Quantitative version of a Silverstein's result

Alexander E. Litvak ${ }^{1} \quad$ Susanna Spektor

Abstract

We prove a quantitative version of a Silverstein's Theorem on the 4 -th moment condition for convergence in probability of the norm of a random matrix. More precisely, we show that for a random matrix with i.i.d. entries, satisfying certain natural conditions, its norm cannot be small.

Let w be a real random variable with $\mathbb{E} w=0$ and $\mathbb{E} w^{2}=1$, and let $w_{i j}, i, j \geq 1$ be its i.i.d. copies. For integers n and $p=p(n)$ consider the $p \times n$ matrix $W_{n}=\left\{w_{i j}\right\}_{i \leq p, j \leq n}$, and consider its sample covariance matrix $\Gamma_{n}:=\frac{1}{n} W_{n} W_{n}^{T}$. We also denote by $X_{j}=\left(w_{j 1}, \ldots, w_{j n}\right), j \leq p$, the rows of W_{n}.

The questions on behavior of eigenvalues are of great importance in random matrix theory. We refer to $[4,6,14]$ for the relevant results, history and references.

In this note we study lower bounds on $\max _{i \leq p}\left|X_{i}\right|$, where $|\cdot|$ denotes the Euclidean norm of a vector, and on the operator (spectral) norms of matrices W_{n} and Γ_{n}. Note, as Γ_{n} is symmetric, its largest singular value $\lambda_{\max }$ is equal to the norm and that in general we have

$$
\begin{equation*}
\lambda_{\max }\left(\Gamma_{n}\right)=\left\|\Gamma_{n}\right\|=\frac{1}{n}\left\|W_{n}\right\|^{2} \geq \frac{1}{n} \max _{i \leq p}\left|X_{i}\right|^{2} \tag{1}
\end{equation*}
$$

Assume that $p(n) / n \rightarrow \beta>0$ as $n \rightarrow \infty$. In [19] it was proved that $\mathbb{E} w^{4}<\infty$ then $\left\|\Gamma_{n}\right\| \rightarrow(1+\sqrt{\beta})^{2}$ a.s., while in $[7]$ it was shown that $\lim \sup _{n \rightarrow \infty}\left\|\Gamma_{n}\right\|=\infty$ a.s. if $\mathbb{E} w^{4}=\infty$.

In [16] Silverstein studied the weak behavior of $\left\|\Gamma_{n}\right\|$. In particular, he proved that assuming $p(n) / n \rightarrow \beta>0$ as $n \rightarrow \infty,\left\|\Gamma_{n}\right\|$ converges to a non-random quantity (which must be $\left.(1+\sqrt{\beta})^{2}\right)$ in probability if and only if $n^{4} \mathbb{P}(|w| \geq n)=o(1)$.

The purpose of this note is to provide the quantitative counterpart of Silverstein's result. More precisely, we want to show an estimate of the type $\mathbb{P}\left(\left\|\Gamma_{n}\right\| \geq K\right) \geq \delta=\delta(K)$ for an arbitrary large K, provided that w has heavy tails (in particular, provided that w does not have 4 -th moment). Our proof essentially follows ideas of [16]. It gives a lower bound on $\max _{i \leq p}\left|X_{i}\right|$ as well.

[^0]Theorem 1. Let $\alpha \geq 2, c_{0}>0$. Let w be a random variable satisfying $\mathbb{E} w=0, \mathbb{E} w^{2}=1$ and

$$
\begin{equation*}
\forall t \geq 1 \quad \mathbb{P}(|w| \geq t) \geq \frac{c_{0}}{t^{\alpha}} \tag{2}
\end{equation*}
$$

