λ in the definition of

U(m, γ)) with cardinality at most 32
√
n/(ε
√
m). LetN3 be the set of all vectors of the type λ0

∑
i∈Ec\{j} ei,

where λ0 ∈ N ′3. Then by the construction of the nets and by the definition of U(m, γ) for every x ∈ Vj
there exist yix ∈ Ni, i ≤ 3, such that for yx = y1

x + y2
x + y3

x,

‖x− yx‖2 ≤ ε2

16
+
ε2

16
+

∑
i∈Ec\{j}

(
γ√
n

+
ε

8
√
n

)2

≤ 3ε2

16
;
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in particular, ‖Pe(x − yx)‖ ≤
√

3/16ε. Finally, let N4 be an ε/(4
√
pn)-net in the segment (ε/2)[−e, e]

with cardinality at most 4
√
pn. Then for every x ∈ Vj there exists yx as above and y4

x ∈ N4 with

|||x− yx − y4
x|||2 = |||Pe(x− yx) + P⊥e (x− yx)− y4

x|||2 = ‖Pe(x− yx)‖2 + pn‖P⊥e (x− yx)− y4
x‖2 ≤ ε2/4.

Thus the set NE,j = N1 +N2 +N3 +N4 is an (ε/2)-net for Vj with respect to ||| · ||| and its cardinality is
bounded by

210√p n
ε2
√
m

(
1 +

8β

ε

)m
.

Taking union of such nets over all choices of E ⊂ [n] and all j ≤ n we obtain an (ε/2)-net N0 in ||| · ||| for
V of desired cardinality. Using standard argument, we pass to an ε-net N ⊂ V for V .

Later we apply Lemma 3.13 with the following proposition.

Proposition 3.14. Let n be large enough, (4 lnn)/n ≤ p < 1/2, and ε > 0. Denote

Enrm := {M ∈Mn : ‖M − p11>‖ ≤ 60
√
np and ‖M1‖ ≤ 3pn3/2}.

Then for every x ∈ Rn satisfying |||x||| ≤ ε and every M ∈ Enrm one has ‖Mx‖ ≤ 100
√
pnε.

Proof. Let w = P⊥e x. Then, by the definition of the triple norm, ‖w‖ ≤ |||x|||/√pn ≤ ε/
√
pn. Clearly,

(p11>)(x− w) = (p11>)Pex = 0.

Therefore, using that M ∈ Enrm, we get

‖M(x− w)‖ = ‖(M − p11>)(x− w)‖ ≤ 60
√
pn‖x− w‖ ≤ 70

√
pnε.

Since w = ±1‖w‖/
√
n and ‖w‖ ≤ ε/

√
pn, using again that M ∈ Enrm, we observe that

‖Mw‖ ≤ ε
√
p n
‖M1‖ ≤ 3

√
pnε.

The proposition follows by the triangle inequality.

4 Unstructured vectors

The goal of this section is to prove Theorem 2.2.
Recall that given growth function g and parameters r, δ, ρ ∈ (0, 1), the set of vectors Vn = Vn(r,g, δ, ρ)

was defined in (1). In the next two sections (dealing with invertibility over structured vectors), we work
with two different growth functions; one will be applied to the case of constant p and the other one (giving
a worse final estimate) is suitable in the general case. For this reason, and to increase flexibility of our
argument, rather than fixing a specific growth function here, we will work with an arbitrary non-decreasing
function g : [1,∞)→ [1,∞) satisfying the additional assumption (8) with a “global” parameter K3 ≥ 1.

4.1 Degree of unstructuredness: definition and basic properties

Below, for any non-empty finite integer subset S, we denote by η[S] a random variable uniformly distributed
on S. Additionally, for any K2 ≥ 1, we fix a smooth version of max( 1

K2
, t). More precisely, let us fix a

function ψK2 : R+ → R+ satisfying
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• The function ψK2 is twice continuously differentiable, with ‖ψ′K2
‖∞ = 1 and ‖ψ′′K2

‖∞ <∞;

• ψK2(t) = 1
K2

for all t ≤ 1
2K2

;

• 1
K2
≥ ψK2(t) ≥ t for all 1

K2
≥ t ≥ 1

2K2
;

• ψK2(t) = t for all t ≥ 1
K2

.

In what follows, we view the maximum of the second derivative of ψK2 as a function of K2 (the nature of
this function is completely irrelevant as we do not attempt to track magnitudes of constants involved in
our arguments).

Fix an integer n ≥ 1 and an integer m ≤ n/2. Recall that given a vector v ∈ Rn and parameters
K1, K2 ≥ 1, the degree of unstructuredness (u-degree) UDn = UDn(v,m,K1, K2) of v was defined in (6).
The quantity UDn will serve as a measure of unstructuredness of the vector v and in its spirit is similar to
the notion of the essential least common denominator introduced earlier by Rudelson and Vershynin [44].
Here unstructuredness refers to the uniformity in the locations of components of v on the real line. The
larger the degree is, the better anti-concentration properties of an associated random linear combination
are. The functions ψK2 employed in the definition will be important when discussing certain stability
properties of UDn.

We start with a proof of Theorem 2.1 which connects the definition of the u-degree with anti-concentra-
tion properties.

Proof of Theorem 2.1. For any sequence of disjoint subsets S1, . . . , Sm of [n] of cardinality bn/mc each,
set

ES1,...,Sm :=
{

suppX ∩ Si = 1 for all i ≤ m
}
.

Note that each point ω of the probability space belongs to the same number of events from the collection
{ES1,...,Sm}S1,...,Sm , therefore, for Anm defined in (7) we have for any λ ∈ R and τ > 0,

P
{∣∣∣ n∑

i=1

viXi − λ
∣∣∣ ≤ τ

}
= Anm

∑
S1,...,Sm

P
{∣∣∣ n∑

i=1

viXi − λ
∣∣∣ ≤ τ

∣∣ ES1,...,Sm

}
. (12)

Further, conditioned on an event ES1,...,Sm , the random sum
n∑
i=1

viXi is equidistributed with
m∑
i=1

vη[Si] (where

we assume that η[S1], . . . , η[Sm] are jointly independent with ES1,...,Sm). On the other hand, applying
Lemma 3.12, we observe that for every τ > 0,

Q
( m∑
i=1

vη[Si], τ
)
≤ C ′

1∫
−1

m∏
i=1

|E exp(2πivη[Si]s/τ)| ds

= C ′m−1/2 τ

√
m/τ∫

−
√
m/τ

m∏
i=1

|E exp(2πivη[Si] m
−1/2s)| ds,

for a universal constant C ′ > 0. Combining this with (12), we get for every τ > 0,

Q
( n∑
i=1

viXi, τ
)
≤ Anm

∑
S1,...,Sm

Q
( n∑
i=1

viXi, τ
∣∣ ES1,...,Sm

)

≤ C ′τAnm√
m

∑
S1,...,Sm

√
m/τ∫

−
√
m/τ

m∏
i=1

|E exp(2πivη[Si] m
−1/2s)| ds.
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Setting τ :=
√
m/UDn, where UDn = UDn(v,m,K1, K2), we obtain

Q
( n∑
i=1

viXi,
√
m/UDn

)
≤ C ′Anm

UDn

∑
S1,...,Sm

UDn∫
−UDn

m∏
i=1

|E exp(2πivη[Si] m
−1/2s)| ds ≤ C ′K1

UDn

,

in view of the definition of UDn(v,m,K1, K2). The result follows.

For the future use we state an immediate consequence of Theorem 2.1 and Lemma 3.8.

Corollary 4.1. Let n, ` ∈ N, let m1, . . . ,m` be integers with mi ≤ n/2 for all i, and let K1, K2 ≥ 1.
Further, let v ∈ Rn, and let B be an ` × n random matrix with independent rows such that the i-th row
is uniformly distributed on the set of vectors with mi ones and n −mi zeros. Then for any non-random
vector Z ∈ R` we have

P
{
‖Bv − Z‖ ≤

√
` t
}
≤
(

2C3.8C2.1t/
√

min
i
mi

)`
for all t ≥ max

i

√
mi

UDn(v,mi, K1, K2)
.

The parameter K2 which did not participate in any way in the proof of Theorem 2.1 is needed to
guarantee a certain stability property of UDn(v,m,K1, K2). We would like to emphasize that the use of
functions ψK2 is a technical element of the argument.

Proposition 4.2 (Stability of the u-degree). For any K2 ≥ 1 there are c4.2, c
′
4.2 > 0 depending only on K2

with the following property. Let K1 ≥ 1, v ∈ Rn, k ∈ N, m ≤ n/2, and assume that UDn(v,m,K1, K2) ≤
c′4.2k. Then there is a vector y ∈

(
1
k
Z
)n

such that ‖v − y‖∞ ≤ 1
k
, and such that

UDn(y,m, c4.2K1, K2) ≤ UDn(v,m,K1, K2) ≤ UDn(y,m, c−1
4.2K1, K2)

To prove the proposition we need two auxiliary lemmas.

Lemma 4.3. Let 0 6= z ∈ C, ε ∈ [0, |z|/2] and let W be a random vector in C with EW = 0 and with
|W | ≤ ε everywhere on the probability space. Then

∣∣E|z +W | − |z|
∣∣ ≤ ε2

|z|
.

Proof. We can view both z and W as vectors in R2, and can assume without loss of generality that
z = (z1, 0), with z1 = |z|. Then |z1 +W1| = z1 +W1 and

z1 +W1 ≤ |z +W | =
√

(z1 +W1)2 +W 2
2 ≤ (z1 +W1) +

W 2
2

2|z1 +W1|
≤ (z1 +W1) +

ε2

2(|z| − ε)
.

Hence,

|z| = z1 = E(z1 +W1) ≤ E|z +W | ≤ E(z1 +W1) +
ε2

|z|
= |z|+ ε2

|z|
,

which implies the desired estimate.

Lemma 4.4. Let λ, µ ∈ R, and let ξ be a random variable in R with Eξ = µ and with |ξ − µ| ≤ λ
everywhere on the probability space. Then for any s ∈ R we have∣∣E exp

(
2πi ξ s

)
− exp

(
2πiµ s

)∣∣ ≤ (2πλs)2.
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Proof. Denote ξ′ = ξ−µ. Then Eξ′ = 0 and |ξ′| ≤ λ. Therefore, using that | sinx| ≤ |x| and | sinx− x| ≤
x2/2 for every x ∈ R, we obtain∣∣E exp

(
2πi ξ s

)
− exp

(
2πiµ s

)∣∣ =
∣∣E exp

(
2πi ξ′s

)
− 1
∣∣ =

∣∣E cos
(
2πξ′s

)
− 1 + iE sin

(
2πξ′s

)∣∣
=
∣∣− 2E sin2

(
πξ′s

)
+ iE

(
sin
(
2πξ′s

)
− 2πξ′s

)∣∣ ≤ 2(πλs)2 + (2πλs)2/2 = (2πλs)2.

Proof of Proposition 4.2. To prove the proposition, we will use the randomized rounding which is a well
known notion in computer science, and was recently applied in the random matrix context in [33] (see
also [51, 34]). Define a random vector Y in

(
1
k
Z
)n

with independent components Y1, . . . , Yn such that each
component Yi has distribution

Yi =

{
1
k
bkvic, with probability bkvic − kvi + 1,

1
k
bkvic+ 1

k
, with probability kvi − bkvic.

Then EYi = vi, i ≤ n and, deterministically, ‖v − Y ‖∞ ≤ 1/k.
Fix for a moment a number s ∈ (0, k/(14πK2)] and a subset S ⊂ [n] of cardinality bn/mc. Our

intermediate goal is to estimate the quantity

EψK2

(∣∣∣ 1

bn/mc
∑
j∈S

exp
(
2πiYj s

)∣∣∣).
Denote

V = VS :=

∣∣∣∣∣ 1

bn/mc
∑
j∈S

exp
(
2πi vj s

)∣∣∣∣∣ =
∣∣E exp

(
2πi vη[S] s

)∣∣
and consider two cases.

Case 1. V ≤ 1
2K2
− 2π s

k
. Using that |eix − 1| ≤ |x| for every x ∈ R, we observe that deterministically

| exp
(
2πi vj s

)
− exp

(
2πiYj s

)
| ≤ 2πs/k. (13)

Therefore, by the definition of the function ψK2 , in this case we have on the entire probability space

ψK2

(∣∣∣ 1

bn/mc
∑
j∈S

exp
(
2πiYj s

)∣∣∣) = ψK2(V ) =
1

K2

.

Case 2. V > 1
2K2
− 2π s

k
≥ 1

4K2
. Set

z :=
1

bn/mc
E
∑
j∈S

exp
(
2πiYj s

)
and W :=

1

bn/mc
∑
j∈S

exp
(
2πiYj s

)
− z.

Then EW = 0 and, using again |eix − 1| ≤ |x|, we see that |W | ≤ 2πs/k everywhere. By Lemma 4.4,
|z − V | ≤ (2πs/k)2, in particular, z ≥ V − (2πs/k)2 ≥ 1/(3K2) ≥ 4πs/k ≥ |W |/2. Therefore we may
apply Lemma 4.3, to obtain ∣∣E|W + z| − |z|

∣∣ ≤ 4π2s2

|z|k2
≤ 12π2K2s

2

k2
.

This implies, ∣∣∣E∣∣∣ 1

bn/mc
∑
j∈S

exp
(
2πiYj s

)∣∣∣− V ∣∣∣ =
∣∣∣E|W + z| − |z|+ |z| − V

∣∣∣ ≤ 16π2K2s
2

k2
. (14)
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To convert the last relation to estimating ψK2(·), we will use the assumption that the second derivative of
ψK2 is uniformly bounded. Applying Taylor’s expansion around the point V , we get

EψK2

(∣∣∣ 1

bn/mc
∑
j∈S

exp
(
2πiYj s

)∣∣∣) = ψK2

(
V
)

+ E
(∣∣∣ 1

bn/mc
∑
j∈S

exp
(
2πiYj s

)∣∣∣− V )ψ′K2
(V )

+ C ′′
∥∥∥ ∣∣∣ 1

bn/mc
∑
j∈S

exp
(
2πiYj s

)∣∣∣− V ∥∥∥2

∞
,

for some C ′′ > 0 which depends only on K2. Here, ‖ · ‖∞ denotes the essential supremum of the random
variable, and is bounded above by 2πs/k by 13. Together with (14) and with ‖ψ′K2

‖∞ ≤ 1, this gives∣∣∣EψK2

(∣∣∣ 1

bn/mc
∑
j∈S

exp
(
2πiYj s

)∣∣∣)− ψK2(V )
∣∣∣ ≤ C̄ s2

k2
,

where C̄ depends only on K2.
Since ψ′K2

≥ 1/(2K2), in both cases we obtain for some Ĉ > 0 depending only on K2,

∣∣∣EψK2

(∣∣∣ 1

bn/mc
∑
j∈S

exp
(
2πiYj s

)∣∣∣)− ψK2(V )
∣∣∣ ≤ Ĉ s2

k2
ψK2(V ).

Using this inequality together with definition of V = VS, integrating over s, and summing over all
choices of disjoint subsets S1, . . . , Sm of cardinality bn/mc, for every t ∈ (0, k/(14πK2)] we get the relation

∑
S1,...,Sm

t∫
−t

max

(
0, 1− c0 s

2

k2

)m m∏
i=1

ψK2

(∣∣E exp
(
2πi vη[Si] s

)∣∣) ds
≤

∑
S1,...,Sm

t∫
−t

m∏
i=1

EY ψK2

(∣∣∣ 1

bn/mc
∑
j∈Si

exp
(
2πiYj s

)∣∣∣) ds
≤

∑
S1,...,Sm

t∫
−t

(
1 +

C0 s
2

k2

)m m∏
i=1

ψK2

(∣∣E exp
(
2πi vη[Si] s

)∣∣) ds,
where C0, c0 > 7πK2 are constants that may only depend on K2. Using independence of the components
of Y , we can take the expectation with respect to Y out of the integral.

Given a vector Q = (q1, . . . , qn) ∈ Rn and t ∈ (0, k/(14πK2)], denote

gt(Q) :=
∑

S1,...,Sm

t∫
−t

m∏
i=1

ψK2

(∣∣∣ 1

bn/mc
∑
j∈Si

exp
(
2πi qj s

)∣∣∣) ds.
The above relation implies that there are two (non-random) realizations Y ′ and Y ′′ of Y such that for

gt(Y
′) ≥ I1 := max

(
0, 1− c0 t

2

k2

)m ∑
S1,...,Sm

t∫
−t

m∏
i=1

ψK2

(∣∣E exp
(
2πi vη[Si] s

)∣∣) ds
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and

gt(Y
′′) ≤ I2 :=

(
1 +

C0 t
2

k2

)m ∑
S1,...,Sm

t∫
−t

m∏
i=1

ψK2

(∣∣E exp
(
2πi vη[Si] s

)∣∣) ds.
Using properties of the function ψK2 , we note that for any two non-random vectors Ỹ and Ŷ in the

range of Y such that they differ on a single coordinate, one has gt(Ỹ ) ≤ 4K2 gt(Ŷ ). Consider a path
Y (1) = Y ′, Y (2), Y (3), . . . , Y ′′ from Y ′ to Y ′′ consisting of a sequence of non-random vectors in the range of
Y such that each adjacent pair Y (i), Y (i+1) differs on a single coordinate and let

S := {i : gt(Y
(i)) > 4K2I2} ⊂ [1, n− 1].

If S = ∅, take Y = Y (1). Otherwise, let ` = max{i : gt(Y
(i)) > 4K2I2}. Then take Y = Y (`+1) and note

gt(Y
(`+1)) ≥ gt(Y

(`))/(4K2) ≥ I2 ≥ I1. Thus the vector Y is in the range of Y and

I1 ≤ gt(Y) ≤ 4K2I2.

Making substitutions s′ =
√
ms, t′ =

√
mt in the integrals in I1, I2, and assuming that t′ ≤ k/max(2C0, 2c0)

(in this case the condition t ≤ k/(14πK2) is satisfied), we can rewrite the last inequalities as

1

2

∑
S1,...,Sm

t′∫
−t′

m∏
i=1

ψK2

(∣∣E exp
(
2πi vη[Si]m

−1/2 s
)∣∣) ds

≤
∑

S1,...,Sm

t′∫
−t′

m∏
i=1

ψK2

(∣∣∣ 1

bn/mc
∑
j∈Si

exp
(
2πi Yjm

−1/2 s
)∣∣∣) ds

≤ 6K2

∑
S1,...,Sm

t′∫
−t′

m∏
i=1

ψK2

(∣∣E exp
(
2πi vη[Si]m

−1/2 s
)∣∣) ds.

The result follows by the definition of UDn(·).

The last statement to be considered in this subsection asserts that the u-degree of any vector from
Vn(r,g, δ, ρ) is at least of order

√
m.

Proposition 4.5 (Lower bound on the u-degree). For any r, δ, ρ there is C4.5 > 0 depending only on r, δ, ρ
with the following property. Let K2 ≥ 2, 1 ≤ m ≤ n/C4.5, K1 ≥ C4.5 and let x ∈ Vn(r,g, δ, ρ). Then

UDn(x,m,K1, K2) ≥
√
m.

Lemma 4.6. For any ρ > 0 and κ ∈ (0, 1/2] there is a constant C̃ > 0 depending only on ρ and κ with
the following property. Let S 6= ∅ be a finite subset of Z, and let (yw)w∈S be a real vector (indexed by
S). Assume further that S1, S2 are two disjoint subsets of S, each of cardinality at least κ|S| such that
min
w∈S1

yw ≥ max
w∈S2

yw + ρ. Let K2 ≥ 2 and f be a function on [0, 1] defined by

f(t) := ψK2

(∣∣∣ 1

|S|
∑
w∈S

exp(2πi yw t)
∣∣∣), t ∈ [0, 1].

Then for every b > 0 one has ∣∣{t ∈ [0, 1] : f(t) ≥ 1− b2
}∣∣ ≤ C̃b.
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Proof. Clearly we may assume that b ≤ 1/
√

2. Denote m = dκ|S|e and

g(t) :=
∣∣∣∑
w∈S

exp(2πi yw t)
∣∣∣, t ∈ R.

Let T ⊂ S1 × S2 be of cardinality T = m and such that for all (q, j), (q′, j′) ∈ T with (q, j) 6= (q′, j′) one
has q 6= q′ and j 6= j′. Then for all t ∈ R,

g(t) =
∣∣∣ ∑
w∈S1∪S2

exp(2πi yw t) +
∑

w/∈S1∪S2

exp(2πi yw t)
∣∣∣ ≤ ∑

(q,j)∈T

∣∣1 + exp(2πi (yj − yq) t)
∣∣+ |S| − 2m.

