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Abstract

We prove a quantitative version of a Silverstein’s Theorem on the 4-th moment
condition for convergence in probability of the norm of a random matrix. More pre-
cisely, we show that for a random matrix with i.i.d. entries, satisfying certain natural
conditions, its norm cannot be small.

Let w be a real random variable with Ew = 0 and Ew2 = 1, and let wij, i, j ≥ 1 be its i.i.d.

copies. For integers n and p = p(n) consider the p×n matrix Wn = {wij}i≤p, j≤n, and consider

its sample covariance matrix Γn := 1
n
WnW

T
n . We also denote by Xj = (wj1, . . . , wjn), j ≤ p,

the rows of Wn.

The questions on behavior of eigenvalues are of great importance in random matrix

theory. We refer to [4, 6, 14] for the relevant results, history and references.

In this note we study lower bounds on maxi≤p |Xi|, where | · | denotes the Euclidean norm

of a vector, and on the operator (spectral) norms of matrices Wn and Γn. Note, as Γn is

symmetric, its largest singular value λmax is equal to the norm and that in general we have

λmax(Γn) = ‖Γn‖ =
1

n
‖Wn‖2 ≥ 1

n
max
i≤p

|Xi|2. (1)

Assume that p(n)/n → β > 0 as n → ∞. In [19] it was proved that Ew4 < ∞ then

‖Γn‖ → (1+
√
β)2 a.s., while in [7] it was shown that lim supn→∞ ‖Γn‖ = ∞ a.s. if Ew4 = ∞.

In [16] Silverstein studied the weak behavior of ‖Γn‖. In particular, he proved that

assuming p(n)/n → β > 0 as n → ∞, ‖Γn‖ converges to a non-random quantity (which

must be (1 +
√
β)2) in probability if and only if n4P(|w| ≥ n) = o(1).

The purpose of this note is to provide the quantitative counterpart of Silverstein’s result.

More precisely, we want to show an estimate of the type P
(
‖Γn‖ ≥ K

)
≥ δ = δ(K) for an

arbitrary large K, provided that w has heavy tails (in particular, provided that w does not

have 4-th moment). Our proof essentially follows ideas of [16]. It gives a lower bound on

maxi≤p |Xi| as well.
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Theorem 1. Let α ≥ 2, c0 > 0. Let w be a random variable satisfying Ew = 0, Ew2 = 1

and

∀t ≥ 1 P(|w| ≥ t) ≥ c0
tα
. (2)

Let Wn = {wij}i≤p, j≤n be a p×n matrix whose entries are i.i.d. copies of w and let Xi, i ≤ p,

be the rows of Wn. Then, for every K ≥ 1,

P
(

max
i≤p

|Xi| ≥
√
Kn

)
≥ min

{
c0p

4n(α−2)/2Kα/2
,

1

2

}
. (3)

In particular, Γn = 1
n
WnW

T
n satisfies for every K ≥ 1,

P (‖Γn‖ ≥ K) ≥ min

{
c0p

4n(α−2)/2Kα/2
,

1

2

}
.

Remark 2. Taking K = (c0pn/2)2/α/n we observe

P
(
‖Wn‖ ≥ (c0pn/2)1/α

)
≥ P

(
max
i≤p

|Xi| ≥ (c0pn/2)1/α

)
≥ 1

2
.

This estimate seems to be sharp in view of the following result (see Corollary 2 in [5]). Let

0 < α < 4 and let w be defined by

P(|w| > t) = min{1, t−α} for t > 0.

Let Wn and Xi’s be as in Theorem 1. Assume that p/n→ β > 0 as n→∞. Then

lim
n→∞

P
(
‖Wn‖ ≤ (pn)1/α t

)
= exp(−t−α).

Remark 3. If p is proportional to n, say p = βn, the theorem gives

P (‖Γn‖ ≥ K) ≥ P
(

max
i≤p

|Xi| ≥
√
Kn

)
≥ min

{
c0 β

4n(α−4)/2Kα/2
,

1

2

}
,

in particular, taking K = (c0β/2)2/α n4/α−1, we observe

P
(
‖Wn‖ ≥ (c0β/2)1/α n2/α

)
≥ P

(
max
i≤p

|Xi| ≥ (c0β/2)1/α n2/α

)
≥ 1

2
.

Remark 4. Note that by Chebychev’s inequality one has P(|w| ≥ t) ≤ t−2. Note also that

we use condition (2) in the proof only once, with t =
√
Kn.

Remark 5. If p ≥ (2/c0)K
α/2n(α−2)/2, then, by condition (2), we have

n

2
P(w2 ≥ Kn) ≥ nc0

2(Kn)α/2
=

c0
2Kα/2n(α−2)/2

≥ 1

p
.

Therefore in this case the proof below gives

P(‖Γn‖ ≥ K) ≥ P
(

max
i≤p

|Xi| ≥
√
Kn

)
≥ 1

2
.

