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Abstract

We study the diameters of sections of convex bodies in RN de-
termined by a random N × n matrix Γ, either as kernels of Γ∗ or as
images of Γ. Entries of Γ are independent random variables satisfying
some boundedness conditions, and typical examples are matrices with
Gaussian or Bernoulli random variables. We show that if a symmetric
convex body K in RN has one well bounded k-codimensional section,
then for any m > ck random sections of K of codimension m are also
well bounded, where c ≥ 1 is an absolute constant. It is noteworthy
that in the Gaussian case, when Γ determines randomness in sense of
the Haar measure on the Grassmann manifold, we can take c = 1.

0 Introduction

Geometric Functional Analysis and the theory of finite dimensional normed
spaces, traditionally study the structure of subspaces and quotient spaces
of finite dimensional normed spaces, and operators acting on them. A par-
allel study in the general setting of convex bodies and in the language of
Asymptotic Convex Geometry is concerned with the asymptotic properties
of sections and projections of N -dimensional convex bodies, when N grows to
infinity. Then n-dimensional subspaces (sections) or quotients (projections)
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are often constructed using various random methods. Randomness may be
understood in sense of the rotation invariant probability measure on the
Grassmann manifold of n-dimensional subspaces of RN , or, for different pur-
poses, it may carry some specific structure, such as in the case of subspaces
generated by n vectors with random ±1 coordinates in RN . These exam-
ples can be seen as particular cases of a general setting when randomness is
determined by rectangular matrices with random variable entries.

Consider a “random” N × n matrix Γ acting as a mapping Γ : Rn → RN

(with N ≥ n). We can adopt two points of view. Subspaces of RN may be
defined by n linear forms, with say, ±1 coefficients, in which case we look for
ker Γ∗ of a random ±1 matrix Γ. Alternatively, they may be generated by
n vectors in RN , with say, ±1 coordinates, and then we look for the image
of Rn under a ±1 matrix Γ. When the matrix Γ is Gaussian, it is rotation
invariant from both sides, and then the induced measures on the linear sub-
spaces, either ker Γ∗ or Γ(Rn), are both the Haar measures on the Grassmann
manifolds, but in general these measures may be different. Studies of random
subspaces defined by linear forms have been quite extensive in the Gaussian
case; and were developed in [MiP2] in the case of ±1 coefficients and in a
more general setting. The second approach, which is a dual point of view, is
technically very different and appeared recently in [LPRT]. (One important
difference between the present paper and the work in [LPRT], though, is
that here we are more interested in properties of the subspaces Γ(Rn) than
in properties of Γ itself.)

Let us recall a well known example. In the studies of Euclidean subspaces
of `N

1 , Kashin ([Ka]) proved that for every proportion 0 < λ < 1, there exist
subspaces of RN of dimension n = [λN ] on which the `N

1 norm, defined for x =
(xi) ∈ RN by ‖x‖1 =

∑N
1 |xi|, and the Euclidean norm are equivalent (with

constants independent on the dimension). In fact, “random” n-dimensional
subspaces of RN (in sense of the Haar measure on the Grassman manifold
GN,n) are “nearly” Euclidean in that sense. Kashin’s theorem was reproved
by Szarek [Sz] by a different argument, which also worked in a more general
case of spaces with so-called bounded volume ratio [SzT] (cf. also [P]). If one
asks for an additional structure on the subspace, for instance for subspaces
defined by linear forms with random ±1 coefficients, an analogous fact was
proved in [MiP2]. For spaces generated by vectors with ±1 coordinates, the
problem was left open for some time. For `N

1 , it was proved in [JS] (see [S])
that one such a subspace exists, and in [LPRTV1], [LPRTV2] that subspaces
generated by random vectors with ±1 coordinates satisfy the conclusion of
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Kashin’s result.
This example raises several questions. If a convex body K contains one

k-codimensional section with a well bounded (Euclidean) diameter, does a
random section of a slightly larger codimension µk also has a well bounded
diameter? Randomness may be determined by the Haar measure on the
Grassmann manifold, or by vectors with random ±1 coordinates, or even by
random matrices from a more general class. Can one take µ arbitrarily close
to 1, in any of the above cases? Let us note that, since subspaces determined
by random matrices from some class carry an additional structure associated
to the class, therefore it is not even clear that the existence of one section
of K with good control of the diameter yields the existence of even just one
section of K determined by a matrix from the class and admitting a control of
the diameter. In this paper we solve in positive the former series of questions,
and we answer the latter question in the rotation invariant case.