Further, take any u ∈ (0, 1/
√

2κ) and observe that for each (q, j) ∈ T , since |yj − yq| ≥ ρ, we have∣∣{t ∈ [0, 1] :
∣∣1 + exp(2πi (yj − yq) t)

∣∣ ≥ 2− 2u2
}∣∣ ≤ C ′u,

where C ′ > 0 may only depend on ρ. This implies that∣∣∣{t ∈ [0, 1] :
∣∣1 + exp(2πi (yj − yq) t)

∣∣ ≥ 2− 2u2 for at least m/2 pairs (q, j) ∈ T
}∣∣∣ ≤ 2C ′u.

On the other hand, whenever t ∈ [0, 1] is such that
∣∣1 + exp(2πi (yj − yq) t)

∣∣ ≥ 2 − 2u2 for at most m/2
pairs (q, j) ∈ T , we have

g(t) ≤ m

2
(2− 2u2) +

m

2
· 2 + |S| − 2m = |S| −mu2 ≤ |S|(1− κu2),

whence f(t) ≤ max
(

1
K2
, 1−κu2

)
= 1−κu2. Taking u = b√

κ
we obtain the desired result with C̃ = 2C′√

κ
.

Proof of Proposition 4.5. Let Anm be defined as in (7) and nδ, Cδ, S be from Lemma 3.3. We assume that
n ≥ nδ and n/m ≥ Cδ. For every i ≤ m denote

fi(s) = ψK2

(∣∣E exp
(
2πixη[Si] m

−1/2s
)∣∣).

Further, let subsets Q1 and Q2 be taken from the definition of non-constant vectors applied to x. Then
by Lemma 3.3 and since ψK2(1) ≤ 1,

Anm
∑

(S1,...,Sm)∈S

√
m∫

−
√
m

m∏
i=1

fi ds ≤ e−cδn 2
√
m+ Anm

∑
(S1,...,Sm)∈S′

√
m∫

−
√
m

m∏
i=1

fi ds,

where S ′ is the set of all sequences (S1, . . . , Sm) ∈ S such that is the subset of S such that

min(|Si ∩Q1|, |Si ∩Q2|) ≥
δ

2
bn/mc for at least cδm indices i. (15)

Take any (S1, . . . , Sm) ∈ S ′ and denote m0 := dcδme. Without loss of generality we assume that (15) holds
for all i ≤ m0. Applying Lemma 4.6 with κ := δ/2 and b =

√
1− u, we get for all u ∈ (0, 1] and i ≤ m0,

µ(u) :=
∣∣∣{s ∈ [−

√
m,
√
m] : fi ≥ u

}∣∣∣ ≤ C̃
√
m
√

1− u,

where C̃ > 0 depends only on δ and ρ. This estimate implies that for i ≤ m0,
√
m∫

−
√
m

(fi(s))
m0 ds =

1∫
0

m0 u
m0−1 µu ds ≤ C̃

√
mm0B(3/2,m0) ≤ C2,

25



where B denotes the Beta-function and C2 > 0 is a constant depending only on ρ and δ. Applying Hölder’s
inequality, we obtain

√
m∫

−
√
m

m∏
i=1

ψK2

(∣∣E exp
(
2πixη[Si] m

−1/2s
)∣∣) ds ≤

√
m∫

−
√
m

m0∏
i=1

ψK2

(∣∣E exp
(
2πixη[Si] m

−1/2s
)∣∣) ds ≤ C2,

which impies the desired result.

4.2 No moderately unstructured normal vectors

Let Mn be an n × n Bernoulli(p) random matrix.. For each i ≤ n, denote by Hi = Hi(Mn) the span of
columns Cj(Mn), j 6= i. The goal of this subsection is to prove Theorem 2.2, which asserts that under
appropriate restrictions on n and p with a very large probability (say, at least 1 − 2e−2pn), the subspace
H⊥i is either structured or very unstructured. The main ingredient of the proof — Proposition 4.9 —
will be considered in the next subsection. Here, we will only state the proposition to be used as a black
box and for this we need to introduce an additional product structure, which, in a sense, replaces the set
Vn(r,g, δ, ρ).

Fix a permutation σ ∈ Πn, two disjoint subsets Q1, Q2 of cardinality dδne each, and a number h ∈ R
such that

∀i ∈ Q1 : h+ 2 ≤ g(n/σ−1(i)) and ∀i ∈ Q2 : −g(n/σ−1(i)) ≤ h− ρ− 2. (16)

Define the sets Λn = Λn(k,g, Q1, Q2, ρ, σ, h) by

Λn :=

{
x ∈ 1

k
Zn : |xσ(i)| ≤ g(n/i) for all i ≤ n, min

i∈Q1

xi ≥ h, and max
i∈Q2

xi ≤ h− ρ
}
. (17)

In what follows, we adopt the convention that Λn = ∅ whenever h does not satisfy (16).

Lemma 4.7. There exists an absolute constant C4.7 ≥ 1 such that for every n ≥ 1 there is a subset
Π̄n ⊂ Πn of cardinality at most exp(C4.7n) with the following property. For any two partitions (Si)

m
i=1 and

(S ′i)
m
i=1 of [n] with 2−i+1n ≥ |Si| = |S ′i|, i ≤ m, there is σ ∈ Π̄n such that σ(Si) = S ′i, i ≤ m.

This lemma immediately follows from the fact that the total number of partitions (Si)
m
i=1 of [n] satisfying

2−i+1n ≥ |Si|, i ≤ m, is exponential in n (one can take C4.7 = 23). Using Lemma 4.7, we provide an efficient
approximation of Vn(r,g, δ, ρ).

Lemma 4.8. For any x ∈ Vn = Vn(r,g, δ, ρ), k ≥ 4/ρ, and any y ∈ 1
k
Zn with ‖x− y‖∞ ≤ 1/k one has

y ∈
d4g(6n)/ρe⋃

q=b−4g(6n)/ρc

⋃
σ̄∈Π̄n

⋃
|Q1|,|Q2|=dδne

Λn(k,g(6 ·), Q1, Q2, ρ/4, σ̄, ρq/4),

where the set of permutations Π̄n is taken from Lemma 4.7.

Proof. Let x ∈ Vn, and assume that y ∈ 1
k
Zn satisfies ‖x − y‖∞ ≤ 1/k. Then, by the definition of Vn,

there exist sets Q1, Q2 ⊂ [n], each of cardinality dδne, satisfying

max
i∈Q2

yi −
1

k
≤ max

i∈Q2

xi ≤ min
i∈Q1

xi − ρ ≤ min
i∈Q1

yi − ρ+
1

k
.
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Then max
i∈Q2

yi ≤ min
i∈Q1

yi − ρ
2
, hence we can find a number h ∈ ρ

4
Z such that

min
i∈Q1

yi ≥ h and max
i∈Q2

yi ≤ h− ρ

4
.

By the definition of Vn we also have |xσx(i)| ≤ g(n/i) for all i ∈ [n]. By the definition of Π̄n, we can find a
permutation σ̄ ∈ Π̄n such that

σx
(
{bn/2`c+ 1, . . . , bn/2`−1c}

)
= σ̄

(
{bn/2`c+ 1, . . . , bn/2`−1c}

)
for all ` ≥ 1.

Clearly for such a permutation we have |xσ̄(i)| ≤ g(2n/i) for every i ≤ n. Using (8), we obtain

|yσ̄(i)| ≤ |xσ̄(i)|+
1

k
≤ g(2n/i) +

1

k
≤ g(6n/i)− 2.

Thus

∀i ∈ σ̄−1(Q1) : h ≤ min
i∈Q1

yi ≤ g(6n/i)− 2 and ∀i ∈ σ̄−1(Q2) : h− ρ

4
≥ max

i∈Q2

yi ≥ 2− g(6n/i).

Since h = ρq/4 for some q ∈ Z, this implies the desired result.

The following statment, together with Theorem 2.1 and Proposition 4.2, is the main ingredient of the
proof of Theorem 2.2.

Proposition 4.9. Let ε ∈ (0, 1/8], ρ, δ ∈ (0, 1/4] and let the growth function g satisfies (8). There exist
K4.9 = K4.9(δ, ρ) ≥ 1, n4.9 = n4.9(ε, δ, ρ,K3), and C4.9 = C4.9(ε, δ, ρ,K3) ∈ N with the following property.
Let σ ∈ Πn, h ∈ R, and let Q1, Q2 ⊂ [n] be such that |Q1|, |Q2| = dδne. Let 8 ≤ K2 ≤ 1/ε, n ≥ n4.9,
m ≥ C4.9 with n/m ≥ C4.9, 1 ≤ k ≤ min

(
(K2/8)m/2, 2n/C4.9

)
, and let X = (X1, . . . , Xn) be a random vector

uniformly distributed on Λn(k,g, Q1, Q2, ρ, σ, h). Then

P
{
UDn(X,m,K4.9, K2) < km1/2/C4.9

}
≤ εn.

Let us describe the proof of Theorem 2.2 informally. Assume that the hyperplane H1 admits a normal
vector X which belongs to Vn(r,g, δ, ρ). We need to show that with a large probability the u-degree
UDn(X,m,K1, K2) of X is very large, say, at least ε−m for a small ε > 0. The idea is to split the collection
Vn(r,g, δ, ρ) into about log2(ε−m) subsets according to the magnitude of the u-degree (that is, each subset
TN will have a form TN =

{
x ∈ Vn(r,g, δ, ρ) : UDn(x,m,K1, K2) ∈ [N, 2N)

}
for an appropriate N). To

show that for each N � ε−m the probability of X ∈ TN is very small, we define a discrete approximation
AN of TN consisting of all vectors y ∈ 1

k
Zn such that ‖y − x‖∞ ≤ 1/k for some x ∈ TN and additionally,

in view of Proposition 4.2, UDn(y,m, c4.2K1, K2) ≤ 2N and UDn(y,m, c−1
4.2K1, K2) ≥ N . We can bound

the cardinality of such set AN by (ε̃ k)n, for a small ε̃ > 0, by combining Proposition 4.9 with Lemma 4.8
and with the following simple fact.

Lemma 4.10. Let k ≥ 1, h ∈ R, ρ, δ ∈ (0, 1), Q1, Q2 ⊂ [n] with |Q1|, |Q2| = dδne, and g satisfies (8)
with some K3 ≥ 1. Then |Λn(k,g, Q1, Q2, ρ, σ, h)| ≤

(
C4.10k

)n
, where C4.10 ≥ 1 depends only on K3.

On the other hand, for each fixed vector y in the set AN we can estimate the probability that it
“approximates” a normal vector to H1 by using Corollary 4.1:

P
{
y is an “approximate” normal vector to H1

}
≤ (C ′/k)n for every y ∈ AN ,

for some constant C ′ � ε̃−1. Taking the union bound, we obtain

P
{
X ∈ TN

}
≤ P

{
AN contains an “approximate” normal vector to H1

}
≤ (C ′/k)n (ε̃ k)n � 1.

Below, we make this argument rigorous.
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Proof of Theorem 2.2. We start by defining parameters. We always assume that n is large enough, so all
statements used below work for our n. Fix any R ≥ 1, r > 0 and s > 0, and set b := b(2pR)−1c. Let
K2 = 32 exp(16R). Note that the function g(6 ·) is a growth function that satisfies condition (8) with
parameter K ′3 = (K3)8. In particular, choosing j so that 2j−1 ≤ 6n ≤ 2j, we have

g(6n) ≤ g(2j) ≤ (K ′3)2j/j ≤ (K ′3)12n/ log2(6n) ≤ Kn
3 .

For brevity, we denote

C3.7 := C3.7(s, 2R), C3.5 := C3.5(2R), c′4.2 := c′4.2(K2), c4.2 := c4.2(K2), C4.10 = C4.10(K
′
3).

Set
K1 := max

(
K4.9(δ, ρ/4)/c4.2, C4.5(r, δ, ρ)

)
,

and
ε := min

(
K−1

2 , c′4.2
(
384eK3 exp(C4.7)C4.10C3.8C2.1C3.7

)−1
exp(−3R)

)
We will assume that pn is sufficiently large so that

5 exp(−2Rpn) ≤ exp(−Rpn) and exp(−3Rpn) ≤ 1

2Rpn
exp(−2Rpn).

Moreover, we will assume that
2RC3.5p ≤ 1 and C3.5 ≤ pn (18)

and

1

8p
≥ max(C4.9(ε, δ, ρ/4, K

′
3), C4.5(r, δ, ρ)); pn ≥ 16C4.9(ε, δ, ρ/4, K

′
3)2;

e2Rp ≤ 21/C4.9(ε,δ,ρ/4,K′3); c′4.2/3 ≥ exp(−Rpn); bexp(Rpn)/c′4.2cn ≤ 2n.

Define two auxiliary random objects as follows. Set

Z := {x ∈ Rn : x∗brnc = 1, UDn(x,m,K1, K2) ≥ exp(Rpn) for all pn/8 ≤ m ≤ 8pn},

and let X be a random vector measurable with respect to H1 and such that

• X ∈
(
Vn(r,g, δ, ρ) ∩H⊥1

)
\ Z whenever

(
Vn(r,g, δ, ρ) ∩H⊥1

)
\ Z 6= ∅;

• X ∈
(
Vn(r,g, δ, ρ) ∩H⊥1

)
∩ Z whenever

(
Vn(r,g, δ, ρ) ∩H⊥1

)
\ Z = ∅ and Vn(r,g, δ, ρ) ∩H⊥1 6= ∅;

• X = 0 whenever Vn(r,g, δ, ρ) ∩H⊥1 = ∅.

(Note that H⊥1 may have dimension larger than one with non-zero probability, and thus ±X is not uniquely
defined). Note that to prove the theorem, it is sufficient to show that with probability at least 1 −
exp(−Rpn) one has either X = 0 or X ∈ Z.

Next, we denote

ξ :=

 min
8pn≥m≥pn/8

UDn(X,m,K1, K2), whenever X 6= 0;

+∞, otherwise.

Then, proving the theorem amounts to showing that ξ < exp(Rpn) with probability at most exp(−Rpn).
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We say that a collection of indices I ⊂ [n] is admissible if 1 /∈ I and |I| ≥ n − b − 1. For admissible
sets I consider disjoint collection of events {EI}I defined by

EI :=
{
∀i ∈ I : |supp Ci(Mn)| ∈ [pn/8, 8pn] and ∀i /∈ I : |supp Ci(Mn)| /∈ [pn/8, 8pn]

}
.

Further, denote
Ẽ :=

{
‖Mn − EMn‖ ≤ C3.7

√
pn
}
.

According to Corollary 3.7, P(Ẽ) ≥ 1− exp(−2Rpn), while by Lemma 3.5 and (18),

P
(⋃

I

EI
)
≥ 1− exp(−n/C3.5) ≥ 1− exp(−2Rpn).

Denote by I the collection of all admissible I satisfying 2P(EI ∩ Ẽ) ≥ P(EI). Then for I ∈ I, we have

P(EI) ≥ 2P(EI ∩ Ẽc), and, using that events EI are disjoint,

P
(⋃
I∈I

EI
)
≥ 1− exp(−2Rpn)− 2P(Ẽc) ≥ 1− 3 exp(−2Rpn).

Hence,

P
{
ξ < exp(Rpn)

}
≤
∑
I∈I

P
({
ξ < exp(Rpn)

}
∩ EI ∩ Ẽ

)
+ P

(⋂
I∈I

EcI
)

+ P(Ẽc)

≤
∑
I∈I

P
({
ξ < exp(Rpn)

}
| EI ∩ Ẽ

)
P(EI ∩ Ẽ) + 4 exp(−2Rpn).

Therefore, to prove the theorem it is sufficient to show that for any I ∈ I,

P
({
ξ < exp(Rpn)

}
| EI ∩ Ẽ

)
≤ exp(−2Rpn).

Fix an admissible I ∈ I, denote by BI the |I| ×n matrix obtained by transposing columns Ci(Mn), i ∈ I,

and let B̃I be the non-random |I| × n matrix with all elements equal to p. Note that, in view of our
definition of K1, the assumptions on p and Proposition 4.5, we have a deterministic relation

ξ ≥
√
pn/8

everywhere on the probability space. For each real number N ∈ Jp := [
√
pn/8, exp(Rpn)/2], denote by

EN,I the event

EN,I :=
{
ξ ∈ [N, 2N)

}
∩ EI ∩ Ẽ .

Splitting the interval Jp into subintervals, we observe that it is sufficient to show that for every N ∈ Jp we
have

P
(
EN,I | EI ∩ Ẽ

)
≤ exp(−3Rpn) ≤ 1

2Rpn
exp(−2Rpn).

The rest of the argument is devoted to estimating probability of EN,I for fixed N ∈ Jp and fixed I ∈ I.
Set k := d2N/c′4.2e. Let m : EN,I → [pn/8, 8pn] be a (random) integer such that

UDn(X,m, K1, K2) ∈ [N, 2N) everywhere on EN,I .

Since on EN,I we have UDn(X,m, K1, K2) ≤ 2N ≤ c′4.2k, applying Proposition 4.2, we can construct a
random vector Y : EN,I → 1

k
Zn having the following properties:
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• ‖Y −X‖∞ ≤ 1/k everywhere on EN,I ,

• UDn(Y,m, c4.2K1, K2) ≤ 2N everywhere on EN,I ,

• UDn(Y,m, c−1
4.2K1, K2) ≥ N for all m ∈ [pn/8, 8pn] and everywhere on EN,I .

The first condition together with the inclusion EN,I ⊂ Ẽ implies that

‖(BI − B̃I)(Y −X)‖ ≤ C3.7

√
pn/k.

Using that BIX = 0 and that B̃I(Y − X) = p(
∑n

i=1(Yi − Xi)) 1I , we observe that there is a random

number z : EN,I → [−pn/k, pn/k] ∩
√
pn

k
Z such that everywhere on EN,I one has

‖BIY − z 1I‖ ≤ 2C3.7

√
pn/k.

Let Λ be a subset of

d4g(6n)/ρe⋃
q=b−4g(6n)/ρc

⋃
σ̄∈Π̄n

⋃
|Q1|,|Q2|=dδne

Λn(k,g(6 ·), Q1, Q2, ρ/4, σ̄, ρq/4),

consisting of all vectors y such that

• UDn(y,m, c4.2K1, K2) ≤ 2N for some m ∈ [pn/8, 8pn];

• UDn(y,m, c−1
4.2K1, K2) ≥ N for all m ∈ [pn/8, 8pn].

Note that by Lemma 4.8 the entire range of Y on EN,I falls into Λ.
Combining the above observations,

EN,I ⊂
{
‖BIy − z1I‖ ≤ 2C3.7

√
pn/k for some y ∈ Λ, z ∈ [−pn/k, pn/k] ∩

√
pn

k
Z
}
,

whence, using that 2P(EI ∩ Ẽ) ≥ P(EI) by the definition of I,

P(EN,I | EI ∩ Ẽ) ≤ 2P
{
‖BIy − z1I‖ ≤ 2C3.7

√
pn/k for some y ∈ Λ, z ∈ [−pn/k, pn/k] ∩

√
pn

k
Z | EI

}
≤ 6|Λ|√pn max

z∈
√
pn

k
Z

max
y∈Λ

P
{
‖BIy − z1I‖ ≤ 2C3.7

√
pn/k | EI

}
.

To estimate the last probability, we apply Corollary 4.1 with t := C3.7

√
8pn/N (note that k ≥ 2N , 2|I| ≥ n,

and that t satisfies the assumption of the corollary). We obtain that for all admissible y and z,

P
{
‖BIy − z1I‖ ≤ 2C3.7

√
pn/k | EI

}
≤ P

{
‖BIy − z1I‖ ≤

C3.7

√
8pn

N

√
|I| | EI

}
≤ (16C3.8C2.1C3.7/N)|I|.

On the other hand, the cardinality of Λ can be estimated by combining Lemma 4.10, Lemma 4.7 and
Proposition 4.9 (note that our choice of parameters guarantees applicability of these statements):

|Λ| ≤ 8pnεn (9g(6n)/ρ) exp(C4.7n) 22n(C4.10k)n ≤ (72pn/ρ)εnKn
3 exp(C4.7n) 22n(C4.10k)n,

where C4.10 = C4.10(K
′
3). Thus, using our choice of parameters and assuming in addition that 2n ≥ 72pn/ρ

P(EN,I | EI ∩ Ẽ) ≤ εn (8K3 exp(C4.7)C4.10k)n (16C3.8C2.1C3.7/N)|I|

≤ εn (8K3 exp(C4.7)C4.10k)n (48C3.8C2.1C3.7/(c
′
4.2k))nN1+b(2pR)−1c

≤ εn (384K3 exp(C4.7)C4.10C3.8C2.1C3.7/(c
′
4.2))

n en

≤ exp(−3Rn),

by our choice of parameters. The result follows.
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4.3 Anti-concentration on a lattice

The goal of this subsection is to prove Proposition 4.9. Thus, in this subsection, we fix ρ, δ ∈ (0, 1/4], a

growth function g satisfying (8), which in particular means that g(n) ≤ K
2n/ log2 n
3 , a permutation σ ∈ Πn,

a number h ∈ R, two sets Q1, Q2 ⊂ [n] such that |Q1|, |Q2| = dδne, and we do not repeat these assumptions
in lemmas below. We also always use short notation Λn for the set Λn(k,g, Q1, Q2, ρ, σ, h) defined in (17).