Let $W_{n}=\left\{w_{i j}\right\}_{i \leq p, j \leq n}$ be a $p \times n$ matrix whose entries are i.i.d. copies of w and let $X_{i}, i \leq p$, be the rows of W_{n}. Then, for every $K \geq 1$,

$$
\begin{equation*}
\mathbb{P}\left(\max _{i \leq p}\left|X_{i}\right| \geq \sqrt{K n}\right) \geq \min \left\{\frac{c_{0} p}{4 n^{(\alpha-2) / 2} K^{\alpha / 2}}, \frac{1}{2}\right\} \tag{3}
\end{equation*}
$$

In particular, $\Gamma_{n}=\frac{1}{n} W_{n} W_{n}^{T}$ satisfies for every $K \geq 1$,

$$
\mathbb{P}\left(\left\|\Gamma_{n}\right\| \geq K\right) \geq \min \left\{\frac{c_{0} p}{4 n^{(\alpha-2) / 2} K^{\alpha / 2}}, \frac{1}{2}\right\}
$$

Remark 2. Taking $K=\left(c_{0} p n / 2\right)^{2 / \alpha} / n$ we observe

$$
\mathbb{P}\left(\left\|W_{n}\right\| \geq\left(c_{0} p n / 2\right)^{1 / \alpha}\right) \geq \mathbb{P}\left(\max _{i \leq p}\left|X_{i}\right| \geq\left(c_{0} p n / 2\right)^{1 / \alpha}\right) \geq \frac{1}{2}
$$

This estimate seems to be sharp in view of the following result (see Corollary 2 in [5]). Let $0<\alpha<4$ and let w be defined by

$$
\mathbb{P}(|w|>t)=\min \left\{1, t^{-\alpha}\right\} \quad \text { for } t>0
$$

Let W_{n} and X_{i} 's be as in Theorem 1. Assume that $p / n \rightarrow \beta>0$ as $n \rightarrow \infty$. Then

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\left\|W_{n}\right\| \leq(p n)^{1 / \alpha} t\right)=\exp \left(-t^{-\alpha}\right)
$$

Remark 3. If p is proportional to n, say $p=\beta n$, the theorem gives

$$
\mathbb{P}\left(\left\|\Gamma_{n}\right\| \geq K\right) \geq \mathbb{P}\left(\max _{i \leq p}\left|X_{i}\right| \geq \sqrt{K n}\right) \geq \min \left\{\frac{c_{0} \beta}{4 n^{(\alpha-4) / 2} K^{\alpha / 2}}, \frac{1}{2}\right\}
$$

in particular, taking $K=\left(c_{0} \beta / 2\right)^{2 / \alpha} n^{4 / \alpha-1}$, we observe

$$
\mathbb{P}\left(\left\|W_{n}\right\| \geq\left(c_{0} \beta / 2\right)^{1 / \alpha} n^{2 / \alpha}\right) \geq \mathbb{P}\left(\max _{i \leq p}\left|X_{i}\right| \geq\left(c_{0} \beta / 2\right)^{1 / \alpha} n^{2 / \alpha}\right) \geq \frac{1}{2}
$$

Remark 4. Note that by Chebychev's inequality one has $\mathbb{P}(|w| \geq t) \leq t^{-2}$. Note also that we use condition (2) in the proof only once, with $t=\sqrt{K n}$.
Remark 5. If $p \geq\left(2 / c_{0}\right) K^{\alpha / 2} n^{(\alpha-2) / 2}$, then, by condition (2), we have

$$
\frac{n}{2} \mathbb{P}\left(w^{2} \geq K n\right) \geq \frac{n c_{0}}{2(K n)^{\alpha / 2}}=\frac{c_{0}}{2 K^{\alpha / 2} n^{(\alpha-2) / 2}} \geq \frac{1}{p}
$$

Therefore in this case the proof below gives

$$
\mathbb{P}\left(\left\|\Gamma_{n}\right\| \geq K\right) \geq \mathbb{P}\left(\max _{i \leq p}\left|X_{i}\right| \geq \sqrt{K n}\right) \geq \frac{1}{2}
$$

In particular, if $\alpha=4$ and $p \geq\left(2 K^{2} / c_{0}\right) n$ then $\left\|\Gamma_{n}\right\| \geq K$ with probability at least $1 / 2$.