This type of general phenomenon, of a deterministic information implying
a randomized one, has been first observed in [MiS] in the context of what
is called the “global” form of Dvoretzky’s theorem. In a “local” context
similar questions on the Grassmann manifold were considered in [LT], [MT1],
[MT2]. In particular, the affirmative answer to the first question of the
preceding paragraph immediately follows from one of the main results of
[LT] (Theorem 3.2), and a version of this question for dimensions rather than
codimensions was proved in [MT2] (Proposition 2.3). Independently, these
questions, again for the Grassmann manifold, were introduced and answered
in [GMT] and [V], however these proofs could not give µ close to 1. The
approach in [GMT] and [V] is based on a recent Gromov’s theorem on the
sphere – the isoperimetric inequality for waists. In contrast, our approach
is completely different and allows for a natural generalization to random
structures determined by random matrices described above.

The paper is organized as follows. In Section 1, we give our main new
technical tool on covering numbers, Theorem 1.3 and its Corollary 1.6, which
will be important for the next sections. In Section 2, we study subspaces de-
fined by linear forms, and we begin by illustrating this approach by the rota-
tion invariant case. We give an estimate of the diameter of random sections,
with respect to the Haar measure on the Grassmann manifold, assuming an
information on the diameter of one section of higher dimension. Our main
result, Theorem 2.4, states the following:
Let 1 ≤ k < m < N be integers and a > 0, and set µ := m/k. Let K ⊂ RN be
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an arbitrary symmetric convex body such that there exists a k-codimensional
subspace E0 with diam (E0 ∩ K) ≤ 2a. Then the subset of the Grassmann
manifold of all m-codimensional subspaces E ⊂ RN satisfying

diam (E ∩K) ≤ a
(
C
√

N/m
)1+1/(µ−1)

,

has Haar measure larger than 1−2 e−m/2 (here C > 1 is a universal constant).
The fact that there is almost no loss in the dimension, that is, µ = m/k

can be chosen as close to 1 as we wish, resolves the question left open by all
the previous proofs.

At the end of Section 2 we observe that our proof also works for subspaces
given as the kernels of random m × N matrices from a class of matrices
endowed with probability satisfying two abstract conditions. In particular,
it gives a version of Theorem 2.4 for kernels of ±1 random matrices. This
general approach is further elaborated in the subsequent section.

In Section 3, we study the problem for sections defined by images by a
random matrix Γ, when Γ carries some additional structure. We discuss gen-
eral conditions on the set of random matrices that imply a similar statement
as above; it turns out that, for example, the class of matrices with indepen-
dent subgaussian entries satisfies these conditions. In Theorem 3.4 we prove
estimates of the diameter of random sections – given as images under Γ and
with respect to our new probability measure on the set of matrices – starting
from an information on the diameter of one section of a higher dimension.

Let us finish by recalling basic notations used throughout the paper. If X
is a normed space, we denote its unit ball by BX . We denote the Euclidean
norm on Rn by | · | and the Euclidean unit ball by Bn

2 . By a convex body
K ⊂ Rn we mean a convex compact set with the non-empty interior. We
call K symmetric if it is centrally symmetric.

1 Results on covering numbers

In this section, we prove a result on covering numbers valid for operators
between normed spaces. A setting from convex geometry is discussed at
the end of the section. We start by recalling a few classical notations for
operators.