We start with auxiliary probabilistic statements which are just special forms of Markov’s inequality.

Lemma 4.11 (Integral form of Markov’s inequality, I). For each s ∈ [a, b], let ξ(s) be a non-negative
random variable with ξ(s) ≤ 1 a.e. Assume that the random function ξ(s) is integrable on [a, b] with
probability one. Assume further that for some integrable function φ(s) : [a, b] → R+ and some ε > 0 we
have

P
{
ξ(s) ≤ φ(s)

}
≥ 1− ε

for all s ∈ [a, b]. Then for all t > 0,

P
{∫ b

a

ξ(s) ds ≥
∫ b

a

φ(s) ds+ t(b− a)

}
≤ ε/t.

Proof. Consider a random set
I :=

{
s ∈ [a, b] : ξ(s) > φ(s)

}
.

Since P{s ∈ I} ≤ ε for any s ∈ [a, b], we have E|I| ≤ ε(b − a). Therefore, by Markov’s inequality,
P
{
|I| ≥ t(b− a)

}
≤ ε/t for all t > 0. The result follows by noting that∫ b

a

ξ(s) ds ≤ |I|+
∫ b

a

φ(s) ds.

Lemma 4.12 (Integral form of Markov’s inequality, II). Let I be a finite set, and for each i ∈ I, let ξi be
a non-negative random variable with ξi ≤ 1 a.e. Assume further that for some φ(i) : I → R+ and some
ε > 0 we have

P
{
ξi ≤ φ(i)

}
≥ 1− ε

for all i ∈ I. Then for all t > 0,

P
{

1

|I|
∑
i∈I

ξi ≥
1

|I|
∑
i∈I

φ(i) + t

}
≤ ε/t.

The proof of Lemma 4.12 is almost identical to that of Lemma 4.11, and we omit it.
Our next statement will be important in an approximation (discretization) argument used later in the

proof.

Lemma 4.13 (Lipschitzness of the product
∏
ψK2(·)). Let y1, . . . , yn ∈ R and set y := max

w≤n
|yw|. Further,

let S1, . . . , Sm be some non-empty subsets of [n]. For i ≤ m denote

fi(s) := ψK2

(∣∣∣ 1

|Si|
∑
w∈Si

exp(2πi yws)
∣∣∣) and let f(s) :=

m∏
i=1

fi(s).

Then f (viewed as a function of s) is (8K2πym)-Lipschitz.

31



Proof. By our definition, ψK2 is 1-Lipschitz for any K2 ≥ 1, hence fi (viewed as a function of s) is 2πy-
Lipschitz. Since

∣∣∑
w∈Si exp(2πi yws)

∣∣ ≤ |Si|, by the definition of the function ψK2 , we have 1/(2K2) ≤
fi ≤ 1, hence, for all s,∆s ∈ R,

fi(s)

fi(s+ ∆s)
= 1 +

fi(s)− fi(s+ ∆s)

fi(s+ ∆s)
≤ 1 + 4K2πy |∆s|.

Taking the product, we obtain that

f(s)

f(s+ ∆s)
≤
(
1 + 4K2πy |∆s|

)m ≤ 1 + 8K2πym |∆s|

whenever 8K2πym |∆s| ≤ 1/2. This, together with the bound f ≤ 1 implies for all s,∆s ∈ R,

f(s)− f(s+ ∆s) ≤ 8K2πym |∆s|,

which completes the proof.

In the next two lemmas we initiate the study of random variables exp(2πi η[Iw] sj/k), more specifically,
we will be interested in the property that, under appropriate assumptions on sj’s, the sum of such variables
is close to zero in average.

Lemma 4.14. Let ε ∈ (0, 1], k ≥ 1, ` ≥ 2/ε. Let I be an integer interval and recall that η[I] denotes
a random variable uniformly distributed on I. Assume that s1, . . . , s` are real numbers such that for all
j 6= u,

k

ε|I|
≤ |sj − su| ≤

k

2
.

Then

E
∣∣∣ ∑̀
j=1

exp(2πi η[I] sj/k)
∣∣∣2 ≤ ε`2.

Proof. We will determine the restrictions on parameter R at the end of the proof. We have

E
∣∣∣ ∑̀
j=1

exp(2πi η[I] sj/k)
∣∣∣2 =

∑̀
j=1

∑̀
u=1

E exp
(
2πi η[I] (sj − su)/k

)
≤ `+

∣∣∣∑
j 6=u

E exp
(
2πi η[I] (sj − su)/k

)∣∣∣. (19)

Further, denoting a = min I and b = max I, we observe for any j 6= u,

E exp
(
2πi η[I] (sj − su)/k

)
=

1

|I|

b∑
v=a

exp
(
2πi v (sj − su)/k

)
=

1

|I|
exp

(
2πi a (sj − su)/k

)
·

1− exp
(
2πi (b− a+ 1) (sj − su)/k

)
1− exp

(
2πi (sj − su)/k

) .

In view of assumptions on |sj − su|,∣∣1− exp
(
2πi (sj − su)/k

)∣∣ =
∣∣2 sin(π (sj − su)/k)

∣∣ ≥ 4|sj − su|
k

≥ 4

ε|I|
.
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Therefore, ∣∣E exp
(
2πi η[I] (sj − su)/k

)∣∣ ≤ ε

2
.

Using (19), we complete the proof.

Lemma 4.15. For every ε ∈ (0, 1/2] there are R4.15 = R4.15(ε) > 0 and ` := `4.15(ε) ∈ N, ` ≥ 1000, with
the following property. Let k ≥ 1, u ≥ `, let Iw (w = 1, 2, . . . , u) be integer intervals, and let s1, . . . , s` be
real numbers such that |Iw| |sj− sq| ≥ R4.15k, and |sj− sq| ≤ k/2 for all j 6= q and w ≤ u. Then, assuming
that random variables η[Iw], w ≤ u, are mutually independent, one has

P
{∣∣∣1
u

u∑
w=1

exp(2πi η[Iw] sj/k)
∣∣∣ ≥ ε for at least ε` indices j

}
≤ εu.

Proof. Fix any ε ∈ (0, 1/2], and set ε1 := 2−10e−6ε4+9/ε. Set R := 1/ε1 and ` := d2/ε1e. Assume that
u ≥ `, and let numbers sj and integer intervals Iw satisfy the assumptions of the lemma. Denote the event{∣∣∣1

u

u∑
w=1

exp(2πi η[Iw] sj/k)
∣∣∣ ≥ ε for at least ε` indices j

}
by E , and additionally, for any subset Q ⊂ [`] of cardinality bε`/4c and any vector z ∈ {−1, 1}2, set

EQ,z :=
{〈(1

u

u∑
w=1

cos(2π η[Iw] sj/k),
1

u

u∑
w=1

sin(2π η[Iw] sj/k)
)
, z
〉
≥ ε for all j ∈ Q

}
.

It is not difficult to see that
E ⊂

⋃
Q,z

EQ,z,

whence it is sufficient to show that for any admissible Q, z,

P(EQ,z) ≤
1

4

(
`

bε`/4c

)−1

εu. (20)

Without loss of generality, we can consider Q = Q0 :=
[
bε`/4c

]
. Event EQ0,z is contained inside the event{∣∣∣ ∑

j∈Q0

u∑
w=1

exp(2πi η[Iw] sj/k)
∣∣∣ ≥ 2−1/2εu bε`/4c

}
,

while the latter is contained inside the event{∣∣∣ ∑
j∈Q0

exp(2πi η[Iw] sj/k)
∣∣∣ ≥ ε

4
bε`/4c for at least εu/4 indices w

}
.

Thus, taking the union over all admissible choices of dεu/4e indices w ∈ [u], we get

P(EQ0,z) ≤
(

u

dεu/4e

)
max

F⊂[u], |F |=dεu/4e
P
{∣∣∣ ∑

j∈Q0

exp(2πi η[Iw] sj/k)
∣∣∣ ≥ ε

4
bε`/4c for all w ∈ F

}
.

To estimate the last probability, we apply Markov’s inequality, together with the bound for the second
moment from Lemma 4.14 (applied with ε1), and using independence of η[Iw], w ≤ u. We then get

max
F⊂[u]

|F |=dεu/4e

P
{∣∣∣ ∑

j∈Q0

exp(2πi η[Iw] sj/k)
∣∣∣ ≥ ε

4
bε`/4c for all w ∈ F

}
≤
(

ε1`
2

(ε2`/32)2

)dεu/4e
≤ e−3εu/2ε2u.
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In view of (20) this implies the result, since using 8 ≤ ` ≤ u and ε < 1/2, we have

4

(
`

bε`/4c

)
ε−u
(

u

dεu/4e

)
e−3εu/2ε2u ≤ 4e−3εu/2

(
4e

ε

)ε`/4(
2e

ε

)εu/2
εu ≤ 4(16e−3)εu/4 εu/4 ≤ 1.

Our next step is to show that for the vector X = (X1, . . . , Xn) uniformly distributed on Λn the random

product
m∏
i=1

ψK2

(∣∣ 1
bn/mc

∑
w∈Si exp(2πiXws)

∣∣) is, in a certain sense, typically small (for most choices of s).

To do this we first show that given a collection of distinct numbers s1, . . . , s` which are pairwise well
separated, the above product is small for at least one sj with very high probability.

Lemma 4.16. For any ε ∈ (0, 1/2] there are R4.16 = R4.16(ε) ≥ 1 and ` := `4.16(ε) ∈ N with the following
property. Let k,m, n ∈ N be with n/m ≥ `. Let 1 ≤ K2 ≤ 2/ε, X = (X1, . . . , Xn) be a random vector
uniformly distributed on Λn, and let s1, . . . , s` be real numbers in [0, k/2] such that |sj − sq| ≥ R4.16 for all
j 6= q. Fix disjoint subsets S1, . . . , Sm of [n] of cardinality bn/mc each. Then

P
{
∀j ≤ ` :

m∏
i=1

ψK2

(∣∣∣ 1

bn/mc
∑
w∈Si

exp(2πiXwsj)
∣∣∣) ≥ (K2/2)−m/2

}
≤ εn.

Proof. Fix any ε ∈ (0, 1/2] and set ` := `4.15(ε
5) ≥ 1000 and R := R4.15(ε

5). Assume that n/m ≥ `. Note
that, by our definition of Λn, the coordinates of X are independent and, moreover, each variable kXw

is distributed on an integer interval of cardinality at least k. Thus, it is sufficient to prove that for any
collection of integer intervals Ij, j ≤ n, satisfying |Ij| ≥ k, the event

E :=
{
∀j ≤ ` :

m∏
i=1

ψK2

(∣∣∣ 1

bn/mc
∑
w∈Si

exp(2πi η[Iw] sj/k)
∣∣∣) ≥ (K2/2)−m/2

}
.

has probability at most εn, where, as usual, we assume that the variables η[Iw], w ∈ Si, i ≤ m, are jointly
independent. Observe that, as ψK2(t) ≤ 1 for all t ≤ 1, the event E is contained inside the event

E ′ :=
{
∀j ≤ ` : aij ≥ 2/K2 for at least m/2 indices i

}
,

where aij :=
∣∣∣ 1
bn/mc

∑
w∈Si exp(2πi η[Iw] sj/k)

∣∣∣, i ≤ m, j ≤ `. Denoting bij = 1 if aij ≥ 2/K2 and bij = 0

otherwise and using a simple counting argument for the matrix {bij}ij, we obtain that

E ⊂ E ′ ⊂ E ′′ :=
{∣∣∣{i : aij ≥ 2/K2 for at least `/4 indices j

}∣∣∣ ≥ m/4
}
.

To estimate P(E ′′) we use Lemma 4.15 with ε5. Note that ε5 ≤ min(2/K2, 1/2), and that by our choice of
R, for any j 6= q we have |Iw| |sj − sq| ≥ k |sj − sq| ≥ R4.15(ε

5)k, while |sj − sq| ≤ k/2. Thus,

∀i ≤ m : P
{
aij ≥ 2/K2 for at least `/4 indices j

}
≤ ε5bn/mc.

Hence,

P(E ′′) ≤
(

m

dm/4e

)
ε5bn/mcm/4 ≤ 2mε5bn/mcm/4 ≤ εn,

which completes the proof.
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Lemma 4.17 (Very small product everywhere except for a set of measure O(1)). For any ε ∈ (0, 1/2]
there are R4.17 = R4.17(ε) ≥ 1, ` = `4.17(ε) ∈ N and n4.17 = n4.17(ε,K3) ∈ N with the following property. Let
k,m, n ∈ N, n ≥ n4.17, k ≤ 2n/`, n/m ≥ `, and 4 ≤ K2 ≤ 2/ε. Let X = (X1, . . . , Xn) be a random vector
uniformly distributed on Λn. Fix disjoint subsets S1, . . . , Sm of [n], each of cardinality bn/mc. Then

P
{∣∣∣{s ∈ [0, k/2] :

m∏
i=1

ψK2

(∣∣∣ 1

bn/mc
∑
w∈Si

exp(2πiXws)
∣∣∣) ≥ (K2/4)−m/2

}∣∣∣ ≤ R4.17

}
≥ 1− (ε/2)n.

Proof. Fix any ε ∈ (0, 1/2], and define ε̃ := ε3/2/32, ˜̀ := `4.16(ε̃), ` := 2˜̀, and R := 4R4.16(ε̃)`4.16(ε̃) > 1.
Assume that the parameters k,m, n and S1, . . . , Sm satisfy the assumptions of the lemma. In particular,

we assume that n is large enough so that (8K2πn)
˜̀≤ 2n and g(n)

˜̀≤ 2n. Denote

β := (8K2πmg(n))−1(2K2)−m/2 and aij :=
∣∣∣ 1

bn/mc
∑
w∈Si

exp(2πi η[Iw] sj/k)
∣∣∣, i ≤ m, j ≤ ˜̀.

Let T := [0, k/2]∩ βZ. By Lemma 4.16 for any collection s1, . . . , s˜̀ of points from T satisfying |sj − sq| ≥
R4.16(ε̃) for all j 6= q, we have

P
{
∀j ≤ ˜̀ :

m∏
i=1

ψK2(aij) ≥ (K2/2)−m/2
}
≤ ε̃n.

Taking the union bound over all possible choices of s1, . . . , s˜̀ from T , we get

P
{ m∏

i=1

ψK2(aij) ≥ (K2/2)−m/2 for all j ≤ ˜̀and for some s1, . . . , s˜̀∈ T
with |sp − sq| ≥ R4.16(ε̃) for all p 6= q

}
≤ ε̃n|T |˜̀.

(21)

Further, by of Lemma 4.13, for any realization of Xw’s the product

f(s) :=
m∏
i=1

ψK2

(∣∣∣ 1

bn/mc
∑
w∈Si

exp(2πiXws)
∣∣∣),

viewed as a function of s, is (8K2πg(n)m)-Lipschitz. This implies that for any pair (s, s′) ∈ R2
+, satisfying

|s− s′| ≤ β, we have

f(s) ≥ (K2/2)−m/2 whenever f(s′) ≥ (K2/4)−m/2.

Moreover, for any collection s′1, . . . , s
′˜̀ of numbers from [0, k/2] satisfying |s′p− s′q| ≥ 2R4.16(ε̃) for all p 6= q

there are numbers s1, . . . , s˜̀ ∈ T with |sq − s′q| ≤ β |sp − sq| ≥ R4.16(ε̃) for all p 6= q (we used also
2β ≤ 1 ≤ R4.16(ε̃)). This, together with (21), yields

P
{ m∏

i=1

ψK2

(∣∣∣ 1

bn/mc
∑
w∈Si

exp(2πiXws
′
j)
∣∣∣) ≥ (K2/4)−m/2 for all j ≤ ˜̀and some s′1, . . . , s

′˜̀∈ [0, k/2]

with |s′p − s′q| ≥ 2R4.16(ε̃) for all p 6= q

}
≤ ε̃n|T |˜̀≤ ε̃n (k/β)

˜̀≤ ε̃n 2n (8K2πmg(n))
˜̀
(2K2)m

˜̀/2
≤ ε̃n 8n (4/ε)m

˜̀/2 ≤ ε̃n ε−n/2 16n ≤ (ε/2)n.
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The event whose probability is estimated above, clearly contains the event in the question —{∣∣∣{s ∈ [0, k/2] :
m∏
i=1

ψK2

(∣∣∣ 1

bn/mc
∑
w∈Si

exp(2πiXws)
∣∣∣) ≥ (K2/4)−m/2

}∣∣∣ ≥ 4R4.16(ε̃)˜̀}.
This, and our choice of parameters, implies the result.

Lemma 4.18 (Moderately small product for almost all s). For any ε ∈ (0, 1] and z ∈ (0, 1) there are
ε′ = ε′(ε) ∈ (0, 1/2], n4.18 = n4.18(ε, z) ≥ 10, and C4.18 = C4.18(ε, z) ≥ 1 with the following property. Let
n ≥ n4.18, 2n ≥ k ≥ 1, C4.18 ≤ m ≤ n/4, and 4 ≤ K2 ≤ 1/ε. Let X = (X1, . . . , Xn) be a random vector
uniformly distributed on Λn. Fix disjoint subsets S1, . . . , Sm of [n] of cardinality bn/mc each. Then

P
{
∀s ∈ [z, ε′k] :

m∏
i=1

ψK2

(∣∣∣ 1

bn/mc
∑
w∈Si

exp(2πiXws)
∣∣∣) ≤ e−

√
m

}
≥ 1− (ε/2)n.

Proof. Let ε′ > 0 will be chosen later. Fix any s ∈ [z, ε′k]. Assume m ≥ (ε′z)−4 ≥ 10. For i ≤ m denote

γi(s) :=
∣∣∣ 1

bn/mc
∑
w∈Si

exp(2πiXws)
∣∣∣, fi(s) := ψK2

(
γi(s)

)
, and f(s) :=

m∏
i=1

fi(s)

Observe that by the definition of ψK2 for each i ≤ m we have fi(s) = γi(s), provided γi(s) ≥ 1/K2. Next
note that if for some complex unit numbers z1, ..., zN their average v :=

∑N
i=1 zi/N has length 1 − α > 0

then, taking the unit complex number z0 satisfying 〈z0, v〉 = |v| we have

N(1− α) ≤
N∑
i=1

Re 〈zi, v〉 ≤ N,

therefore there are at least N/2 + 1 indices i such that Re 〈zi, v〉 ≥ 1− 4α. This in turn implies that there
exists an index j such that there are at least N/2 indices i with Re 〈zi, z̄j〉 ≥ 1 − 16α. Thus, the event{
fi(s) ≥ 1− 2√

m

}
is contained in the event{

∃ w′ ∈ Si : cos(2πs(Xw −Xw′)) ≥ 1− 32√
m

for at least
n

2m
indices w ∈ Si \ {w′}

}
.

To estimate the probability of the later event, we take the union bound over all choices of n/(2m) indices
from Si, and over all choices of w′. We then get

P
{
fi(s) ≥ 1− 2√

m

}
≤ n

m
2bn/mc max

w′∈Si, F⊂Si\{w′},
|F |≥n/(2m)

P
{
∀w ∈ F : dist(s(Xw −Xw′),Z) ≤ 2

m1/4

}
.

To estimate the latter probability (the probability following maximum in the previous line) we use the
definition of Λn and independence of coordinates of the vector X. Note that for each fixed w there is an
integer interval Iw of the length at least 2k such that Xw is uniformly distributed on Iw/k. Therefore,
fixing a realization Xw′ = b/k, b ∈ Z, we need to count how many a ∈ Iw are such that s(a−b)/k is close to
an integer. This can be done by splitting Iw into subintervals of length k and considering cases z ≤ s ≤ 1,
1 < s ≤ C ′k/m1/4 (this case can be empty), and C ′k/m1/4 < s ≤ ε′k. This leads to the following bound
with an absolute constant C ′′ > 0,

P
{
fi(s) ≥ 1− 2√

m

}
≤ n

m
2n/m

(
max

( C ′′

z m1/4
, C ′′ε′

))n/(2m)

≤ n

m

(
4C ′′ε′

)n/(2m)
.
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Using this estimate and the fact that ψK2(t) ≤ 1 for t ≤ 1 (so, each fi(s) ≤ 1), we obtain

P
{
f(s) ≥

(
1− 2√

m

)3m/4
}
≤ P

{
fi(s) ≥ 1− 2√

m
for at least m/4 indices i

}
≤ 2m

(
n

m

(
4C ′′ε′

)n/(2m)
)m/4

=

(
16n

m

)m/4(
4C ′′ε′

)n/8
.