Before we prove the theorem we would like to mention that last decade many works appeared on non-limit behavior of the norms of random matrices with random entries. In most of them $\max _{i \leq p}\left|X_{i}\right|$ appears naturally (or \sqrt{n}, when X_{i} is with high probability bounded by $\sqrt{n})$. For earlier works on Gaussian matrices we refer to $[9,10,18]$ and references therein. For the general case of centered i.i.d. $w_{i, j}$ (as in our setting) Seginer [15] proved that

$$
\mathbb{E}\left\|W_{n}\right\| \leq C\left(\mathbb{E} \max _{i \leq p}\left|X_{i}\right|+\mathbb{E} \max _{j \leq n}\left|Y_{j}\right|\right)
$$

where $Y_{j}, j \leq n$, are the columns of W_{n}. Later Latała [11] was able to remove the condition that $w_{i, j}$ are identically distributed (his formula involves 4 -th moments). Moreover, Mendelson and Paouris [12] have recently proved that for centered i.i.d. $w_{i, j}$ of variance one satisfying $\mathbb{E}\left|w_{1,1}\right|^{q} \leq L$ for some $q>4$ and $L>0$ with high probability one has

$$
\mathbb{E}\left\|W_{n}\right\| \leq \max \{\sqrt{p}, \sqrt{n}\}+C(q, L) \min \{\sqrt{p}, \sqrt{n}\}
$$

In $[1,3,12,13,17]$ matrices with independent columns (which can have dependent coordinates) were investigated. In particular, in [1] (see Theorem 3.13 there) it was shown that if columns of $p \times n$ matrix A satisfy

$$
\sup _{q \geq 1} \sup _{i \leq p} \sup _{y \in S^{n-1}} \frac{1}{q}\left(\mathbb{E}\left|\left\langle X_{i}, y\right\rangle\right|^{q}\right)^{1 / q} \leq \psi
$$

then with probability at least $1-\exp (-c \sqrt{p})$ one has

$$
\begin{equation*}
\|A\| \leq 6 \max _{i \leq p}\left|X_{i}\right|+C \psi \sqrt{p} \tag{4}
\end{equation*}
$$

(using Theorem 5.1 in [2] the factor 6 can be substituted by $(1+\varepsilon)$ in which case constants C and c will be substituted with $C \ln (2 / \varepsilon)$ and $c \ln (2 / \varepsilon)$ correspondingly). Moreover, very recently (4) was extended to the case of matrices whose (independent) columns satisfy

$$
\sup _{i \leq p} \sup _{y \in S^{n-1}}\left(\mathbb{E}\left|\left\langle X_{i}, y\right\rangle\right|^{q}\right)^{1 / q} \leq \psi
$$

for some $q>4$ with the constant C depending on q ([8]).
Proof of the Theorem. By (1) the "In particular" part of the Theorem follows immediately from (3). Thus, it is enough to prove (3).

Since X_{1}, \ldots, X_{p} are i.i.d. random vectors and since $\left|X_{1}\right|^{2}$ is distributed as $\sum_{j=1}^{n} w_{1, j}^{2}$, we observe for every $K \geq 1$,

$$
\begin{align*}
\mathbb{P}\left(\max _{i \leq p}\left|X_{i}\right| \geq \sqrt{K n}\right) & =1-\mathbb{P}\left(\max _{i \leq p}\left|X_{i}\right|<\sqrt{K n}\right)=1-\mathbb{P}\left(\left\{\forall i:\left|X_{i}\right|<\sqrt{K n}\right\}\right) \\
& =1-\left(\mathbb{P}\left(\left|X_{1}\right|<\sqrt{K n}\right)\right)^{p}=1-\left(\mathbb{P}\left(\sum_{j=1}^{n} w_{1, j}^{2}<K n\right)\right)^{p} \tag{5}
\end{align*}
$$