If X and Y are normed spaces, an operator u : X → Y always means
a bounded linear operator, with the operator norm denoted by ‖u‖. For
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k = 1, 2, . . ., we denote by ak(u), ck(u) and dk(u) the approximation, Gelfand,
and Kolmogorov numbers, respectively. Namely,

ak(u) = inf ‖u− v‖,

where the infimum runs over all operators v : X → Y with rank v < k; then

ck(u) = inf ‖u|E‖,

where the infimum runs over all subspaces E ⊂ X of codim E < k; and

dk(u) = inf ‖QF u‖,

where the infimum runs over all subspaces F ⊂ Y of dim F < k and QF :
Y → Y/F denotes the quotient map.

Let X be a linear space and K, L be subsets of X. We recall that the
covering number N(K, L) is defined as the minimal number N such that
there exist vectors x1, ..., xN in X satisfying

K ⊂
N⋃

i=1

(xi + L). (1.1)

Let ε > 0, a set of points x1, ..., xN in X satisfying K ⊂ ∪N
i=1(xi + εL) is

called an ε-net of K with respect to L.
It is sometimes useful to specify a membership condition on the net (xi):

if K ⊂ E ⊂ X and in the definition (1.1) we additionally require that xi ∈ E,
1 ≤ i ≤ N, then we shall use the notation NE(K, L) instead of N(K, L). We
also let N̄(K, L) = NK(K, L).

For a convex body L ⊂ Rm and η ∈ (0, 1), we shall often need an upper
estimate for the covering number N(L, ηL). We could use a standard esti-
mate by (1+2/η)m, which follows by comparing volumes and which would be
sufficient for the results in Section 2. However, we prefer to use here a more
sophisticated estimate by Rogers-Zong ([RZ]), which leads to better results
in this section.

Let m ≥ 1, we set θm = sup θ(K), where the supremum is taken over all
convex bodies K ⊂ Rm and θ(K) is the covering density of K (see [R2] for
the definition and more details). It is known (see [R1], [R2]) that θ1 = 1,
θ2 ≤ 1.5, and, by a result of Rogers,

θm ≤ inf
0<x<1/m

(1 + x)m(1−m ln x) < m(ln m + ln(ln m) + 5)

for m ≥ 3. The following lemma has been proved in [RZ].
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Lemma 1.1 Let K and L be two convex bodies in Rm. Then

N(K, L) ≤ θm
|K − L|
|L|

.

Our result on covering numbers is based on the following key proposition.

Proposition 1.2 Let X, Y be normed spaces and let u : X → Y be an
operator. Let k ≥ 1 and a > 0, and let w, v : X → Y be such that u = w + v,
rank v ≤ k and ‖w‖ ≤ a. Let E = vX. Then for every r > a, we have

N(uBX , rBY ) ≤ NE(uBX , rBY ) ≤ θk

(
‖u‖+ r

r − a

)k

.

Proof: Clearly, ‖v‖ ≤ ‖u‖+ a. Therefore we have

u(BX) ⊂ w(BX) + v(BX) ⊂ aBY + (‖u‖+ a)BY ∩ E. (1.2)

Set ε = r − a > 0. Since dimE ≤ k, by Lemma 1.1 we can cover (‖u‖ +
a)BY ∩ E by N ≤ θk (1 + (‖u‖+ a)/ε)k shifts (by vectors from E) of the
balls εBY ∩ E, i.e.

(‖u‖+ a)BY ∩ E ⊂
N⋃

i=1

(xi + εBY ∩ E),

where xi ∈ E, 1 ≤ i ≤ N . Then the latter set in (1.2) is contained in

aBY +
N⋃

i=1

(xi + εBY ) ⊂
N⋃

i=1

(xi + (a + ε)BY ).

Since r = a + ε, we get NE(u(BX), rBY ) ≤ N ≤ θk (1 + (‖u‖+ a)/(r − a))k,
which implies the desired result. 2

As a consequence we obtain the following theorem.

Theorem 1.3 Let X, Y be normed spaces and let u : X → Y . Let k ≥ 1
and a > 0 satisfy ak+1(u) ≤ a. Then for every r > a, one has

N(uBX , rBY ) ≤ θk

(
‖u‖+ r

r − a

)k

.
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Proof: This theorem immediately follows from Proposition 1.2 and the def-
inition of ak(u). 2

The next proposition is standard (see e.g. [Pi], also [P], Proposition 5.1,
for definitions and details).