The last step of the proof is somewhat similar to the one used in the proof of Lemma 4.17 — we
discretize the interval [z, ε′k] and use the the fact that f is Lipschitz. Recall that g(n) ≤ 2n and thus, by
Lemma 4.13, f(s) is (8K2π2nm)-Lipschitz. Let

β :=
(
1− 2/

√
m
)3m/4(

8K2π 2nm
)−1

and T := [z, ε′k] ∩ βZ.

Then for any s, s′ ∈ [z, ε′k] satisfying |s−s′| ≤ β we have |f(s)−f(s′)| ≤
(
1−2/

√
m
)3m/4

deterministically.
This implies that

P
{
∀s ∈ [z, ε′k] : f(s) ≤ 2

(
1− 2√

m

)3m/4
}
≥ P

{
∀s ∈ T : f(s) ≤

(
1− 2√

m

)3m/4
}

≥ 1− k

β

(
16n

m

)m/4(
4C ′′ε′

)n/8 ≥ 1− (ε/2)n,

provided that ε′ := c′′ε8 for a sufficiently small universal constant c′′ > 0.

Lemma 4.19. Let ρ, ε ∈ (0, 1], k ≥ 1, h ∈ R, a1 ≥ h+1, a2 ≤ h−ρ−1. Let Y1, Y2 be independent random
variables, with Y1 uniformly distributed on [h, a1] ∩ 1

k
Z and Y2 uniformly distributed on [a2, h − ρ] ∩ 1

k
Z.

Then for every s ∈ [−ε/8, ε/8] one has

P
{∣∣ exp

(
2πiY1s

)
+ exp

(
2πiY2s

)∣∣ > 2− 2πρ2s2
}
≤ ε.

Proof. Clearly, it is enough to consider 0 < s < ε/8 only. Note that∣∣ exp
(
2πiY1s

)
+ exp

(
2πiY2s

)∣∣ =
∣∣1 + exp

(
2πi(Y1 − Y2)s

)∣∣ = 2
∣∣ cos

(
πi(Y1 − Y2)s

)∣∣.
We consider two cases.

Case 1. Assume that a1 ≤ h+ 2ε−1 and a2 ≥ h− 2ε−1. In this case, deterministically, ρ ≤ Y1−Y2 ≤ 4/ε,
therefore, using that cos t ≤ 1− t2/π on [−π/2, π/2], we have for every s ∈ (0, ε/8],∣∣ exp

(
2πiY1s

)
+ exp

(
2πiY2s

)∣∣ ≤ 2− 2πρ2s2.

Case 2. Assume that either a1 > h+2ε−1 or a2 < h−2ε−1. Without loss of generality, we will assume the
first inequality holds. We condition on a realization Ỹ2 of Y2 (further in the proof, we compute conditional

probabilities given Y2 = Ỹ2). For any s ≤ ε/8, the event{∣∣1 + exp
(
2πi(Y1 − Ỹ2)s

)∣∣ ≥ 2− s2
}

is contained inside the event {
dist
(
(Y1 − Ỹ2)s,Z

)
≤ s
}
.

On the other hand, since (Y1− Ỹ2)s is uniformly distributed on a set [b1, b2]∩ s
k
Z, for some b2 ≥ b1 + 2ε−1s,

the probability of the last event is less than ε. The result follows.
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Lemma 4.20 (Integration for small s). For any ε̃ ∈ (0, 1], ρ ∈ (0, 1/4] and δ ∈ (0, 1/2] there are
n4.20 = n4.20(ε̃, δ, ρ), C4.20 = C4.20(ε̃, δ, ρ) ≥ 1, and K4.20 = K4.20(δ, ρ) ≥ 1 with the following property. Let
Anm be defined as in (7), n ≥ n4.18, k ≥ 1, m ∈ N with n/m ≥ C4.20 and m ≥ 2, and let X = (X1, . . . , Xn)
be a random vector uniformly distributed on Λn. Then for every K2 ≥ 4,

P
{
Anm

∑
S1,...,Sm

√
m/C4.20∫

−
√
m/C4.20

m∏
i=1

ψK2

(∣∣∣ 1

bn/mc
∑
w∈Si

exp
(
2πiXwm

−1/2 s
)∣∣∣) ds ≥ K4.20

}
≤ (ε̃/2)n,

where the sum is taken over all disjoint subsets S1, . . . , Sm ⊂ [n] of cardinality bn/mc each.

Proof. Let nδ, Cδ, cδ, and S be as in Lemma 3.3). For a given choice of subsets (S1, . . . , Sm) ∈ S denote

γi(s) :=
∣∣∣ 1

bn/mc
∑
w∈Si

exp(2πiXws)
∣∣∣, fi(s) := ψK2

(
γi(s)

)
, and f(s) :=

m∏
i=1

fi(s)

(note that functions γi(s), fi(s), f(s) depend on the choice of subsets Si).

First, we study the distribution of the variable f(s) for a given choice of subsets Si. We assume that
n ≥ nδ and n/m ≥ Cδ. We also denote ε := 2−10/δ ε̃ 16/δcδ and

S ′ :=
{

(S1, . . . , Sm) ∈ S : min(|Si ∩Q1|, |Si ∩Q2|) ≥ δbn/mc/2 for at least cδm indices i
}
.

Fix a sequence (S1, . . . , Sm) ∈ S ′, and J ⊂ [m] be a subset of cardinality dcδme such that

∀i ∈ J : min(|Si ∩Q1|, |Si ∩Q2|) ≥ δbn/mc/2.

For any i ∈ J , w1 ∈ Si ∩Q1, and w2 ∈ Si ∩Q2 by Lemma 4.19 we have for s ∈ [−ε/8, ε/8],

P
{∣∣ exp

(
2πiXw1s

)
+ exp

(
2πiXw2s

)∣∣ ≥ 2− 2πρ2s2
}
≤ ε.

Within Si, we can find at least δ
2
bn/mc disjoint pairs of indices (w1, w2) ∈ Q1 × Q2 satisfying the above

condition. Let T be a set of such pairs with |T | = δ
2
bn/mc. Using the independence of coordinates of X,

and denoting z := min
(√

1/(πρ2δ), ε/8
)
, we obtain for every s ∈ [−z, z],

P
{
γi(s) ≥ 1− πρ2δs2

2

}
≤ P

{∣∣ exp
(
2πiXw1s

)
+ exp

(
2πiXw2s

)∣∣ ≥ 2− 2πρ2s2 for at least δ
4
bn/mc pairs (w1, w2) ∈ T

}
≤ 2δbn/mc/2 εδbn/mc/4 ≤ (4ε)δn/(4m).

Applying this for all i ∈ J together with observations f(s) ≤ 1 and fi(s) = γi(s) (when γi(s) ≥ 1/K2), we
conclude that for every s ∈ [−z, z],

P
{
f(s) ≥

(
1− πρ2δs2/2

)|J |/2} ≤ P
{
fi(s) ≥ 1− πρ2δs2/2 for at least |J |/2 indices i ∈ J

}
≤ 2|J | (4ε)δ|J |n/(8m)

At the next step, we apply the Lemma 4.11 with ξ(s) = f(s) to obtain from the previous relation

P
{ z∫
−z

f(s) ds ≤
z∫

−z

(
1− πρ2δs2

2

)|J |/2
ds+m−1/2

}
≥ 1− 2zm1/2 2|J | (4ε)δ|J |n/(8m).
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Next we apply Lemma 4.12) with I = S ′, ξi = f(s) (recall that f(s) depends also on the choice of
(S1, . . . , Sm) ∈ S). We obtain

P
{
Anm

∑
(S1,...,Sm)∈S′

z∫
−z

f(s) ds ≤
z∫

−z

(
1− πρ2δs2

2

)|J |/2
ds+ 2m−1/2

}
≥ 1− 2zm 2|J | (4ε)δ|J |n/(8m).

Further, since by Lemma 3.3 we have |S ′| ≥ (1− e−cδn)|S| and since f(s) ≤ 1, we observe that

Anm
∑

(S1,...,Sm)∈S\S′

z∫
−z

f(s) ds ≤ 2z e−cδn

deterministically. Recalling that |J | = dcδme, we obtain

P
{
Anm

∑
(S1,...,Sm)∈S

z∫
−z

f(s) ds ≤ C ′′m−1/2

}
≥ 1− 2zm 2|J | (4ε)δ|J |n/(8m) ≥ 1− (ε̃/2)n,

for some C ′′ ≥ 1 depending only on δ and ρ, provided that n ≥ n0(ε̃, δ, ρ). The result follows by the
substitution s = m−1/2u in the integral.

As a combination of Lemmas 4.17, 4.18, and 4.20, we obtain Proposition 4.9.

Proof of Proposition 4.9. As we mentioned at the beginning of this subsection, we fix ρ, δ ∈ (0, 1/4], a
growth function g satisfying (8), a permutation σ ∈ Πn, a number h ∈ R, two sets Q1, Q2 ⊂ [n] such that
|Q1|, |Q2| = dδne, and we use Λn for the set Λn(k,g, Q1, Q2, ρ, σ, h) defined in (17). We also fix ε ∈ (0, 1/4].

We start by selecting the parameters. Assume that n is large enough. Set ` := `4.17(ε). Let ε′ = ε′(ε) be
taken from Lemma 4.18. Set z := 1/C4.20(ε, δ, ρ). Fix an integer m ∈ [C4.18(ε, z), n/max(`, C4.20)] satisfying
the condition R4.17

√
me−

√
m ≤ 1, and take 1 ≤ k ≤ min

(
2n/`, (K2/8)m/2

)
. Let Anm be defined as in (7).

We assume that h is chosen in such a way that the set Λn is non-empty. As before X denotes the random
vector uniformly distributed on Λn. Let S be as in Lemma 3.3). A given choice of subsets (S1, . . . , Sm) ∈ S
denote

f(s) = fS1,...,Sm(s) :=
m∏
i=1

ψK2

(∣∣∣ 1

bn/mc
∑
w∈Si

exp
(
2πiXwm

−1/2 s
)∣∣∣).

We have

Anm
∑

S1,...,Sm

ε′m1/2k∫
−ε′m1/2k

f(s) ds = Anm
∑

S1,...,Sm

z
√
m∫

−z
√
m

f(s) ds+ 2Anm
∑

S1,...,Sm

ε′k
√
m∫

z
√
m

f(s) ds.

In view of Lemma 4.20, with probability at least 1− (ε/2)n the first summand is bounded above by K4.20.
To estimate the second summand, we combine Lemmas 4.17 and 4.18 (we assume that z ≤ ε′k as otherwise
there is no second summand). Fix for a moment a collection (S1, . . . , Sm) ∈ S. By Lemma 4.17, with
probability at least 1− (ε/2)n the function f on [0, k

√
m/2] is bounded above by (K2/4)−m/2 for all points

s outside of some set of measure at most R4.17

√
m (note that we apply variable transformation s→ m−1/2s

to use the lemma here). Further, by Lemma 4.18, with probability at least 1 − (ε/2)n we have that f is
bounded above by e−

√
m for all s ∈ [z

√
m, ε′k

√
m]. Thus, with probability at least 1− 2(ε/2)n,

ε′k
√
m∫

z
√
m

f(s) ds ≤
√
mk
(K2

4

)−m/2
+R4.17

√
me−

√
m.
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Applying Lemma 4.12 with I = S and ξi = f(s), we obtain that

Anm
∑

S1,...,Sm

ε′k
√
m∫

z
√
m

f(s) ds ≤
√
mk
(K2

4

)−m/2
+R4.17

√
me−

√
m + 1 ≤ 3

with probability at least 1− 2(ε/2)n. Thus, taking K1 := K4.20 + 3, we obtain

P{UDn(X,m,K1, K2) ≥ ε′m1/2k} ≥ 1− 3(ε/2)n ≥ 1− 3εn.

5 Complement of gradual non-constant vectors: constant p

In this section, we study the problem of invertibility of the Bernoulli(p) matrix M over the set Sn defined
by (2) in the case when the parameter p is a small constant. This setting turns out to be much simpler
than treatment of the general case C lnn/n ≤ p ≤ c given in the next section. Although the results of
Section 6 essentially absorb the statements of this section, we prefer to include analysis of the constant p
in our work, first, because it provides a short and relatively simple illustration of our method and, second,
because the estimates obtained here allow to derive better quantitative bounds for the smallest singular
value of M .

5.1 Spliting of Rn and main statements

We define the following four classes of vectors B1, . . . ,B4. For simplicity, we normalize vectors with respect
to the Euclidean norm. The first class is the set of vectors with one coordinate much larger than the others,
namely,

B1 = B1(p) := {x ∈ Sn−1 : x∗1 > 6pn x∗2}.

For the next sets we fix a parameter βp =
√
p/C0, where C0 is the absolute constant from Proposition 3.10.

Recall also that the operator Q (which annihilates the maximal coordinate of a given vector) and the set
U(m, γ) were introduced in Subsection 3.6. We also fix a small enough absolute positive constant c0. We
don’t try to compute the actual value of c0, the conditions on how small c0 is can be obtained from the
proofs. We further fix an integer 1 ≤ m ≤ n.

The second class of vectors consist of those vectors for which the Euclidean norm dominates the
maximal coordinate. To control cardinalities of nets (discretizations) we intersect this class with U(m, c0),
specifically, we set

B2 = B2(p,m) := B′2 ∩ U(m, c0), where B′2 :=
{
x ∈ Sn−1 : x 6∈ B1 and x∗1 ≤ βp

}
.

The next set is similar to B2, but instead of comparing x∗1 with the Euclidean norm of the entire vector,
we compare x∗2 with ‖Qx‖. For a technical reason, we need to control the magnitude of ‖Qx‖ precisely;
thus we partition the third set into subsets. Let numbers λk, k ≤ `, be defined by

λ1 =
1

6pn
, λk+1 = 3λk, k < `− 1, 1/3 ≤ λ`−1 < 1 and λ` = 1. (22)

Clearly, ` ≤ lnn. Then for each k ≤ `− 1 we define

B3,k = B3,k(p,m) :=
{
x ∈ Sn−1 : x 6∈ B1 ∪ B′2, x∗2 ≤ βp‖Qx‖, and λk ≤ ‖Qx‖ < λk+1

}
∩ U(m, c0λk).
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To explain the choice of λ1, note that if x 6∈ B1 ∪ B′2 and ‖x‖ = 1, then x∗2 ≥ x∗1/(6pn) ≥ βp/(6pn). Thus,
if in addition βp‖Qx‖ ≥ x∗2, then ‖Qx‖ ≥ 1/(6pn) = λ1. We set

B3 = B3(p,m) :=
`−1⋃
k=1

B3,k.

The fourth set covers the remaining options for vectors having a large almost constant part. Let
numbers µk, k ≤ s, be defined by

µ1 =
βp

6pn
, µk+1 = 3µk, k < s− 1, 1/3 ≤ µs−1 < 1 and µs = 1. (23)

Clearly, s ≤ lnn. Then for each k ≤ s− 1 define the set B4,k = B4,k(p,m) as{
x ∈ Sn−1 : x 6∈ B1 ∪ B′2, x∗2 > βp‖Qx‖, and µk ≤ x∗2 < µk+1

}
∩ U(m, c0µk/

√
ln(e/p)).

Note that if x 6∈ B1 ∪ B′2 and ‖x‖ = 1, then x∗2 ≥ x∗1/(6pn) ≥ βp/(6pn), justifying the choice of µ1. We set

B4 = B4(p,m) =
`−1⋃
k=1

B4,k.

Finally define B as the union of these four classes, B = B(p,m) :=
⋃4
j=1 Bj.

In this section we prove two following theorems.

Theorem 5.1. There exists positive absolute constants c, C such that the following holds. Let n be large
enough, let m ≤ cpn/ ln(e/p), and (30 lnn)/n ≤ p ≤ 1/2. Let M be an n×n Bernoulli(p) random matrix.
Then

P
{
∃ x ∈ B such that ‖Mx‖ < 1

C
√
n ln(e/p)

‖x‖
}
≤ n(1− p)n + e−1.1np,

where the set B = B(p,m) is defined above.

Recall that the set Vn was introduced in Subsection 3.3. The next theorem shows that, after a proper
normalization, the complement of Vn (taken in Υn(r)) is contained in B for some choice of r, δ, ρ and for
the growth function g(t) = (2t)3/2 (clearly, satisfying (8)).

Theorem 5.2. There exists an absolute (small) positive constant c1 such that the following holds. Let
q ∈ (0, c1) be a parameter. Then there exist nq ≥ 1, r = r(q), ρ = ρ(q) ∈ (0, 1) such that for n ≥ nq,
p ∈ (q, c1), δ = r/3, g(t) = (2t)3/2, and m = brnc one has{

x/‖x‖ : x ∈ Υn(r) \ Vn(r,g, δ, ρ)
}
⊂ B(p,m).

5.2 Proof of Theorem 5.1

Theorem 5.1 is a consequence of four lemmas that we prove in this section. Each lemma treats one of the
classes Bi, i ≤ 4, and Theorem 5.1 follows by the union bound. Recall that U(m, γ) was introduced in
Subsection 3.6 and that given x, we fixed one permutation, σx, such that x∗i = |xσx(i)| for i ≤ n. Recall
also that the event Enrm was introduced in Proposition 3.14.
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Lemma 5.3. Let n ≥ 1 and p ∈ (0, 1/2]. Let Esum (with q = p) be the event introduced in Lemma 3.4 and
by Ecol ⊂ Mn denote the subset of 0/1 matrices with no zero columns. Then for every M ∈ Esum ∩ Ecol
and every x ∈ B1,

‖Mx‖ ≥ 1

3
√
n
‖x‖.

In particular,

P
{
M ∈Mn : ∃x ∈ B1 with ‖Mx‖ ≤ 1

3
√
n

}
≤ n(1− p)n + e−1.5np.

Proof. Let δij, i, j ≤ n be entries of M ∈ Esum ∩ Ecol. Let σ = σx. Denote, ` = σ(1). Since M ∈ Ecol, there
exists s ≤ n such that δs` = 1. Then

|〈Rs(M), x〉| =
∣∣∣x` +

∑
j 6=`

δsjxj

∣∣∣ ≥ |x`| −∑
j 6=`

δsj xj ≥ |x`| −
n∑
j=1

δsj x
∗
n2
.

Using that M ∈ Esum we observe that
∑n

j=1 δsj ≤ 3.5pn. Thus,

‖Mx‖ ≥ |〈Rs(M), x〉| ≥ x∗1 − 3.5pnx∗n2
≥ x∗1/3.

The trivial bound ‖x‖ ≤
√
nx∗1 completes the first estimate. The “in particular” part follows by the

“moreover” part of Lemma 3.4 and since P(Ecol) ≤ n(1− p)n.

Lemma 5.4. There exists a (small) absolute positive constant c such that the following holds. Let n be
large enough and m ≤ cn. Let (4 lnn)/n ≤ p < 1/2 and M be a Bernoulli(p) random matrix. Then

P
(
M ∈ Enrm and ∃x ∈ B2 with ‖Mx‖ ≤

√
pn

5C0

)
≤ e−2n.

Proof. By Lemma 3.13 for ε ∈ [8c0, 1) there exists an (ε/2)–net in V (1) ∩ U(m, c0) with respect to the
triple norm ||| · |||, with cardinality at most

Cn2

ε2

(
18en

εm

)m
.

Since B2 ⊂ V (1) ∩ U(m, c0), by a standard “projection” trick, we can obtain from it an ε–net N in B2

of the same cardinality. Let x ∈ B2. Let z ∈ N be such that |||x − z||| ≤ ε. Since on B2 we have
z∗1 ≤ βp‖z‖ = βp, Proposition 3.10 implies that with probability at least 1− e−3n,

‖Mz‖ ≥
√
pn

3
√

2C0

. (24)

Further, in view of Proposition 3.14, conditioned on (24) and on {M ∈ Enrm}, we have

‖Mx‖ ≥ ‖Mz‖ − ‖M(x− z)‖ ≥
√
pn

3
√

2C0

− 100
√
pnε ≥

√
pn

5C0

,

where we have chosen ε = 1/(5000C0). Using the union bound and our choice of ε, we obtain that

P
(
M ∈ Enrm and ∃x ∈ B2 with ‖Mx‖ ≤

√
pn

5C0

)
≤ e−3n|N | ≤ e−2n

for sufficiently large n and provided that c0 ≤ 1/(40000C0) and m ≤ cn for small enough absolute positive
constant c. This completes the proof.
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Remark 5.5. Note that we used Proposition 3.10 with the set A = [n]. In this case we could use slightly
easier construction for nets than the one in Lemma 3.13 — we don’t need to distinguish the first coordinate
in the net construction, in other words we could have only one special direction, not two. However this
would not lead to a better estimate and in the remaining lemmas we will need the full strength of our
construction.