For $j \leq n$ consider the events $A_{j}:=\left\{w_{1, j}^{2} \geq n K\right\}$. Clearly,

$$
A:=\left\{\sum_{j=1}^{n} w_{1, j}^{2} \geq n K\right\} \supset \bigcup_{j=1}^{n} A_{j} .
$$

By the inclusion-exclusion principle, we have

$$
\begin{aligned}
\mathbb{P}(A) \geq \mathbb{P}\left\{\bigcup_{j=1}^{n} A_{j}\right\} & \geq \sum_{j=1}^{n} \mathbb{P}\left(A_{j}\right)-\sum_{j \neq k} \mathbb{P}\left(A_{j} \cap A_{k}\right)=\sum_{j=1}^{n} \mathbb{P}\left(w^{2} \geq n K\right)-\sum_{j \neq k}\left(\mathbb{P}\left(w^{2} \geq n K\right)\right)^{2} \\
& =n \mathbb{P}\left(w^{2} \geq n K\right)-\frac{n^{2}-n}{2}\left(\mathbb{P}\left(w^{2} \geq n K\right)\right)^{2} \\
& =\frac{n}{2} \mathbb{P}\left(w^{2} \geq n K\right)\left(2-(n-1) \mathbb{P}\left(w^{2} \geq n K\right)\right) .
\end{aligned}
$$

By Chebychev's inequality we have $\mathbb{P}\left(w^{2} \geq n K\right) \leq \frac{1}{n K}$, hence, $2-(n-1) \mathbb{P}\left(w^{2} \geq n K\right) \geq 1$. Thus, by (5),

$$
\begin{aligned}
& \mathbb{P}\left(\max _{i \leq p}\left|X_{i}\right| \geq \sqrt{K n}\right) \geq 1-\left(1-\mathbb{P}\left(\frac{1}{n} \sum_{j=1}^{n} w_{1, j}^{2} \geq K\right)\right)^{p} \geq 1-\left(1-\frac{n}{2} \mathbb{P}\left(w^{2} \geq n K\right)\right)^{p} \\
& \text { If } \frac{n}{2} \mathbb{P}\left(w^{2} \geq K n\right) \geq \frac{1}{p} \text {, then } \\
& \qquad \mathbb{P}\left(\max _{i \leq p}\left|X_{i}\right| \geq \sqrt{K n}\right) \geq 1-\left(1-\frac{1}{p}\right)^{p} \geq 1-\frac{1}{e} \geq \frac{1}{2}
\end{aligned}
$$

Finally assume that

$$
\begin{equation*}
\frac{n}{2} \mathbb{P}\left(w^{2} \geq K n\right) \leq \frac{1}{p} \tag{6}
\end{equation*}
$$

Using that $(1-x)^{p} \leq(1+p x)^{-1}$ on $[0,1]$, we get

$$
\mathbb{P}\left(\max _{i \leq p}\left|X_{i}\right| \geq \sqrt{K n}\right) \geq 1-\frac{1}{(n p / 2) \mathbb{P}\left(w^{2} \geq K n\right)+1} .
$$

Applying condition (2) with $t=\sqrt{K n}$ and using (6) again, we observe

$$
1 \geq \frac{n p}{2} \mathbb{P}\left(w^{2} \geq K n\right) \geq \frac{n p}{2} \frac{c_{0}}{(K n)^{\alpha / 2}}
$$

Thus,

$$
\mathbb{P}\left(\max _{i \leq p}\left|X_{i}\right| \geq \sqrt{K n}\right) \geq \frac{c_{0} p}{4 n^{(\alpha-2) / 2} K^{\alpha / 2}}
$$

which completes the proof.
Acknowledgment. We are grateful to A. Pajor for useful comments and to S. Sodin for bringing reference [5] to our attention.