Proposition 1.4 Let X, Y be normed spaces and let u : X → Y . Assume
that j : Y → `∞(I) is an isometric embedding and that Q : `1(J) → X is a
quotient map, where I and J are some sets of indexes. Then for every ε > 0
and every k ≥ 1 we have

(i) N̄(uBX , 2εBY ) ≤ N(juBX , εB`∞) ≤ N(uBX , εBY ) and ck(u) = ak(ju);

(ii) N(uBX , εBY ) = N(uQB`1 , εBY ) and dk(u) = ak(uQ).

Theorem 1.3 together with Proposition 1.4 immediately imply the follow-
ing corollary.

Corollary 1.5 Let X, Y be normed spaces and let u : X → Y . Let k ≥ 1
and a > 0, and assume that either ck+1(u) ≤ a or dk+1(u) ≤ a. Then for
every r > a one has

N̄(uBX , 2rBY ) ≤ θk

(
‖u‖+ r

r − a

)k

.

In geometric setting we typically consider convex bodies in RN and the
identity operators. Let us state a particular case of Corollary 1.5 that we
will use later. Let K, L ⊂ RN be symmetric convex bodies. Let X be RN

equipped with the norm for which the unit ball is BX = K and let Y be RN

equipped with the norm for which BY = L. Applying Corollary 1.5 to the
identity operator we get the following:

Corollary 1.6 Let K, L ⊂ RN be symmetric convex bodies. Let k ≥ 1 and
A > a > 0 such that K ⊂ AL and K ∩ E ⊂ aL for some k-codimensional
subspace E of RN . Then for every r > a one has

N(K, 2rL) ≤ θk

(
A + r

r − a

)k

.
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An analogous statement using now Kolmogorov information is also valid:

Corollary 1.7 Let K, L ⊂ RN be symmetric convex bodies. Let k ≥ 1 and
let A > a > 0 such that K ⊂ AL and PK ⊂ aPL for some projection P of
corank k. Then for every r > a one has

N̄(K, rL) ≤ θk

(
A + r

r − a

)k

.

A slightly weaker form of Corollary 1.7 was proved by Rudelson and
Vershynin ([V]) in the case when K is the Euclidean ball.

2 Diameters of random sections

We study the diameters of random sections of a convex body, where the sec-
tions are given by kernels of a random Gaussian matrix, with the induced
natural measure. On the one hand, the results can be reformulated for sec-
tions viewed as elements of the Grassman manifold. On the other hand, this
approach may be developed for a larger class of random matrices, as will be
observed at the end of this section.

Let 1 ≤ m ≤ N , and let

G : RN → Rm

be a random m×N matrix with independent N(0, 1/N) distributed Gaussian
entries.

For future reference, we recall a well-known estimate ([DS], Theorem
2.13). Let β = m/N , then for every t > 0, we have

P
(
‖G : `N

2 → `m
2 ‖ > 1 +

√
β + t

)
≤ e−Nt2/2.

In particular,

P
(
‖G : `N

2 → `m
2 ‖ > 1 + 2

√
m/N

)
≤ e−m/2. (2.1)

For ξ ∈ [0, 1], let
p(ξ) := P

{
|Gx0| ≤ ξ|x0|

}
,
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where x0 ∈ RN is an arbitrary vector (note that this probability does not
depend on x0).

We estimate the probability p(ξ) by a direct calculation, which may be
of independent interest. (In fact, a weaker estimate p(ξ) ≤ |ξ

√
NBm

2 | =
(ξ
√

N)mvm, where vm is defined and estimated in (2.2) below, would be
sufficient for Theorem 2.4.)

Lemma 2.1 Let A > 1 and 1 ≤ m ≤ N . Let G : RN → Rm be a Gaussian
matrix normalized as above. Then for every 0 < ξ <

√
(A− 1)m/(AN) we

have

p(ξ) ≤ A√
πm

(
e ξ2 N

m

)m/2

exp
(
−ξ2N/2

)
.