Next we treat the case of vectors in B3. The proof is similar to the proof of Lemma 5.4, but we need
to remove the maximal coordinate and to deal with the remaining part of the vector. Recall that the
operator Q serves this purpose.

Lemma 5.6. There exists a (small) absolute positive constant c such that the following holds. Let n be
large enough, and m ≤ cpn/ ln(e/p), (4 lnn)/n ≤ p < 1/2. Let M be a Bernoulli(p) random matrix. Then

P
(
M ∈ Enrm and ∃x ∈ B3 with ‖Mx‖ ≤ 1

30C0
√
pn

)
≤ e−2n.

Proof. Fix 1 ≤ k ≤ ` − 1. By Lemma 3.13 for ε ∈ [8c0λk, λk+1) there exists an (ε/2)–net in V (λk+1) ∩
U(m, c0λk) with respect to ||| · |||, with cardinality at most

Cn2

ε2

(
18eλk+1n

εm

)m
≤ Cn2

ε2

(
54eλkn

εm

)m
.

Again using a “projection” trick, we can construct an ε–netNk in B3,k of the same cardinality. Let x ∈ B3,k.
Let z ∈ Nk be such that |||x− z||| ≤ ε. Since on B3,k we have z∗2 ≤ βp‖Qz‖, Proposition 3.10 applied with
A = σz([2, n]) implies that with probability at least 1− e−3n,

‖Mz‖ ≥
√
pn ‖Qz‖
3
√

2C0

≥
√
pn λk

3
√

2C0

.

Conditioned on the above inequality and on the event {M ∈ Enrm}, Proposition 3.14 implies that

‖Mx‖ ≥ ‖Mz‖ − ‖M(x− z)‖ ≥
√
pn λk

3
√

2C0

− 100
√
pnε ≥

√
pn λk

5C0

,

where we have chosen ε = λk/(5000C0). Using the union bound, our choice of ε and λk ≥ 1/(6pn), we
obtain that

Pk := P
(
∃x ∈ B3,k with ‖Mx‖ ≤

√
pn λk

5C0

)
≤ e−3n|Nk| ≤ e−2.5n

for large enough n and for m ≤ cn, where c > 0 is a small enough absolute constant (we also assume
c0 ≤ 1/(40000C0)). Since ` ≤ lnn and λk ≥ λ1 ≥ 1/(6pn), we obtain

P
(
∃x ∈ B3 with ‖Mx‖ ≤ 1

30C0
√
pn

)
≤

`−1∑
k=1

Pk ≤ e−2pn.

This completes the proof.

Finally we threat the case of vectors in B4.

Lemma 5.7. There exists a (small) absolute positive constant c such that the following holds. Let n be
large enough and let m ≤ cpn/ ln(e/p), (30 lnn)/n ≤ p ≤ 1/2. Let M be a Bernoulli(p) random matrix.
Then

P
(
M ∈ Enrm and ∃x ∈ B4 with ‖Mx‖ ≤ 1

78C0

√
n ln(e/p)

)
≤ e−1.14pn.
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Proof. Fix 1 ≤ k ≤ s− 1. By Lemma 3.13 for ε ∈ [8c0µk/
√

ln(e/p), µk+1) there exists an (ε/2)–net in

V (µk+1/βp) ∩ U(m, c0µk/
√

ln(e/p))

with respect to ||| · ||| with cardinality at most

Cn2

ε2

(
18eµk+1n

εmβp

)m
≤ Cn2

ε2

(
54eµkn

εmβp

)m
.

By the projection trick, we get an ε–net Nk in B4,k ⊂ V (µk+1/βp) ∩ U(m, c0µk/
√

ln(e/p)).
Let x ∈ B4,k. Let z ∈ Nk be such that |||x−z||| ≤ ε. Since on B4 we have z∗1 ≥ z∗2 ≥ µk, Proposition 3.11

implies that with probability at least 1− e−1.2np,

‖Mz‖ ≥
µk
√
pn

10
√

ln(e/p)
.

Conditioned on the above and on {M ∈ Enrm}, Proposition 3.14 implies that

‖Mx‖ ≥ ‖Mz‖ − ‖M(x− z)‖ ≥
µk
√
pn

10
√

ln(e/p)
− C1

√
pnε ≥

µk
√
pn

13
√

ln(e/p)
,

where we have chosen
ε = µk/(50C1

√
ln(e/p)) ≥ 8c0µk/

√
ln(e/p),

provided that c0 ≤ 1/40000. Using the union bound and our choice of ε we obtain that

Pk := P
(
M ∈ Enrm and ∃x ∈ B4,k with ‖Mx‖ ≤

µk
√
pn

13
√

ln(e/p)

)
≤ e−1.2pn|Nk| ≤ e−1.15pn

for large enough n and for m ≤ cpn/ ln(e/p), where c > 0 is a small enough absolute constant. Since
s ≤ lnn and µk ≥ µ1 ≥ βp/(6pn) = 1/(6C0n

√
p), we obtain

P
(
M ∈ Enrm and ∃x ∈ B4 with ‖Mx‖ ≤ 1

78C0

√
n ln(e/p)

)
≤

s−1∑
k=1

Pk ≤ e−1.14pn.

This completes the proof.

Proof of Theorem 5.1. Lemmas 5.3, 5.4, 5.6, and 5.7 imply that

P(E) ≤ n(1− p)n + 3e−1.14np + P(Ecnrm),

where E denotes the event from Theorem 5.1. Lemma 3.6 applied with t = 30 and (11) imply that
P(Ecnrm) ≤ e−10pn, provided that pn is large enough. This completes the proof.

5.3 Proof of Theorem 5.2

Proof. We prove the statement with r = r(q) = cq/ ln(e/q), where c is the constant from Theorem 5.1, and
ρ = ρ(q) = c0

√
rβq/(6

√
ln(e/q)). Note that under our choice of parameters (and assuming c1 is small),

9δ/2 ≤ c0βq/
√

ln(e/q) ≤ c0βp/
√

ln(e/p).

Assume that x ∈ Υn(r) \ Vn. By (x#
i )i denote the non-increasing rearrangement of (xi)i (we would

like to emphasize that we do not take absolute values). Note that for any t > 0 there are two subsets
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Q1, Q2 ⊂ [n] with |Q1|, |Q2| ≥ dδne satisfying max
i∈Q2

xi ≤ min
i∈Q1

xi− t if and only if x#
dδne−x

#
n−dδne+1 ≥ t. This

leads to the two following cases.

Case 1. x#
dδne− x

#
n−dδne+1 ≥ ρ. Since x /∈ Vn, in this case there exists an index j ≤ n with x∗j > (2n/j)3/2.

Note that since x∗brnc = 1, we have j < rn = 3δn.

Subcase 1a. 1 < j < 3δn. Since x∗j > (2n/j)3/2 we get

‖Qx‖2 ≥
j∑
i=2

(x∗i )
2 ≥

j∑
i=2

(2n/i)3 ≥ j

2
(2n/j)3 = n(2n/j)2.

Therefore,
x∗brnc+1

‖Qx‖
≤ 1√

n

j

2n
≤ (3δ/2)√

n
.

Now let y = x/‖x‖. Then

y∗brnc+1 =
x∗brnc+1

‖x‖
≤ 3δ/2√

n

‖Qx‖
‖x‖

=
3δ/2√
n
‖Qy‖. (25)

Our goal is to show that y ∈ B(p,m) (with m = brnc).
If y ∈ B1(p), we are done.
Otherwise, if y ∈ B′2, then (25) implies that y∗brnc+1 ≤ c0/

√
n, that is, there are at least n−m coordinates

at the distance at most c0/
√
n from zero. Thus y ∈ U(m, c0) and hence y ∈ B2.

If y 6∈ B1 ∪ B′2 and y∗2 ≤ βp‖Qy‖, then necessarily λk ≤ ‖Qy‖ < λk+1 ≤ 3λk for some k, where λk, λk+1

are defined according to (22). Then (25) implies that y∗brnc+1 ≤ c0λk/
√
n, that is, there are at least n−m

coordinates at the distance at most c0λk/
√
n from zero. Thus y ∈ U(m, c0λk) and hence y ∈ B3,k.

If y 6∈ B1 ∪ B′2 and y∗2 > βp‖Qy‖ then necessarily µk ≤ y∗2 < µk+1 ≤ 3µk, where µk, µk+1 are given by
(23). Then, similarly,

y∗brnc+1 ≤
3δ/2√
n
‖Qy‖ ≤ 3δ/2√

n

y∗2
βp
≤ 9δ/2

βp
√
n
µk ≤

c0µk√
ln(e/p)

√
n
.

This implies that y ∈ U(m, c0µk/
√

ln(e/p)) and, thus, y ∈ B4,k.

Subcase 1b. j = 1. In this case x∗1 ≥ (2n)3/2. Assume x 6∈ B1, that is x∗1 < 6pnx∗2. Then

x∗brnc+1

‖Qx‖
≤ 1

x∗2
≤ 6pn

(2n)3/2
=

6p

23/2
√
n
.

We can now define y := x/‖x‖ and, having noted that y∗brnc+1 ≤
6p

23/2
√
n
‖Qy‖, proceed similarly to the

Subcase 1a. We will need to use the condition 18p ≤ 23/2c0βp/
√

ln(e/p), which holds for small enough p.

Case 2. x#
dδne − x

#
n−dδne+1 < ρ. Set σ be a permutation of [n] such that x#

i = xσ(i), i ≤ n (note that σ is
in general different from the permutation σx defined in connection with the non-increasing rearrangement
of the absolute values |xi|). Define the following set, which will play the role of the set in the definition of
U(m, γ) (see Subsection 3.6),

A := {σ(i) : dδne < i ≤ n− dδne}.

Then |A| = n − 2dδne, and m > 2dδne = 2drn/3e. Since x∗m = 1, we observe that either x#
dδne+1 ≥ 1 or

x#
n−dδne ≤ −1 (or both). Moreover, since r < 1/2, we necessarily have that |x#

i | ≤ 1 for some dδne < i ≤
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n − dδne. Therefore, there exists an index j ∈ A such that |xj| = 1. Taking b = xj, we observe that for
every i ∈ A, |xi − b| < ρ. On the other hand we have

‖x‖2 ≥ ‖Qx‖2 ≥
m∑
i=2

x∗i ≥ m− 1 ≥ m/2 and ∀i ∈ A :
|xi − b|
‖Qx‖

≤
√

2 ρ√
m
≤ 1√

n

2ρ√
r
.

Now let y = x/‖x‖. Then

∀i ∈ A :

∣∣∣∣yi − b

‖x‖

∣∣∣∣ =
|xi − b|
‖Qx‖

‖Qx‖
‖x‖

≤ 1√
n

2ρ√
r
‖Qy‖. (26)

The end of the proof is similar to the end of the proof of Case 1. If y ∈ B1, we are done. If y ∈ B′2,
then using (26), ‖Qy‖ ≤ ‖y‖ = 1, and 6ρ/

√
r ≤ c0 we obtain that y ∈ U(m, c0) and, thus, y ∈ B2. If

y 6∈ B1 ∪ B′2, y∗2 ≤ βp‖Qy‖, and λk ≤ ‖Qy‖ < λk+1 ≤ 3λk then, using (26) and 6ρ/
√
r ≤ c0 we obtain

that y ∈ U(m, c0λk) and, thus, y ∈ B3,k. If y 6∈ B1 ∪ B′2, y∗2 ≥ βp‖Qy‖, and µk ≤ y∗2 < µk+1 ≤ 3µk then,

similarly, using (26) and 6ρ/
√
r ≤ c0βp/

√
ln(e/p), we obtain that y ∈ U(m, c0µk/

√
ln(e/p)) and, thus,

y ∈ B4,k. This completes the proof.

6 Complement of gradual non-constant vectors: general case

We split Rn into two classes of vectors. The first class, the class of steep vectors T , is constructed in
essentially the same way as in [27] and [30]. The proof of the bound for this class resembles corresponding
proofs in [27] and [30], however, due to the differences of the models of randomness, there are important
modifications. The second classR, which we callR-vectors, will consist of vectors to which Proposition 3.10
can be applied, therefore dealing with this class is simpler. To control the cardinality of nets, part of
this class will be intersected with the almost constant vectors. Then we show that the complement of
Vn(r,g, δ, ρ) in Υn(r) is contained in T ∪ R.

We now introduce the following parameters, which will be used throughout this section. It will be
convenient to denote d = pn. We always assume that p ≤ 0.0001 and n is large enough (that is, larger than
a certain positive absolute constant). We also always assume that the “average degree” d = pn ≥ 200 lnn.
Fix a sufficiently small absolute positive constant r and sufficiently large absolute positive constant Cτ
(we do not try to estimate the actual values of r and Cτ , the conditions on how large 1/r and Cτ can be
extracted from the proofs, in particular, the condition on Cτ comes from (38)). We also fix two positive
integers `0 and s0 such that

`0 =

⌊
pn

4 ln(1/p)

⌋
and `s0−1

0 ≤ 1

64p
=

n

64d
< `s00 . (27)

Note that `0 ≥ 50 and that s0 > 1 implies p ≤ c
√

(lnn)/n.
For 1 ≤ j ≤ s0 we set

n0 := 2, nj := 30`j−1
0 , ns0+2 :=

⌊√
n/p
⌋

=

⌊
n√
d

⌋
, and ns0+3 := brnc.

Then, in the case b1/(64p)c ≥ 15ns0 we set ns0+1 = b1/(64p)c. Otherwise, let ns0+1 = ns0 . Note
that with this definition we always have ns0+2 > ns0+1. The indices nj, j ≤ s0 + 3, are global
parameters which will be used throughout the section. Below we provide the proof only for the
case b1/(64p)c = ns0+1 ≥ 15ns0 , the other case is treated similarly (in particular, in that other case the
set T1(s0+1) defined below, will be empty).
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We also will use another parameter,

κ = κ(p) :=
ln(6pn)

ln `0

. (28)

Note that the function f(p) = ln(6pn)/(4 ln(1/p)) is a decreasing function on (0, 1), therefore for p ≥
(100 lnn)/n and sufficiently large n we have 1 < κ ≤ ln lnn. Moreover, it is easy to see that if p ≥
(100 ln2 n)/n, then κ ≤ 2. We also notice that if pn ≥ 6(5 lnn)1+γ for some γ ∈ (0, 1) then κ ≤ 1 + 1/γ
and, using the definition of `0 and s0,

(6d)s0−1 = `
(s0−1)κ
0 ≤ 1/(64p)κ. (29)

6.1 Two classes of vectors and main results

We first introduce the class of steep vectors. It will be constructed as a union of four subclasses. Recall
that the notation x∗ was introduced in Subsection 3.1. Set

T0 := {x ∈ Rn : x∗1 > 6d x∗2} and T11 := {x ∈ Rn : x 6∈ T0 and x∗2 > 6d x∗n1
}.

Then for 2 ≤ j ≤ s0 + 1,

T1j :=

{
x ∈ Rn : x 6∈ T0 ∪

j−1⋃
i=1

T1i and x∗nj−1
> 6d x∗nj

}
and T1 :=

s0+1⋃
i=1

T1i.

Finally, for k = 2, 3 set j = j(k) = s0 + k and define

Tk :=

{
x ∈ Rn : x 6∈

k−1⋃
i=0

Ti and x∗nj−1
> Cτ

√
d x∗nj

}
.

The set of steep vectors is T := T0∪T1∪T2∪T3. The “rules” of the partition are summarized in the diagram.

For this class we prove the following bound.

Theorem 6.1. There exist positive absolute constants c and C such that the following holds. Let n ≥ C,
and let 0 < p < c satisfy pn ≥ C lnn. Let M be a Bernoulli(p) random matrix and denote

Esteep :=

{
∃ x ∈ T such that ‖Mx‖ < c(64p)κ

(pn)2
min

(
1,

1

p1.5n

)
‖x‖
}
,
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where as before κ = κ(p) := (ln(6pn))/ ln `0. Then

P(Esteep) ≤ n(1− p)n + 2e−1.4pn.

Next we introduce the class of R-vectors, denoted by R. Let C0 be the constant from Proposition 3.10
and recall that the class AC(ρ) of almost constant vectors was defined by (9) in Subsection 2.2. Given
ns0+1 < k ≤ n/ ln2 d denote A = A(k) := [k, n] and consider the sets

R1
k :=

{
x ∈

(
Υn(r) \ T

)
∩ AC(ρ) :

‖xσx(A)‖
‖xσx(A)‖∞

≥ C0√
p

and
√
n/2 ≤ ‖xσx(A)‖ ≤ Cτ

√
dn

}
,

and

R2
k :=

{
x ∈ Υn(r) \ T :

‖xσx(A)‖
‖xσx(A)‖∞

≥ C0√
p

and
2
√
n

r
≤ ‖xσx(A)‖ ≤ C2

τ d
√
n

}
.

Define R :=
⋃
ns0+1<k≤n/ ln2 d (R1

k ∪R2
k).

The class R should be thought of as the class of sufficiently spread vectors, not steep, but possibly
without having two subsets of coordinates of size proportional to n, which are separated by ρ (which would
allow us to treat those vectors as part of the set Vn). Crucially, the sets R1

k and R2
k are “low complexity”

sets because they admit ε–nets of relatively small cardinalities (see Subsection 6.3). For the class R we
prove the following bound.

Theorem 6.2. There are absolute constants r0, ρ0, C with the following property. Let 0 < r ≤ r0, 0 < ρ ≤
ρ0, let n ≥ 1 and p ∈ (0, 0.001] be such that d = pn ≥ C lnn. Then

P
({
∃x ∈ R : ‖Mx‖ ≤

√
pn

12C0

})
≤ e−2n + e−200pn.

Finally we show that together with Vn, the classes T and R cover all (properly normalized) vectors for
the growth function defined by

g(t) = (2t)3/2 for 1 ≤ t < 64pn and g(t) = exp(ln2(2t)) for t ≥ 64pn. (30)

It is straightforward to check that g satisfies (8) with some absolute constant K3.

Theorem 6.3. There are universal constants c, C > 0 with the following property. Let n ≥ C, p ∈ (0, c),
and assume that d = pn ≥ 100 lnn. Let r ∈ (0, 1/2), δ ∈ (0, r/3), ρ ∈ (0, 1), and let g be as in (30). Then

Υn(r) \ Vn(r,g, δ, ρ) ⊂ R ∪ T .

6.2 Auxiliary lemmas

In the following lemma we provide a simple bound on the Euclidean norms of vectors in the class T and
its complement in terms of their order statistics.

Lemma 6.4. Let n be large enough and (200 lnn)/n < p < 0.001. Consider the vectors x ∈ T1j for some
1 ≤ j ≤ s0 + 1, y ∈ T2, z ∈ T3 and w ∈ T c. Then

‖x‖
x∗nj−1

≤ 64(pn)2

(64p)κ
,
‖y‖
y∗ns0+1

≤ 384(pn)3

(64p)κ
,
‖z‖
z∗ns0+2

≤ 384Cτ (pn)3.5

(64p)κ
, and

‖w‖
w∗ns0+3

≤ 384C2
τ (pn)4

(64p)κ
.
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Proof. Let d = pn. Since x ∈ T1j, denoting m = nj−1, we have

x∗1 ≤ (6d)x∗2 ≤ (6d)2x∗n1
≤ . . . ≤ (6d)jx∗nj−1

= (6d)jx∗m.

Since ni = 30`i−1
0 ≤ 30di−1, i ≤ s0, since κ > 1, and in view of (29), we obtain

‖x‖2 = (x∗1)2 + (x∗2 + . . .+ (x∗n1
)2) + ((x∗n1+1)2 + · · ·+ (x∗n2

)2) + . . .

≤ ((6d)2j + n1(6d)2(j−1) + n2(6d)2(j−2) . . .+ nj−1(6d)2 + n)(x∗m)2

≤
(

(6d)2j + 5(6d)2j−2
∑
i≥0

(6d)−i + n
)

(x∗m)2 ≤
(
2(6d)2(s0+1) + n

)
(x∗m)2

≤
(
2(6d)4/(64p)2κ + n

)
(x∗m)2 ≤

(
3(6d)4/(64p)2κ

)
(x∗m)2.