References

[1] R. Adamczak, A.E. Litvak, A. Pajor and N. Tomczak-Jaegermann, Quantitative estimates of the convergence of the empirical covariance matrix in log-concave ensembles, J. Amer. Math. Soc. 23 (2010), 535-561.
[2] R. Adamczak, A.E. Litvak, A. Pajor and N. Tomczak-Jaegermann, Restricted isometry property of matrices with independent columns and neighborly polytopes by random sampling, Constructive Approximation, 34 (2011), 61-88.
[3] R. Adamczak, A.E. Litvak, A. Pajor and N. Tomczak-Jaegermann, Sharp bounds on the rate of convergence of empirical covariance matrix, C.R. Math. Acad. Sci. Paris, 349 (2011), 195-200.
[4] G.W. Anderson, A. Guionnet, O. Zeitouni, An introduction to random matrices, Cambridge Studies in Advanced Mathematics, 118. Cambridge University Press, Cambridge, 2010.
[5] A. Auffinger, G. Ben Arous, S. Péché, Sandrine Poisson convergence for the largest eigenvalues of heavy tailed random matrices, Ann. Inst. Henri Poincar Probab. Stat. 45 (2009), 589-610.
[6] Z.D. Bai, J.W. Silverstein, Spectral analysis of large dimensional random matrices. Second edition. Springer Series in Statistics. Springer, New York, 2010.
[7] Z. D. Bai, J. Silverstein, Y. Q. Yin, A note on the largest eigenvalue of a large dimensional sample covariance matrix, Journal of Multivariate Analysis, Vol 26, 2 (1988), 166-168.
[8] O. Guédon, A.E. Litvak, A. Pajor and N. Tomczak-Jaegermann, Restricted isometry property for random matrices with heavy tailed columns, C.R. Math. Acad. Sci. Paris, to appear.
[9] Y. Gordon, On Dvoretzky's theorem and extensions of Slepian's lemma, Israel seminar on geometrical aspects of functional analysis (1983/84), II, Tel Aviv Univ., Tel Aviv, 1984.
[10] Y. Gordon, Some inequalities for Gaussian processes and applications, Israel J. Math. 50 (1985), 265-289.
[11] R. Latala, Some estimates of norms of random matrices, Proc. Amer. Math. Soc. 133 (2005), 1273-1282
[12] S. Mendelson, G. Paouris, On generic chaining and the smallest singular values of random matrices with heavy tails, Journal of Functional Analysis, 262 (2012), 37753811.
[13] S. Mendelson, G. Paouris, On the singular values of random matrices, Journal of the European Mathematical Society, 16 (2014), 823-834.
[14] L. Pastur, M. Shcherbina, Eigenvalue distribution of large random matrices. Mathematical Surveys and Monographs, 171. American Mathematical Society, Providence, RI, 2011.
[15] Y. Seginer, The expected norm of random matrices, Combin. Probab. Comput. 9 (2000), 149-166.
[16] J. Silverstein, On the weak limit of the largest eigenvalue of a large dimensional sample covariance matrix, J. of Multivariate Anal., 30 (1989), 2, 307-311.
[17] N. Srivastava, R. Vershynin, Covariance estimation for distributions with 2+epsilon moments, Annals of Probability 41 (2013), 3081-3111.
[18] S. J. Szarek, Condition numbers of random matrices, J. Complexity 7 (1991), no. 2, 131-149.
[19] Y. Q. Yin, Z. D. Bai, P. R. Krishnaiah, On the limit of the largest eigenvalue of the large dimensional sample covariance matrix, Probab. Th. Rel. Fields., 78 (1988), 509-527.

Alexander Litvak and Susanna Spektor, Dept. of Math. and Stat. Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2G1.
E-mails: aelitvak@gmail.com and sanaspek@gmail.com

[^0]: ${ }^{1}$ Research partially supported by the E.W.R. Steacie Memorial Fellowship.