In particular, if α = 4 and p ≥ (2K2/c0)n then ‖Γn‖ ≥ K with probability at least 1/2.
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Before we prove the theorem we would like to mention that last decade many works ap-

peared on non-limit behavior of the norms of random matrices with random entries. In most

of them maxi≤p |Xi| appears naturally (or
√
n, when Xi is with high probability bounded by√

n). For earlier works on Gaussian matrices we refer to [9, 10, 18] and references therein.

For the general case of centered i.i.d. wi,j (as in our setting) Seginer [15] proved that

E‖Wn‖ ≤ C

(
E max

i≤p
|Xi|+ E max

j≤n
|Yj|
)
,

where Yj, j ≤ n, are the columns of Wn. Later Lata la [11] was able to remove the con-

dition that wi,j are identically distributed (his formula involves 4-th moments). Moreover,

Mendelson and Paouris [12] have recently proved that for centered i.i.d. wi,j of variance one

satisfying E|w1,1|q ≤ L for some q > 4 and L > 0 with high probability one has

E‖Wn‖ ≤ max{√p,
√
n}+ C(q, L) min{√p,

√
n}.

In [1, 3, 12, 13, 17] matrices with independent columns (which can have dependent coordi-

nates) were investigated. In particular, in [1] (see Theorem 3.13 there) it was shown that if

columns of p× n matrix A satisfy

sup
q≥1

sup
i≤p

sup
y∈Sn−1

1
q

(E|〈Xi, y〉|q)1/q ≤ ψ

then with probability at least 1− exp (−c√p) one has

‖A‖ ≤ 6 max
i≤p

|Xi|+ Cψ
√
p (4)

(using Theorem 5.1 in [2] the factor 6 can be substituted by (1 + ε) in which case constants

C and c will be substituted with C ln(2/ε) and c ln(2/ε) correspondingly). Moreover, very

recently (4) was extended to the case of matrices whose (independent) columns satisfy

sup
i≤p

sup
y∈Sn−1

(E|〈Xi, y〉|q)1/q ≤ ψ

for some q > 4 with the constant C depending on q ([8]).

Proof of the Theorem. By (1) the “In particular” part of the Theorem follows immedi-

ately from (3). Thus, it is enough to prove (3).

Since X1, . . . , Xp are i.i.d. random vectors and since |X1|2 is distributed as
n∑

j=1

w2
1,j, we

observe for every K ≥ 1,

P
(

max
i≤p

|Xi| ≥
√
Kn

)
= 1− P

(
max
i≤p

|Xi| <
√
Kn

)
= 1− P

({
∀i : |Xi| <

√
Kn
})

= 1−
(

P(|X1| <
√
Kn)

)p

= 1−
(

P
( n∑

j=1

w2
1,j < Kn

))p

. (5)
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For j ≤ n consider the events Aj := {w2
1,j ≥ nK}. Clearly,

A :=

{
n∑

j=1

w2
1,j ≥ nK

}
⊃

n⋃
j=1

Aj.

By the inclusion-exclusion principle, we have

P(A) ≥ P
{ n⋃

j=1

Aj

}
≥

n∑
j=1

P(Aj)−
∑
j 6=k

P (Aj ∩ Ak) =
n∑

j=1

P
(
w2 ≥ nK

)
−
∑
j 6=k

(
P
(
w2 ≥ nK

))2
= nP

(
w2 ≥ nK

)
− n2 − n

2

(
P
(
w2 ≥ nK

))2
=
n

2
P(w2 ≥ nK)(2− (n− 1)P(w2 ≥ nK)).

By Chebychev’s inequality we have P(w2 ≥ nK) ≤ 1

nK
, hence, 2− (n− 1)P(w2 ≥ nK) ≥ 1.

Thus, by (5),

P
(

max
i≤p

|Xi| ≥
√
Kn

)
≥ 1−

(
1− P

(
1

n

n∑
j=1

w2
1,j ≥ K

))p

≥ 1−
(

1− n

2
P
(
w2 ≥ nK

))p

.

If
n

2
P(w2 ≥ Kn) ≥ 1

p
, then

P
(

max
i≤p

|Xi| ≥
√
Kn

)
≥ 1−

(
1− 1

p

)p

≥ 1− 1

e
≥ 1

2
.

Finally assume that

n

2
P(w2 ≥ Kn) ≤ 1

p
. (6)

Using that (1− x)p ≤ (1 + px)−1 on [0, 1], we get

P
(

max
i≤p

|Xi| ≥
√
Kn

)
≥ 1− 1

(np/2)P(w2 ≥ Kn) + 1
.

Applying condition (2) with t =
√
Kn and using (6) again, we observe

1 ≥ np

2
P(w2 ≥ Kn) ≥ np

2

c0
(Kn)α/2

.

Thus,

P
(

max
i≤p

|Xi| ≥
√
Kn

)
≥ c0p

4n(α−2)/2Kα/2
,

which completes the proof.
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