This implies the first bound. The bounds for y, z, w are obtained similarly.

The next two Lemmas 6.5 and 6.6 will be used to bound from below the norm of the matrix-vector
product Mx for vectors x with a “too large” almost constant part which does not allow to directly apply
the Lévy–Kolmogorov–Rogozin anti-concentration inequality together with the tensorization argument.
Lemma 6.5 will be used to bound ‖Mx‖ by a single inner product |〈Ri(M), x〉| for a specially chosen
index i, while Lemma 6.6 will allow to extract a subset of “good” rows having large inner products with
x.

Lemma 6.5. Let n ≥ 30 and 0 < p < 0.001 satisfy pn ≥ 200 lnn. Let m, ` = `(m) ≥ 2 be such that either

m = 2 and ` = 15,

or

m ≥ 30, `m ≤ 1

64p
and ` ≤ np

4 ln 1
pm

.

Let M be an n × n Bernoulli(p) random matrix. By Ecol = Ecol(`,m) denote the event that for any
choice of two disjoint sets J1, J2 ⊂ [n] of cardinality |J1| = m, |J2| = `m − m there exists a row of M
with exactly one 1 among components indexed by J1 and no 1s among components indexed by J2. Then
P(Ecol) ≥ 1− exp(−1.5pn).

Proof. We first treat the case m ≥ 30. Fix two disjoint sets J1, J2 ⊂ [n] of required cardinality. The prob-
ability that a fixed row has exactly one 1 among components indexed by J1 and no 1s among components
indexed by J2 equals

q := mp(1− p)`m−1 ≥ mp exp(−2p`m) ≥ 29mp/30,

where we used `mp ≤ 1/64. Since the rows are independent, the probability that M does not have such a
row is

(1− q)n ≤ exp(−nq) ≤ exp(−29mpn/30).

Note that the number of all choices of J1 and J2 satisfying the conditions of the lemma is(
n

`m−m

)(
n− `m+m

m

)
≤
(

en

(`− 1)m

)`m−m (en
m

)m
≤
(

3n

`m

)`m
(2`)m.

Thus union bound over all choices of J1 and J2 implies

P((Ecol)c) ≤
(

3n

`m

)`m
(2`)m exp(−29mpn/30).
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Using that m ≤ 1/(64p) and ` ≤ np
4 ln(1/(pm))

, we observe
(

3n
`m

)`m ≤ exp(mpn/2). Since np ≥ 200 lnn, we

have (2`)m ≤ exp(2mpn/5). Thus,

P((Ecol)c) ≤ exp(−mpn/15) ≤ exp(−2pn),

which proves this case.
The case m = 2, ` = 15 is similar. Fixing two disjoint sets J1, J2 ⊂ [n] of the required cardinality,

the probability that a fixed row has exactly one 1 among components indexed by J1 and no 1s among
components indexed by J2 equals

q := 2p(1− p)29 ≥ 2p exp(−29p).

Since rows are independent, the probability that M does not have such a row is

(1− q)n ≤ (1− 2p exp(−29p))n ≤ exp(−2pn exp(−29p)) ≤ exp(−1.8pn).

Using union bound over all choices of J1 and J2 we obtain

P(Ecsum) ≤ n30

2 · 28!
exp(−1.8pn) ≤ exp(−1.5pn),

which proves the lemma.

In the next lemma we restrict a matrix to a certain set of columns and estimate the cardinality of a
set of rows having exactly one 1. To be more precise, for any J ⊂ [n] and a 0/1 matrix M denote

IJ = I(J,M) := {i ≤ n : |supp Ri(M) ∩ J | = 1}.

The following statement is similar to Lemma 2.7 from [27] and Lemma 3.6 in [30].

Lemma 6.6. Let ` ≥ 1 be an integer and p ∈ (0, 1/2] be such that p` ≤ 1/32. Let M be a Bernoulli(p)
random matrix. Then with probability at least

1− 2

(
n

`

)
exp (−n`p/4)

for every J ⊂ [n] of cardinality ` one has

`pn/16 ≤ |I(J,M)| ≤ 2`np.

In particular, if ` = 2b1/(64p)c ≤ n, n ≥ 105, and p ∈ [100/n, 0.001] then, denoting

Ecard = Ecard(`) := {M ∈Mn : ∀J ⊂ [n] with |J | = ` one has |I(J,M)| ∈ [`pn/16, 2`pn]},

we have
P (Ecard) ≥ 1− 2 exp (−n/500) .

Proof. Fix J ⊂ [n] of cardinality `. Denote q = `p(1− p)`−1. Since `p ≤ 1/32,

15`p/16 ≤ `p(1− 2p`) ≤ `p exp(−2p`) ≤ q ≤ `p ≤ 1/2.
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For every i ≤ n, let ξi be the indicator of the event {i ∈ I(J,M)}. Clearly, ξi’s are independent Bernoulli(q)
random variables and |I(J,M)| =

∑n
i=1 ξi. Applying Lemma 3.4, we observe that for every 0 < ε < q

P (|I(J,M)| ∈ [(q − ε)n, (q + ε)n]) ≥ 1− 2 exp

(
− nε2

2q(1− q)

(
1− ε

3q

))
.

Taking ε = 14q/15 we obtain that

(q − ε)n = qn/15 ≥ `pn/16 and (q + ε)n ≤ 2qn ≤ 2`pn,

and
nε2

2q(1− q)

(
1− ε

3q

)
≥ 98 · 31nq

225 · 45
≥ 0.3n`p(1− 2`p) ≥ n`p/4.

This implies the bound for a fixed J . The lemma follows by the union bound.

6.3 Cardinality estimates for ε–nets

In this subsection we provide bounds on cardinality of certain discretizations of the sets of vectors in-
troduced earlier. Recall that e denotes the vector 1/

√
n, Pe denotes the projection on e⊥, and P⊥e is

the projection on e, that is P⊥e = 〈·, e〉 e. We recall also that given A ⊂ [n], xA denotes coordinate
projection of x on RA, and that given x ∈ Rn, σx is a (fixed) permutation corresponding to non-increasing
rearrangement of {|xi|}ni=1.

Our first lemma deals with nets for T2 and T3. We will consider the following normalization:

T ′2 = {x ∈ T2 : x∗ns0+1
= 1} and T ′3 = {x ∈ T3 : x∗ns0+2

= 1}.

The triple norm is defined by the equation |||x|||2 = ‖Pex‖2 + pn‖P⊥e x‖2.

Lemma 6.7. Let n ≥ 1, p ∈ (0, 0.001], and assume that d = pn is sufficiently large. Let i ∈ {2, 3}. Then
there exists a set Ni = N ′i +N ′′i , N ′i ⊂ Rn, N ′′i ⊂ span {1}, with the following properties:

• |Ni| ≤ exp (2ns0+i ln d) .

• For every u ∈ N ′i one has u∗j = 0 for all j ≥ ns0+i.

• For every x ∈ T ′i there are u ∈ N ′i and w ∈ N ′′i satisfying

‖x− u‖∞ ≤
1

Cτ
√
d
, ‖w‖∞ ≤

1

Cτ
√
d
, and |||x− u− w||| ≤

√
2n

Cτ
√
d
.

Since the proof of this lemma in many parts repeats the proofs of Lemma 3.8 from [27] and of Lemma 6.8,
we only sketch it below.

Proof. Fix µ = 1/(Cτ
√
d) and i ∈ {2, 3}. We first repeat the proof of Lemma 3.8 from [27] with our

choice of parameters. See also the beginning of the proof of Lemma 6.8 below — many definitions,
constructions, and calculations are exactly the same, however note that the normalization is slightly
different. In particular, the definitions of sets B1(x), B2(x) (with k − 1 = ns0+i−1), B3(x) are the same
(we do not need the sets B0(x) and B4(x)). This will show (for large enough d) the existence of a µ-
net N ′i (in the `∞ metric) for T ′i such that for every u ∈ N ′i one has u∗j = 0 for all j ≥ ns0+i and
|N ′i | ≤ exp (1.1ns0+i ln d).
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Next given x ∈ T ′i let u = u(x) ∈ N ′i be such that ‖x−u‖∞ ≤ µ. Then ‖P⊥e (x−u)‖ ≤ µ
√
n. Let N ′′i be

a (µ
√
n/d)-net in the segment µ

√
n [−e, e] of cardinality at most 2

√
d (note, we are in the one-dimensional

setting). Note that every w ∈ N ′′i is of the form w = a e = a1/
√
n, |a| ≤ µ

√
n, in particular, ‖w‖∞ ≤ µ.

Then for x (and the corresponding u = u(x)), there exists w ∈ N ′′i such that

|||x− u− w|||2 = ‖Pe(x− u− w)‖2 + d‖P⊥e (x− u− w)‖2 = ‖Pe(x− u)‖2 + d‖P⊥e (x− u)− w‖2 ≤ 2µ2n.

Finally, note that |N ′i +N ′′i | ≤ 2
√
d exp (1.1ns0+i ln d) ≤ exp (2ns0+i ln d). This completes the proof.

Let R1
k, R2

k be the vector subsets introduced in Subsection 6.1. Consider the increasing sequence
λ1 < λ2 < . . . < λm, m ≥ 1, defined by

λ1 = 1/
√

2, λi+1 = 3λi for 1 < i < m, and λm−1 < λm = C2
τ d ≤ 3λm−1. (31)

Clearly m ≤ n. For s ∈ {1, 2}, ns0+1 < k ≤ n/ ln2 d and i ≤ m set

Rs
ki :=

{
x ∈ Rs

k : λi
√
n ≤ ‖xσx([k,n])‖ ≤ λi+1

√
n
}
.

It is not difficult to see that the union ofRs
ki’s over admissible i givesRs

k. The setsRs
ki are “low complexity”

sets in the sense that they admit efficient ε-nets. For s = 1, the low complexity is a consequence of the
condition that R1

ki ⊂ AC(ρ), i.e., the vectors have a very large almost constant part. For the sets R2
ki, we

do not assume the almost constant behavior, but instead rely on the assumption that ‖xσx([k,n])‖ is large
(much larger than

√
n). This will allow us to pick ε much larger than

√
n, and thus construct a net of

small cardinality.

Lemma 6.8. Let R ≥ 40 be a (large) constant. Then there is r0 > 0 depending on R with the following
property. Let 0 < r ≤ r0, 0 < ρ ≤ 1/(2R), let n ≥ 1 and p ∈ (0, 0.001] so that d = pn is sufficiently
large (larger than a constant depending on R, r). Let s ∈ {1, 2}, ns0+1 < k ≤ n/ ln2 d, t ≤ m, and
40λt
√
n/R ≤ ε ≤ λt

√
n, where λt and m are defined according to relation (31). Then there exists an ε-net

N s
kt ⊂ Rs

kt for Rs
kt with respect to ||| · ||| of cardinality at most (e/r)3rn.

Proof. Note that in case of s = 2 the set R2
kt is empty whenever 3λt <

2
r
. So, in the course of the proof

we will implicitly assume that 3λt ≥ 2
r

whenever s = 2.
We follow ideas of the proof of Lemma 3.8 from [27]. We split a given vector from Rs

kt into few parts
according to magnitudes of its coordinates and approximate each part separately. Then we construct nets
for vectors with the same splitting and take the union over all nets. We now discuss the splitting. For
each x ∈ Rs

kt consider the following (depending on x) partition of [n]. If s = 2, set B′0(x) = ∅. If s = 1
then x ∈ AC(ρ) and we set

B′0(x) := σx({j ≤ n : |xj − λx| ≤ ρ}),
where λx = ±1 is from the definition of AC(ρ) (note that under the normalization in Υn(r) we have
x∗ns0+3

= 1). Then |B′0(x)| > n− ns0+3 for s = 1. Next, we set

B1(x) = σx([ns0+1]);

B2(x) = σx([k − 1]) \B1(x);

B3(x) = σx([ns0+3]) \ (B1(x) ∪B2(x));

B0(x) = B′0(x) \ (B1(x) ∪B2(x) ∪B3(x));

B4(x) = [n] \ (B0(x) ∪B1(x) ∪B2(x) ∪B3(x))

(one of the sets B0(x), B4(x) could be empty). Denote `x := |B0(x)|. Note that the definition of B3(x)
and B4(x) imply that `x ≤ n − ns0+3, while the condition k − 1 ≤ ns0+3 and the above observation for
B′0(x) give n− 2ns0+3 < `x for s = 1. Clearly, `x = 0 for s = 2.
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Moreover, we have both for s = 1 and s = 2:

|B1(x)| = ns0+1, |B2(x)| = k − 1− ns0+1, |B3(x)| = ns0+3 − k + 1, |B4(x)| = n− `x − ns0+3. (32)

Thus, given ` ∈ {0}∪ [n−ns0+3−k+1, n−k+1] and a partition of [n] into five sets Bi, 0 ≤ i ≤ 4, with
cardinalities as in (32), it is enough to construct a net for vectors x ∈ Rs

kt with Bi(x) = Bi, 0 ≤ i ≤ 4,
`x = `, and then to take the union of nets over all possible realizations of ` and all such partitions
{B0, B1, B2, B3, B4} of [n].

Now we describe our construction. Fix ` as above and fix two parameters µ = 1/(Cτ
√
d), and ν =

9λt
√
n/R. We would like to emphasize that for the actual calculations in this lemma, taking µ to be a

small constant multiple of R−1 would be sufficient, however, we would like to run the proof with the above
choice of µ because this corresponds to the parameter choice in the previous Lemma 6.7 whose proof we
only sketched. Note that for x ∈ Rs

kt we have x 6∈ T , hence x∗ns0+1
≤ Cτ

√
dx∗ns0+2

≤ C2
τ d and

x∗1 ≤ (6d)x∗2 ≤ (6d)2x∗n1
≤ . . . ≤ (6d)s0+2x∗ns0+1

≤ C2
τ d(6d)s0+2. (33)

Fix I0 ⊂ [n] with |I0| = ns0+1 (which will play the role of B1). We will construct a µ-net NI0 (in the
`∞-metric) for the set

TI0 :=
{
PB1(x)x : x ∈ Rs

kt, B1(x) = I0

}
.

Clearly, the nets NI0 for various I0’s can be related by appropriate permutations, so without loss of
generality we can assume for now that I0 = [ns0+1]. First, consider the partition of I0 into sets I1, . . . , Is0+2

defined by
I1 = [2] and Ij = [nj−1] \ [nj−2], for 2 ≤ j ≤ s0 + 2.

Consider the set
T ∗ :=

{
x ∈ T[ns0+1] : σx(Ij) = Ij, j = 1, 2, . . . , s0 + 2

}
.

By the definition of TI0 , for every x ∈ T ∗, one has ‖PIjx‖∞ ≤ bj := C2
τ d(6d)s0+3−j for every j ≤ s0 + 2

(where as usual PI denotes the coordinate projection onto RI). Define a µ–net (in the `∞-metric) for T ∗
by setting

N ∗ := N1 ⊕N2 ⊕ · · · ⊕ Ns0+2,

where Nj is a µ-net (in the `∞-metric) of cardinality at most

(3bj/µ)|Ij | ≤ (C3
τ d

3/2(6d)s0+3−j)nj−1 ≤ (C3
τ (6d)s0+5−j)nj−1

in the coordinate projection of the cube PIj(bjB
n
∞). Recall that n0 = 2, nj = 30`j−1

0 , 1 ≤ j ≤ s0, where `0

and s0 are given by (27). Since d is large enough,

2s0 + 8 + 30

s0+1∑
j=2

(s0 + 5− j)`j−2
0 = 2s0 + 8 + 30

s0−1∑
m=1

(m+ 3)`s0−m0 ≤ 121`s0−1
0 ≤ 4.1ns0+1,

which implies

|N ∗| ≤
s0+2∏
j=1

|Nj| ≤ exp(7.1ns0+1 ln(6C2
τ d)).

To pass from the net for T ∗ to the net for T[ns0+1], let N[ns0+1] be the union of nets constructed as N ∗ but
for arbitrary partitions I ′1, . . . , I

′
s0+2 of [ns0+1] with |I ′j| = |Ij|. Using that

s0+1∑
j=1

nj−1 ≤ 2 + 30

s0−1∑
j=0

`j0 ≤ 2 + 30`s0−1
0 /(1− 1/`0) ≤ 2ns0+1
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and e`0 ≤ d, we obtain that the cardinality of N[ns0+1] is at most

|N ∗|
s0+1∏
j=1

(
nj
nj−1

)
≤ |N ∗|

s0+1∏
j=1

( enj
nj−1

)nj−1

≤ |N ∗|
s0+1∏
j=1

(e`0)nj−1 ≤ exp(9.1ns0+1 ln(6C2
τ d)).

Next we construct a net for the parts of the vectors corresponding to B2. Fix J0 ⊂ [n] with |J0| =
k − 1− ns0+1 (it will play the role of B2). We construct a µ-net (in the `∞-metric) for the set

T 2
J0

:= {PB2(x)x : x ∈ Υn(r) \ T , B2(x) = J0}.

Since by (33), we have x∗ns0+1
≤ C2

τ d for every x ∈ Υn(r)\T , it is enough to take a µ-net KJ0 of cardinality
at most

|KJ0| ≤ (3C2
τ d/µ)|J0| ≤ (3C3

τ d
3/2)k

in the coordinate projection of the cube PJ0(C
2
τ dB

n
∞).

Now we turn to the part of the vectors corresponding to B3. Fix D0 ⊂ [n] with |D0| = ns0+3 − k + 1
(it will play the role of B3). For this part we use `2-metric and construct a ν-net (in the Euclidean metric
this time) for the set

T 3
D0

:= {PB3(x)x : x ∈ Rs
kt, B3(x) = D0}.

Since for x ∈ Rs
kt we have ‖xB3(x)‖ ≤ ‖xσx([k,n])‖ ≤ 3λt

√
n, there exists a corresponding ν-net LD0 in the

coordinate projection of the Euclidean ball PD0(3λt
√
nBn

2 ) of cardinality at most

|LD0| ≤ (9λt
√
n/ν)|D0| ≤ Rns0+3 ≤ Rrn.

Next we approximate the almost constant part of a vector (corresponding to B0), provided that it is
not empty (otherwise we skip this step). Fix A0 ⊂ [n] with |A0| = ` (it will play the role of B0) and denote

T 0
A0

:= {PB0(x)x : x ∈
(
Υn(r) \ T

)
∩ AC(ρ), B0(x) = A0}.

Let K0
A0

:= {±PA01}. Since for every x ∈ Υn(r) we have either λx = 1 or λx = −1, by the definition of
B0(x), every z ∈ T 0

A0
is approximated by one of ±PA01 within error ρ in the `∞-metric.

We use 0 to approximate the last part of the vector, which corresponds to B4. Note that for any
x ∈ R1

kt we have ‖PB4(x)x‖ ≤
√
rn ≤

√
2rλt
√
n, in view of the condition x ∈ AC(ρ). On the other hand,

for x ∈ R2
kt we have ‖PB4(x)x‖ ≤

√
n ≤ 3r

2
λt
√
n.

Now we combine our nets. Consider the net

N0 :=
⋃

`,I0,J0,D0,A0

{
y = y1 + y2 + y3 + y0 : y1 ∈ NI0 , y2 ∈ KJ0 , y3 ∈ LD0 , y0 ∈ K0

A0

}
,

where the union is taken over all ` ∈ {0}∪[n−2ns0+3, n−ns0+3] and all partitions of [n] into I0, J0, D0, A0, B
with |I0| = ns0+1, |J0| = k − 1− ns0+1, |D0| = ns0+3 − k + 1, |A0| = `, and B = [n] \ (I0 ∪ J0 ∪D0 ∪ A0).
Then the cardinality of N0,

|N0| ≤ n

(
n

ns0+1

)(
n− ns0+1

k − 1− ns0+1

)(
n− k + 1

ns0+3 − k + 1

)(
n− ns0+3

`

)
max
I0
|NI0|max

J0
|KJ0|max

D0

|LD0 |max
A0

|K0
A0
|.

Using that ns0+1 ≤ n/(64d), k ≤ n/ ln2 d, ns0+3 ≤ rn, ` = 0 or ` ≥ n − 2ns0+3, the obtained bounds on
nets, as well as that d is large enough and r is small enough (smaller than a constant depending on R),
we observe that the cardinality of N0 is bounded by

n (ed)n/d
(
2e ln2 d

)n/ ln2 d
(2e/r)rn (2e/r)rn exp(9.1n ln(6C2

τ d)/(64d)) (3C3
τ d

3/2)n/ ln2 dRrn · 2 ≤ (e/r)2.5rn .
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By construction, for every x ∈ Rs
kt there exists y = y1 + y2 + y3 + y0 ∈ N0 such that

‖x− y‖ ≤ ‖PB1(x)x− y1‖+ ‖PB2(x)x− y2‖+ ‖PB3(x)x− y3‖+ ‖PB4(x)x‖+ ‖PB0(x)x− y0‖

≤ µ
√
ns0+1 + µ

√
k − 1− ns0+1 + ν +

√
2rλt
√
n+ ρ

√
n ≤ 2

√
n

Cτ
√
d

+ ρ
√
n+

9λt
√
n

R
≤ 10λt

√
n

R
,

where we used that ρ ≤ 1/(2R) ≤ λ1/(
√

2R) ≤ λt/(
√

2R) and that r is sufficiently small.
Finally we adjust our net to ||| · |||. Note that by Lemma 6.4 for every x ∈ Υn(r) \ T ,

| 〈x, e〉 | =

∣∣∣∣∣
n∑
i=1

xi√
n

∣∣∣∣∣ ≤ ‖x‖ ≤ 384C2
τ d

4

(64p)ln(6d)
≤ ern.

Therefore, there exists an ε/(4
√
pn)-net N∗ in P⊥e Rs

kt of cardinality 8
√
pnern/ε (note, the rank of P⊥e is

one). Then, by the constructions of nets, for every x ∈ Rs
kt there exist y ∈ N0 and y∗ ∈ N∗ such that

|||x− Pey − y∗|||2 = ‖Pe(x− y)‖2 + pn‖P⊥e x− y∗‖2 ≤ 100λ2
tn

R2
+ ε2/16 ≤ ε2/8.

Thus the set N = Pe(N0) +N∗ is an (ε/2)-net for Rs
kt with respect to ||| · ||| and its cardinality is bounded

by (e/r)3rn. Using standard argument we pass to an ε-net N s
kt ⊂ Rs

kt for Rs
kt.

6.4 Proof of Theorem 6.2

Proof. Recall that the sets Rs
ki were introduced just before Lemma 6.8 and the event Enrm was defined in

Proposition 3.14.
Fix s ∈ {1, 2}, k ≤ n/ ln2 d, A := [k, n], i ≤ m. Set ε := λi

√
n/(600

√
2C0), where λi and m are

defined according to (31). Applying Lemma 6.8 with R = 24000
√

2C0, we find an ε-net (in the ||| · |||–
norm) N s

ki ⊂ Rs
ki for Rs

ki of cardinality at most (e/r)3rn. Take for a moment any y ∈ N s
ki. Note that

‖yσ(A)‖ ≥ C0‖yσ(A)‖∞/
√
p, ‖yσ(A)‖ ≥ λi

√
n (where σ = σy). Then Proposition 3.10 implies P(Ecy) ≤ e−3n,

where

Ey =

{
‖My‖ >

√
pn

3
√

2C0

‖yσ(A)‖
}
.

Condition on the event
Enrm ∩

⋂
y∈N ski

Ey.

Using the definition ofN s
ki andRs

ki, the triangle inequality, and the definition of Enrm from Proposition 3.14,
we get that for any x ∈ Rs

ki there is y ∈ N s
ki such that |||x− y||| ≤ ε, and hence

‖Mx‖ ≥ ‖My‖ − ‖M(x− y)‖ >
√
pn

3
√

2C0

‖yσ(A)‖ − 100
√
pnε ≥

√
pλin

6
√

2C0

.

Using that |N s
ki| ≤ (e/r)3rn, that λi ≥ 1/

√
2, and the union bound, we obtain

P
(
Enrm ∩

{
∃x ∈ Rs

ki : ‖Mx‖ ≤
√
pn

12C0

})
≤ P

(
Enrm ∩

⋃
y∈N ski

Ecy
)
≤ e−3(1−r ln(e/r))n.

Since R =
⋃
k,i (R1

ki ∪ R2
ki) and r is small enough, the result follows by the union bound together with

(11) and Lemma 3.6 applied with t = 30 in order to estimate P(Enrm).
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6.5 Lower bounds on ‖Mx‖ for vectors from T0 ∪ T1

The following lemma provides a lower bound on the ratio ‖Mx‖/‖x‖2 for vectors x from T0 ∪ T1.

Lemma 6.9. Let n ≥ 1, 0 < p < 0.001, and assume that d = pn ≥ 200 lnn. Then

P
({
∃ x ∈ T0 ∪ T1 such that ‖Mx‖ ≤ (64p)κ

192(pn)2
‖x‖
})
≤ n(1− p)n + e−1.4np,

where κ is defined by (28).

Proof. Let δij, i, j ≤ n be entries of M . Let E be the event that there are no zero columns in M . Clearly,
P(E) ≥ 1− n(1− p)n.

Also, for each 1 ≤ j ≤ s0 + 1, let Ej = Ecol(`0, nj−1) be the event introduced in Lemma 6.5 (with s0, `0

defined in (27)), and observe that, according to Lemma 6.5, P(Ej) ≥ 1− e−1.5np for every j.
Recall that σx denotes a permutation [n] such that x∗i = |xσ(i)| for i ≤ n. Pick any x ∈ T0 ∪ T1. In the

case x ∈ T0 set m = m1 = 1 and m2 = 2. In the case x ∈ T1j for some 1 ≤ j ≤ s0 + 1 set m = m1 = nj−1

and m2 = nj. Then by the definition of sets T0, T1 we have x∗m > 6dx∗m2
. Let

J ` = J `(x) = σx([m]), Jr = Jr(x) = σx([m2 − 1] \ [m]), and J(x) = (J ` ∪ Jr)c

(if x ∈ T0 then Jr = ∅). Note that by our definition we have |xi| > 6d|xu| for any i ∈ J `(x) and u ∈ J(x),
and that maxi∈J(x) |xi| ≤ x∗m2

. Denote by I`(x) the (random) set of rows of M having exactly one 1 in
J `(x) and no 1’s in Jr(x). Now we recall that the event Esum was introduced in Lemma 3.4 (we use it with
q = p) and set

E ′ := E ∩ Esum ∩
s0+1⋂
j=1

Ej.

Clearly, conditioned on E ′, the set I`(x) is not empty for any x ∈ T0∪T1. By definition, for every s ∈ I`(x)
there exists j(s) ∈ J `(x) such that

suppRs(M) ∩ J `(x) = {j(s)} and suppRs(M) ∩ Jr(x) = ∅.

Since j(s) ∈ J `(x) (which implies |xj(s)| ≥ x∗m > 6dx∗m2
), we obtain

|〈Rs(M), x〉| =
∣∣∣xj(s) +

∑
j∈J(x)

δsjxj

∣∣∣ ≥ |xj(s)| − x∗m2

∑
j∈J(x)

δsj ≥ x∗m −
x∗m
6d

∑
j∈J(x)

δsj.

Observe that conditioned on Esum we have
∑

j∈J(x) δsj ≤
∑n

j=1 δsj ≤ 3.5pn = 3.5d. Thus, everywhere on
E ′ we have for all x ∈ T0 ∪ T1,

‖Mx‖ ≥ |〈Rs(M), x〉| ≥ x∗m/3, s ∈ I`(x).

Finally, in the case x ∈ T0 we have m = 1 and ‖x‖ ≤
√
nx∗1. In the case x ∈ T1j by Lemma 6.4 we have

‖x‖ ≤ 64(pn)2

(64p)κ
x∗m,

This proves the lower bound on ‖Mx‖/‖x‖ conditioned on E ′. The probability bound follows by the union
bound, Lemmas 3.4 and 6.5, and since s0 ≤ lnn, indeed

P

(
E ∩ Esum ∩

s0+1⋂
j=1

Ej

)
≥ 1− n(1− p)n − (s0 + 2)e−1.5np ≥ 1− n(1− p)n − e−1.4np.
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6.6 Individual bounds for vectors from T2 ∪ T3

In this section we provide individual probability bounds for vectors from the nets constructed in Lemma 6.7.
To obtain the lower bounds on ‖Mx‖, we consider the behavior of the inner products 〈Ri(M), x〉, more
specifically, of the Lévy concentration function for 〈Ri(M), x〉. To estimate this function, we will consider
2m columns of M corresponding to the m biggest and m smallest (in absolute value) coordinates of x,
where m = ns0+1 or m = ns0+2. In a sense, our anti-concentration estimates will appear in the process
of swapping 1’s and 0’s within a specially chosen subset of the matrix rows. A crucial element in this
process is to extract a pair of subsets of indices on which the chosen matrix rows have only one non-
zero component. This will allow to get anti-concentration bounds by “sending” the non-zero component
into the other index subset from the pair. The main difficulty in this scheme comes from the restriction
2mp ≤ 1/32 from Lemma 6.6, which guarantees existence of sufficiently many required subsets (and rows)
but which cannot be directly applied to m = ns0+2. To resolve this problem we use idea from [30]. We
split the initially fixed set of 2m columns into smaller subsets of columns of size at most 1/(64p) each,
and create independent random variables corresponding to this splitting. Then we apply Proposition 3.9,
allowing to deal with the Lévy concentration function for sums of independent random variables.

We first describe subdivisions ofMn used in [30]. Recall thatMn denotes the class of all n×n matrices
with 0/1 entries. We recall also that the probability measure P on Mn is always assumed to be induced
by a Bernoulli(p) random matrix. Given J ⊂ [n] and M ∈Mn denote

I(J,M) = {i ≤ n : |supp Ri(M) ∩ J | = 1}.

By MJ we denote the set of n × |J | matrices with 0/1 entries and with columns indexed by J . Fix
q0 ≤ n and a partition J0, J1, ..., Jq0 of [n]. Given subsets I1, . . . , Iq0 of [n] and V = (vij) ∈ MJ0 , denote
I = (I1, . . . , Iq0) and consider the class

F(I, V ) = {M = (µij) ∈Mn : ∀q ∈ [q0] I(Jq,M) = Iq and ∀i ≤ n∀j ∈ J0 µij = vij} .

In words, we fix the columns indexed by J0 and for each q ∈ [q0] we fix the row indices having exactly
one 1 in columns indexed by Jq. Then, for any fixed partition J0, J1, ..., Jq0 , Mn is the disjoint union of
classes F(I, V ) over all V ∈MJ0 and all I ∈ (P([n]))q0 , where P(·) denotes the power set.

The following is an important, but simple observation.

Lemma 6.10. Let F(I, V ) be a non-empty class (defined as above), and denote by PF the induced prob-
ability measure on F(I, V ), i.e., let

PF(B) :=
P(B)

P(F(I, V ))
, B ⊂ F(I, V ).

Then the matrix rows for matrices in F(I, V ) are mutually independent with respect to PF , in other words,
a random matrix distributed according to PF has mutually independent rows.

Finally, given a vector v ∈ Rn, a class F(I, V ), indices i ≤ n, q ≤ q0, define

ξq(i) = ξq(M, v, i) :=
∑
j∈Jq

δijvj, M = (δij) ∈ F(I, V ). (34)

We will view ξq(i) as random variables on F(I, V ) (with respect to the measure PF). It is not difficult to see
that for every fixed i, the variables ξ1(i), . . . ξq0(i) are mutually independent, and, moreover, whenever i ∈
Iq, the variable ξq(i) is uniformly distributed on the multiset {vj}j∈Jq . Thus, we may apply Proposition 3.9
to

|〈Ri(M), v〉| =
∣∣∣ q0∑
q=0

ξq(i)
∣∣∣
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with some α > 0 satisfying Q(ξq(i), 1/3) ≤ α for every i ∈ Iq. This gives

PF {|〈Ri(M), x+ y〉| ≤ 1/3} ≤ C0α√
(1− α)|{q ≥ 1 : i ∈ Iq}|

, (35)

where C0 is a positive absolute constant.

We are ready now to estimate individual probabilities.

Lemma 6.11 (Individual probabilities). There exist absolute constants C,C ′ > 1 > c1 > 0 such that the
following holds. Let p ∈ (0, 1/64], d = pn ≥ 2, Set m0 = b1/(64p)c and let m1 and m2 be such that

1 ≤ m1 < m2 ≤ n−m1.

Let y ∈ span {1} and assume that x ∈ Rn satisfies

x∗m1
> 2/3 and x∗i = 0 for every i > m2.

Denote m = min(m0,m1) and consider the event

E(x, y) =
{
M ∈Mn : ‖M(x+ y)‖ ≤

√
c1md

}
.

Then in the case m1 ≤ m0 one has

P(E(x, y) ∩ Ecard) ≤ 2−md/20,

and in the case m1 > C ′m0 one has

P(E(x, y) ∩ Ecard) ≤
(
Cn

m1d

)md/20

,

where Ecard is the event introduced in Lemma 6.6 with ` = 2m.

Remark 6.12. Below we apply Lemma 6.11 for sets Ti with the following choice of parameters. For i = 2
we set

m1 = m0 = ns0+1 = max(30`s0−1
0 , b1/(64p)c), m2 = ns0+2, and p ≤ 0.001,

obtaining
P(E(x, y) ∩ Ecard) ≤ 2−ns0+1d/20.

For i = 3, we set

m1 = ns0+2 = bn/
√
dc > m0 = ns0+1, m2 = ns0+3, and p ≤ 0.001,

obtaining for large enough d,

P(E(x, y) ∩ Ecard) ≤
(

Cn

ns0+2d

)ns0+1d/20

≤
(√

d/(2C)
)−ns0+1d/20

.

To prove Lemma 6.11 it will be convenient to use the same notation as in Lemma 6.9. Given two
disjoint subsets J `, Jr ⊂ [n] and a matrix M ∈Mn, denote

I` = I`(M) := {i ≤ n : |supp Ri(M) ∩ J `| = 1 and supp Ri(M) ∩ Jr = ∅},

and
Ir = Ir(M) := {i ≤ n : supp Ri(M) ∩ J ` = ∅ and |supp Ri(M) ∩ Jr| = 1}.

Here the upper indices ` and r refer to left and right.
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Proof. Let d = pn and fix γ = mp/72 = md/(72n).
Fix x ∈ Rn and y ∈ span {1} satisfying the conditions of the lemma. Let σ = σx, that is, a permutation

of [n] such that x∗i = |xσ(i)| for all i ≤ n. Denote q0 = m1/m and without loss of generality assume that
either q0 = 1 or that q0 is a large enough integer. Let J `1, J

`
2, . . . , J

`
q0

be a partition of σ([m1]) into sets of
cardinality m each, and let Jr1 , J

r
2 , . . . , J

r
q0

be a partition of σ([n −m1 + 1, n]) into sets of cardinality m
each. Denote

Jq := J `q ∪ Jrq for q ∈ [q0] and J0 := [n] \
q0⋃
q=1

Jq.

Then J0, J1, ..., Jq0 is a partition of [n], which we fix in this proof. Let M be a 0/1 n×n matrix. For every
pair J `q , J

r
q , let the sets I`q(M) and Irq (M) be defined as after Remark 6.12 and let Iq(M) = I`q(M)∪Irq (M).

Since
|Jq| = 2m ≤ 2m0 ≤ 1/(32p),

and by the definition of the event Ecard (see Lemma 6.6 with ` = 2m), we have

|Iq(M)| ∈ [md/8, 4md] (36)

everywhere on Ecard. Now we representMn as a disjoint union of classes F(I, V ) defined at the beginning
of this subsection with V ∈MJ0 and I = (I1, . . . , Iq). Since it is enough to prove a uniform upper bound
for classes F(I, V ) ∩ Ecard and since for every such non-empty class I must satisfy (36) for every q ≤ q0,
we have

P(E(x, y) ∩ Ecard) ≤ maxP(E(x, y) ∩ Ecard | F(I, V )) ≤ maxP(E(x, y)| F(I, V )),

where the first maximum is taken over all F(I, V ) with F(I, V ) ∩ Ecard 6= ∅ and the second maximum is
taken over all F(I, V ) with Iq’s satisfying condition (36).

Fix any class F(I, V ), where I satisfies (36), and denote the corresponding induced probability measure
on the class by PF , that is

PF(·) = P(· | F(I, V )).

Let

I :=

q0⋃
q=1

Iq.

Note that |I| ≤ 4q0md. We first show that the set of i’s which belongs to many Iq’s is large. More precisely,
denote

Ai = {q ∈ [q0] : i ∈ Iq}, i ∈ [n], and I0 = {i ≤ n : |Ai| ≥ γq0}.

Then, using bounds on cardinalities of Iq’s, one has

mdq0/8 ≤
q0∑
q=1

|Iq| =
n∑
i=1

|Ai| ≤ |I0|q0 + (n− |I0|)γq0 ≤ |I0|q0 + nγq0.

Thus,
|I0| ≥ md/8− nγ ≥ md/9.

Without loss of generality we assume that I0 = {1, 2, . . . |I0|} and only consider the first k := dmd/9e
indices from it. Then [k] ⊂ I0.

Now, by definition, for matrices M ∈ E(x, y) we have

‖M(x+ y)‖2 =
n∑
i=1

| 〈Ri(M), x+ y〉 |2 ≤ c1md.
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Therefore there are at most 9c1md rows with |〈Ri(M), x+ y)〉| ≥ 1/3. Hence,

|{i ≤ k : |〈Ri(M), x+ y〉| < 1/3}| ≥ md/9− 9c1md ≥ (1/9− 9c1)md.

Let k0 := d(1/9− 9c1)mde and for every i ≤ k denote

Ωi := {M ∈ F(I, V ) : | 〈Ri(M), x+ y〉 | < 1/3} and Ω0 = F(I, V ).

Then

PF(E(x, y)) ≤
∑
B⊂[k]
|B|=k0

PF
(⋂
i∈B

Ωi

)
≤
(
k

k0

)
max
B⊂[k]
|B|=k0

PF
(⋂
i∈B

Ωi

)
.

Without loss of generality we assume that the maximum above is attained at B = [k0]. Then

PF(E(x, y)) ≤ (e/(81c1))9c1md
k0∏
i=1

PF(Ωi|Ω1 ∩ . . . ∩ Ωi−1) = (e/(81c1))9c1md
k0∏
i=1

PF(Ωi), (37)

where at the last step we used mutual independence of the events Ωi (with respect to measure PF), see
Lemma 6.10.

Next we estimate the factors in the product. Fix i ≤ k0 and Ai = {q : i ∈ Iq}. Since, by our
assumptions, i ∈ I0, we have |Ai| ≥ γq0. Consider the random variables ξq(i) = ξq(M,x + y, i), q ∈ Ai,
defined in (34). Then by (35) we have

PF(Ωi) = PF
{
| 〈Ri(M), x+ y〉 | < 1/3

}
≤ QF

( q0∑
q=0

ξq(i), 1/3
)

≤ QF
(∑
q∈Ai

ξq(i), 1/3
)
≤ C0α√

(1− α)|Ai|
≤ C0α√

(1− α)γq0

,

where α = maxq∈Ai QF(ξq(i), 1/3). Moreover, in the case q0 = 1 we just have

PF(Ωi) ≤ α = Q(ξ1(i), 1/3).

Thus it remains to estimate QF(ξq(i), 1/3) for q ∈ Ai. Fix q ∈ Ai, so that i ∈ Iq. Recall that, by
construction, the intersection of the support of Ri(M) with Jq is a singleton everywhere on F(I, V ).
Denote the corresponding index by j(q,M) = j(q,M, i). Then

ξq(i) = ξq(M,x+ y, i) =
∑
j∈Jq

δij(xj + y1) = xj(q,M) + y1,

and note that |xj(q,M)| > 2/3 whenever j(q,M) ∈ J `q and xj(q,M) = 0 whenever j(q,M) ∈ Jrq . Observe

further that PF
{
j(q,M) ∈ Jrq

}
= PF

{
j(q,M) ∈ J `q

}
= 1/2. Hence, we obtain

QF(ξq(i), 1/3) ≤ 1/2 =: α.

Combining the probability estimates starting with (37) and using that γ = md/(72n), we obtain in the
case q0 = m1/m ≥ C ′,

PF(E(x, y)) ≤
(

e

81c1

)9c1md ( C0√
2γq0

)(1/9−9c1)md

=

(
e

81c1

)9c1md (6C0

√
n√

m1d

)(1/9−9c1)md

≤
(
C1n

m1d

)md/20

,
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provided that c1 is small enough and C1 = 36C2
0 . Note that the bound is meaningful only if C ′ is large

enough. In the case q0 = 1 we have

PF(E(x, y)) ≤
(

e

81c1

)9c1md (1

2

)(1/9−9c1)md

≤
(

1

2

)md/20

,

provided that c1 is small enough. This completes the proof.

6.7 Proof of Theorem 6.1

We are ready to complete the proof. Denote

m = m0 = ns0+1 := max(30`s0−1
0 , b1/(64p)c) ∈ [n/(64d), n/(2d)].

Lemma 6.9 implies that

P
({
∃ x ∈ T0 ∪ T1 such that ‖Mx‖ ≤ (64p)κ

192(pn)2
‖x‖
})
≤ n(1− p)n + e−1.4np.

We now turn to the remaining cases. Fix j ∈ {2, 3}. Let

Ej :=
{
M ∈Mn : ∃x ∈ Tj such that ‖Mx‖ ≤

√
c1md

2 bj
‖x‖
}
,

where c1 is the constant from Lemma 6.11, and b2 = 384(pn)3/(64p)κ, b3 = 384Cτ (pn)3.5/(64p)κ.
Recall that Enrm was defined in Proposition 3.14. For any matrix M ∈ Ej ∩ Enrm there exists x =

x(M) ∈ Tj satisfying

‖Mx‖ ≤
√
c1md

2 bj
‖x‖.

Normalize x so that x∗ns0+j−1
= 1, that is, x ∈ T ′j . By Lemma 6.4 we have ‖x‖ ≤ bj.

Let Nj = N ′j +N ′′j be the net constructed in Lemma 6.7. Then there exist u ∈ N ′j with

u∗s0+j−1 ≥ 1− 1/(Cτ
√
d) > 2/3

and u∗` = 0 for ` > ns0+j, and w ∈ N ′′j ⊂ span {1}, such that |||x − (u + w)||| ≤
√

2n/(Cτ
√
d). Applying

Proposition 3.14 (where Enrm was introduced), and using that Cτ is large enough, we obtain that for every
matrix M ∈ Ej ∩ Enrm there exist u = u(M) ∈ N ′j and w = w(M) ∈ N ′′j ⊂ span {1} with

‖M(u+ w)‖ ≤ ‖Mx‖+ ‖M(x− u− w)‖ ≤
√
c1md/2 + 200

√
2n/Cτ ≤

√
c1md. (38)

Using our choice of ns0+1, ns0+2, ns0+3, Lemma 6.7, and Lemma 6.11 twice — first with m1 = m0 = ns0+1,
m2 = ns0+2, then with m1 = ns0+2 > m0 = ns0+1, m2 = ns0+3 (see Remark 6.12), we obtain that for small
enough r and large enough d the probability P (E2 ∩ Enrm ∩ Ecard) is bounded by

exp (2ns0+2 ln d) 2−ns0+1d/20 ≤ exp (−ns0+1d/30) ≤ exp (−n/2000)

and that the probability P (E3 ∩ Enrm ∩ Ecard) is bounded by

exp (2ns0+3 ln d)
(√

d/(2C)
)−ns0+1d/20

≤ exp (−n ln d/10000) ,
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where Ecard is the event introduced in Lemma 6.6 with ` = 2m.
Combining all three cases we obtain that the desired bound holds for all x ∈ T with probability at

most
2 exp (−n/2000) + P (Ecnorm) + P (Eccard) .

It remains to note that since np is large, by Lemma 3.6 (applied with t = 30) and by Lemma 6.6,

P (Ecnrm) + P (Eccard) ≤ 4e−225np + 2 exp(−n/500) ≤ exp(−10pn).

2

6.8 Proof of Theorem 6.3

Proof. Clearly, it is enough to show that Υn(r)\(Vn(r,g, δ, ρ)∪T ) ⊂ R. Let x ∈ Υn(r)\T and set σ := σx.
Note that |xns0+2| ≤ Cτ

√
d, where s0 was defined in (27). Denote m0 = bn/ ln2 dc > 2ns0+2.

Assume first that x does not satisfy (10). Then by Lemma 3.2, x ∈ AC(ρ). If x∗m0
≤ ln2 d then denoting

k = m0, A = [k, n], and using the definition of AC(ρ), we observe

‖xσ(A)‖ ≥
√

(n− ns0+3 − k)(1− ρ) ≥
√
n/2,

whence
‖xσ(A)‖
‖xσ(A)‖∞

≥
√
n/2

ln2 d
≥ C0√

p
.

On the other hand, x∗m0
≤ |xns0+2| ≤ Cτ

√
d, hence ‖xσ(A)‖ ≤ Cτ

√
dn. This implies that x ∈ R1

k ⊂ R.

Now, if x∗m0
> ln2 d then denoting k = ns0+2, A = [k, n], we get

‖xσ(A)‖2 ≥
m0∑

i=ns0+2

(x∗i )
2 ≥ (m0/2) ln4 d ≥ (n/4) ln2 d,

whence
‖xσ(A)‖
‖xσ(A)‖∞

≥
√
n ln d

2Cτ
√
d
≥ C0√

p
.

As in the previous case we have ‖xσ(A)‖ ≤ Cτ
√
dn, which implies that x ∈ R1

k ⊂ R.

Next we assume that x does satisfy (10). Then, by the definition of the set Vn(r,g, δ, ρ) and our
function g, x does not satisfy the following condition:

∀i ≤ 1

64p
: x∗i ≤ exp(ln2(2n/i)) and ∀ 1

64p
< i ≤ n : x∗i ≤ (2n/i)3/2.

We fix the smallest value of j ≥ 1 which breaks this condition and consider several cases. Note that since
x ∈ Υn(r), we must have j ≤ rn.

Case 1. 2m0 ≤ j ≤ rn. In this case by the conditions and by minimality of j, we have x∗m0
≤ (2n/m0)3/2

and x∗j ≥ (2n/j)3/2. Take k = m0 and A = [k, n]. Then we have

‖xσ(A)‖ ≥
√
j −m0 + 1x∗j ≥

√
j/2 (2n/j)3/2 ≥

√
rn/2 (2/r)3/2 = 2

√
n/r,

hence
‖xσ(A)‖
‖xσ(A)‖∞

≥
(

2

r

) √
n

(2n/m0)3/2
≥
(

2

r

) √
n

(2 ln d)3
≥ C0√

p
.
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As above we have ‖xσ(A)‖ ≤ Cτ
√
dn, which implies that x ∈ R2

k ⊂ R.

Case 2. 16C2
0n/d ≤ j ≤ 2m0. Take k = dj/2e and A = [k, n]. Then we have x∗k ≤ (2n/k)3/2 ≤ (4n/j)3/2,

xj ≥ (2n/j)3/2, and

‖xσ(A)‖ ≥
√
j − k + 1x∗j ≥

√
j/2 (2n/j)3/2 ≥ (2/r)

√
n.

Therefore,

‖xσ(A)‖
‖xσ(A)‖∞

≥
(
j

2

)1/2
(2n/j)3/2

(4n/j)3/2
≥ C0√

p
.

Since x 6∈ T , we observe x∗k ≤ C2
τ d, hence ‖xσ(A)‖ ≤ C2

τ d
√
n and x ∈ R2

k ⊂ R.

In the rest of the proof we show that we must necessarily have j ≥ 16C2
0n/d.

Case 3. ns0+1 ≤ j < C1n/d, where C1 = 16C2
0 . Using that x 6∈ T , in this case we have

C2
τ d ≥ x∗j ≥

(
2n

j

)3/2

≥
(

2d

C1

)3/2

,

which is impossible for large enough d.

Case 4. ns0 ≤ j < ns0+1. Using that x 6∈ T and that ns0+1 = b1/(64p)c = bn/(64d)c, in this case we have

(6d)C2
τ d ≥ x∗j ≥ exp(ln2(2n/j)) ≥ exp(ln2(2n/ns0+1)) ≥ exp(ln2(128d))

which is impossible for large enough d.

Case 5. nk ≤ j < nk+1 for some 1 ≤ k ≤ s0 − 1. Recall that nk = 30`k−1
0 and recall also that if s0 > 1

(as in this case) then p ≤ c
√
n lnn. Using that x 6∈ T , in this case we have

(C2
τ d)(6d)s0−k+1 ≥ x∗j ≥ exp(ln2(2n/j)) ≥ exp(ln2(2n/(30`k0))),

hence
(C2

τ d)(6d)s0+1 ≥ (6d)k exp(ln2(2n/(30`k0))). (39)

Considering the function f(k) := k ln(6d) + ln2(2n/(30`k0), we observe that its derivative is linear in k,
therefore f attains its maximum either at k = 1 or at k = s0 − 1. Thus, to show that (39) is impossible,

it is enough to consider k = 1, s0 − 1 only. Let k = 1. By (29), (6d)s0 ≤ (6d) 1/(64p)κ, where κ = ln(6d)
ln `0

.
Therefore, the logarithm of the left hand side of (39) is

ln((C2
τ d)(6d)s0+1) ≤ 4 ln d+

ln(6d)

ln `0

ln(1/64p). (40)

On the other hand, n/`0 ≥ (4 ln(1/p))/p, therefore the logarithm of the left hand side of (39) is larger
than ln2(ln(1/p)/(4p)). Thus, it is enough to check that

(1/2) ln2(ln(1/p)/(4p)) ≥ 4 ln d and (1/2) ln2(ln(1/p)/(4p)) ln `0 ≥ ln(6d) ln(1/64p).

Both inequalities follows since p ≤ c
√
n lnn, d = pn, d and n are large enough, and since `0 ≥ 25. Next

assume that k = s0 − 1. Note that in this case `k0 ≤ n/(64d). Thus, to disprove (39), it is enough to show
that

ln2(64d/15) ≥ ln(36C2
τ d

3),

which clearly holds for large enough d.

Case 6. 2 ≤ j < 30. In this case we have

(C2
τ d)(6d)s0+1 ≥ x∗j ≥ exp(ln2(2n/j)) ≥ exp(ln2(2n/30)),
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By (40) this implies

4 ln d+
ln(6d)

ln `0

ln(1/64p) ≥ ln2(2n/30),

which is impossible.

Case 7. j = 1. In this case we have (C2
τ d)(6d)s0+2 ≥ x∗1 ≥ exp(ln2(2n)) and we proceed as in Case 6.

7 Proof of the main theorem

In this section, we combine the results of Sections 4, 5, and 6, as well as Subsection 3.2 to prove the main
theorems, Theorems 1.2 and the following improvement for the case of constant p.

Theorem 7.1. There exists an absolute positive constant c with the following property. Let q ∈ (0, c) be
a parameter (independent of n). Then there exist Cq and nq ≥ 1 (both depend only on q), such that for
every n ≥ nq and every p ∈ (q, c) a Bernoulli(p) n× n random matrix Mn satisfies

P
{
Mn is singular

}
= (2 + on(1))n (1− p)n,

and, moreover, for every t > 0,

P
{
smin(Mn) ≤ Cq n

−2.5 t
}
≤ t+ (1 + on(1))P

{
Mn is singular

}
= t+ (2 + on(1))n (1− p)n.

At this stage, the scheme of the proof to a large extent follows the approach of Rudelson and Vershynin
developed in [44]. However, a crucial part of their argument — “invertibility via distance” (see [44,
Lemma 3.5]) — will be reworked in order to keep sharp probability estimates for the matrix singularity
and to be able to bind this part of the argument with the previous sections, where we essentially condition
on row- and column-sums of our matrix.

We start by restating main results of Sections 5 and 6 using the vector class Vn(r,g, δ, ρ) defined by
(1), together with Lemma 3.1.

Corollary 7.2. There are universal constants C ≥ 1, δ, ρ ∈ (0, 1) and r ∈ (0, 1) with the following
property. Let Mn be a random matrix satisfying (A) with C and let the growth function g be given by
(30). Then

P
{
‖Mnx‖ ≤ a−1

n ‖x‖ for some x /∈
⋃
λ≥0

(
λVn(r,g, δ, ρ)

)}
= (1 + on(1))n (1− p)n, (41)

where

an =
(pn)2

c(64p)κ
max

(
1, p1.5n

)
and κ = κ(p) := (ln(6pn))/ ln

⌊
pn

4 ln(1/p)

⌋
.

Further, Theorems 5.1, 5.2 and Lemma 3.1 are combined as follows.

Corollary 7.3. There are universal positive constants c, C with the following property. Let q ∈ (0, c) be
a parameter. Then there exist n0 = n0(q) ≥ 1, r = r(q), ρ = ρ(q) ∈ (0, 1) such that for n ≥ n0, p ∈ (q, c),
δ = r/3, g(t) = (2t)3/2, a random Bernoulli(p) n× n matrix Mn satisfies (41) with an = C

√
n ln(e/p).

Below is our version of “invertibility via distance,” which deals with pairs of columns.
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Lemma 7.4 (Invertibility via distance). Let r, δ, ρ ∈ (0, 1), and let g be a growth function. Further, let
n ≥ 6/r and let A be an n× n random matrix. Then for any t > 0 we have

P
{
‖Ax‖ ≤ t ‖x‖ for some x ∈ Vn(r,g, δ, ρ)

}
≤ 2

(rn)2

∑
i 6=j

P
{

dist(Hi(A),Ci(A)) ≤ t bn and dist(Hj(A),Cj(A)) ≤ t bn
}
,

where the sum is taken over all ordered pairs (i, j) with i 6= j and bn =
∑n

i=1 g(i).

Proof. For every i 6= j, denote by 1ij the indicator of the event

Eij :=
{

dist(Hi(A),Ci(A)) ≤ t bn and dist(Hj(A),Cj(A)) ≤ t bn
}
.

The condition
‖Ax‖ ≤ t ‖x‖

for some x ∈ Vn = Vn(r,g, δ, ρ) implies that for every i ≤ n,

|xi| dist(Hi(A),Ci(A)) ≤ ‖Ax‖ ≤ t bn,

where the last inequality follows from the definition of Vn. Since x∗brnc = 1, we get that everywhere on

the event {‖Ax‖ ≤ t ‖x‖ for some x ∈ Vn} there are at least brnc (brnc − 1) ≥ (rn)2/2 ordered pairs of
indices (i, j) such that for each pair the event Eij occurs. Rewriting this assertion in terms of indicators,
we observe

{‖Ax‖ ≤ t ‖x‖ for some x ∈ Vn} ⊂
{∑

i 6=j

1ij ≥ (rn)2/2
}
.

Applying Markov’s inequality in order to estimate probability of the event on the right hand side, we
obtain the desired result.

Proof of Theorems 1.2 and 7.1. The proofs of both theorems are almost the same, the only difference is
that Theorem 1.2 uses Corollary 7.3 while Theorem 1.2 uses Corollary 7.2. Let parameters δ, ρ, r,g, an be
taken from Corollary 7.2 or from Corollary 7.3 correspondingly. We always write Vn for Vn(r,g, δ, ρ). Let
bn =

∑n
i=1 g(i). Without loss of generality, we can assume that n ≥ 6/r. Fix t ∈ (0, 1], and denote by E

the complement of the event{
‖Mnx‖ ≤ a−1

n ‖x‖ or ‖M>
n x‖ ≤ a−1

n ‖x‖ for some x /∈
⋃
λ≥0

(
λVn

)}
.

For i = 1, 2 denote
Ei :=

{
dist(Hi(Mn),Ci(Mn)) ≤ a−1

n t
}
.

Applying Corollary 7.2 (or Corollary 7.3), Lemma 7.4 and the invariance of the conditional distribution
of Mn given E under permutation of columns, we obtain

P
{
smin(Mn) ≤ (anbn)−1t

}
≤ (2 + on(1))n (1− p)n + P

({
‖Mnx‖ ≤ (anbn)−1 t‖x‖ for some x ∈ Vn

}
∩ E
)

≤ (2 + on(1))n (1− p)n +
2

r2
P
(
E ∩ E1 ∩ E2

)
.

At the next step, we consider events

Ωi :=
{
|supp Ci(Mn)| ∈ [pn/8, 8pn]

}
, i = 1, 2, and Ω := Ω1 ∪ Ω2.
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Since columns of M are independent and consist of i.i.d. Bernoulli(p) variables, applying Lemma 3.4, we
observe

P
(
Ωc
)

= P
(
Ωc

1

)
P
(
Ωc

2

)
≤ (1− p)n.

Therefore, in view of equidistribution of the first two columns, we get

P
(
E ∩ E1 ∩ E2

)
≤ (1− p)n + P

(
E ∩ E1 ∩ E2 ∩ Ω

)
≤ (1− p)n + 2P

(
E ∩ E1 ∩ Ω1

)
.

Denote by Y a random unit vector orthogonal to (and measurable with respect to) H1(Mn). Note that
on the event E1 the vector Y satisfies

|〈Y,C1(Mn)〉| = ‖M>
n Y‖ ≤ a−1

n t ‖Y‖,

which implies that on the event E ∩ E1 we also have Y∗brnc 6= 0, and Z := Y/Y∗brnc ∈ Vn. By the definition

of Vn, we have ‖Z‖ ≤ bn, therefore,

P0 := P
(
E ∩ E1 ∩ Ω1

)
≤ P

(
Ω1 ∩

{
∃Z ∈ H1(Mn)⊥ ∩ Vn : |〈Z,C1(Mn)〉| ≤ a−1

n bn t
})
.

On the other hand, applying Theorem 2.2 with R = 2, we get that for some constants K1 ≥ 1 and K2 ≥ 4,
with probability at least 1− exp(−2pn),

H1(Mn)⊥ ∩ Vn ⊂
{
x ∈ Υn(r) : UDn(x,m,K1, K2) ≥ exp(2pn) for any m ∈ [pn/8, 8pn]

}
.

Combining the last two assertions and applying Theorem 2.1, we observe

P0 ≤ exp(−2pn) + P
(
Ω1 ∩

{
∃Z ∈ H1(Mn)⊥ ∩ Vn : |〈Z,C1(Mn)〉| ≤ a−1

n bn t and

∀m ∈ [pn/8, 8pn] : UDn(Z,m,K1, K2) ≥ exp(2pn)
})

≤ exp(−2pn) + sup
m∈[pn/8,8pn], y∈Υn(r),

UDn(y,m,K1,K2)≥exp(2pn)

P
{
|〈y,C1(Mn)〉| ≤ a−1

n bn t
∣∣ |supp C1(Mn)| = m

}
≤ (1 + C2.1) exp(−2pn) +

C2.1bn

an
√
pn/8

t.

Thus

P
{
smin(Mn) ≤ (anbn)−1t

}
≤ (2 + on(1))n (1− p)n +

8C2.1bn
r2 an

√
pn

t.

By rescaling t we obtain

P
{
smin(Mn) ≤

r2√pn
(8C2.1b2

n)
t
}
≤ (2 + on(1))n (1− p)n + t, 0 ≤ t ≤ 8C2.1bn

r2 an
√
pn
.

In the case of constant p (applying Corollary 7.3) we have an = C
√
n ln(e/p) and bn ≤ 2

√
3n3/2, and

we get the small ball probability estimate of Theorem 7.1.

In the general case (applying Corollary 7.2) we have an = (pn)2

c(64p)κ
max (1, p1.5n) and bn ≤ exp(1.5 ln2(2n)).

Therefore,
r2√pn

(8C2.1b2
n)
≥ exp(−3 ln2(2n))

for large enough n, and the smin estimate follows.

In both cases the upper bound on t, 8C2.1bn
r2 an

√
pn

, is greater than 1, so we may omit it.

Finally, applying the argument of Subsection 3.2, we get the matching lower bound for the singularity
probability. This completes the proof.
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8 Further questions

The result of this paper leaves open the problem of estimating the singularity probability for Bernoulli
matrices in two regimes: when npn is logarithmic in n and when pn is larger than the constant C−1 from
Theorem 1.2.

For the first regime, we recall that the singularity probability of Mn, with npn in a (small) neighborhood
of lnn, was determined up to the 1 + on(1) multiple in the work of Basak–Rudelson [5].

Problem 8.1 (A bridge: Theorem 1.2 to Basak–Rudelson). Let pn satisfy

1 ≤ lim inf npn/ lnn ≤ lim supnpn/ lnn <∞,

and for each n let Mn be the n× n matrix with i.i.d. Bernoulli(pn) entries. Show that

P
{
Mn is singular

}
= (1 + on(1))P

{
Mn has a zero row or a zero column

}
.

A few months after our paper was posted on arXiv, a positive solution to the above problem was
given by Huang in [15], thus completing the research program of sharp singularity probability estimates
for sparse Bernoulli matrices.

The second problem is the singularity of random Bernoulli matrices with large values of pn.

Problem 8.2 (Optimal singularity probability for dense Bernoulli matrices below the 1/2 threshold). Let
the sequence pn satisfy

0 < lim inf pn ≤ lim sup pn < 1/2.

Show that

P
{
Mn is singular

}
= (1 + on(1))P

{
Mn has a zero row or a zero column

}
= (2 + on(1))n (1− pn)n.

As with the first problem, a few months after our paper was posted on arXiv, a positive solution
was obtained by Jain, Sah, and Sawhney in [17, 18] (their result in fact covers a more general model of
randomness). Conditioning on the sums of Bernoulli random vectors exploited in the present paper, is
also one of crucial elements of [17].
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