Proof: Let (gi) be independent N(0, 1)-distributed Gaussian random vari-
ables. We have

p(ξ) = P
{
|Gx0| ≤ ξ|x0|

}
= P

{
m∑

i=1

g2
i ≤ ξ2N

}
= (2π)−m/2

∫
ξ
√

NBm
2

exp(−|x|2/2)dx.

Thus to get the desired estimate it is sufficient to estimate the latter integral.
Let

vm := |Bm
2 | =

πm/2

Γ(1 + m/2)
≤ 1√

πm

(
2eπ

m

)m/2

. (2.2)

Then for every a ≤
√

(A− 1)m/A, we have∫
aBm

2

exp(−|x|2/2)dx = vm

∫ a

0

mtm−1 exp(−t2/2)dt

≤ Avm

∫ a

0

(
mtm−1 exp(−t2/2)− tm+1 exp(−t2/2)

)
dt

= Avmtm exp(−t2/2)
∣∣a
0
≤ A exp(−a2/2)

1√
πm

(
2eπa2

m

)m/2

.

This concludes the proof. 2

Now we pass to the main subject of this section and we start by intro-
ducing some convenient additional notation. A set K is called star-shaped
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if tK ⊂ K for all 0 ≤ t ≤ 1. For a set K ⊂ RN we denote by diam K the
diameter of the Euclidean ball centered at 0 and circumscribed on K.

For any ρ > 0 we set
Kρ = K ∩ ρBN

2 . (2.3)

Recall a well-known and elementary fact:

Fact 2.2 Let K ⊂ RN be star-shaped. If E ⊂ RN is a subspace such that
diam (E ∩Kρ) < 2ρ, then diam (E ∩K) = diam (E ∩Kρ) < 2ρ.

We also set, for ρ > 0 and any ε > 0,

Nρ(ε) := N(Kρ, εB
N
2 ). (2.4)

The following probabilistic estimate is a starting point for our result.

Proposition 2.3 Let 1 ≤ m < N be positive integers, ε > 0 and ξ ∈ [0, 1].
Let K ⊂ RN be star-shaped. Then

P{diam
(
ker G ∩K

)
< 2ρ} ≥ 1−Nρ(ε)p(ξ)− e−m/2, (2.5)

where ρ = 4 ε/ξ.

Proof: Let Λ be an ε-net of Kρ with respect to the Euclidean norm, satisfy-
ing |Λ| ≤ Nρ(ε). Let x ∈ Kρ and let x0 ∈ Λ such that |x− x0| ≤ ε. Suppose
that x ∈ ker G and |Gx0| > ξ|x0|.

Using (2.1) we get that, with probability ≥ 1− e−m/2, we have

|x| ≤ |x− x0|+ |x0| < ε +
|Gx0|

ξ
= ε +

|G(x0 − x)|
ξ

≤ ε
(
1 + ‖G‖/ξ

)
≤ ε

(
1 + (1 + 2

√
m/N)/ξ

)
≤ (4 ε/ξ) = ρ,

for any 0 < ξ ≤ 1. Since the probability that |Gx0| > ξ|x0| for all x0 ∈ Λ is
larger than or equal to 1−Nρ(ε)p(ξ), then

P
{
diam

(
ker G ∩Kρ

)
< 2ρ

}
≥ 1−Nρ(ε)p(ξ)− e−m/2.

Now, by Fact 2.2, the latter estimate immediately implies (2.5). 2
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The main result of this section gives an estimate of the diameter of random
sections of symmetric convex bodies with respect to the rotation invariant
probability measure on the Grassmann manifold, assuming an information
on the minimal diameter of sections of a slightly smaller codimension. By
allowing the ratio of the codimensions of minimal sections and of random
sections to be arbitrarily close to 1, it resolves the case left open by all the
previous proofs; in particular the result in [GMT] is valid for µ > 2 and in
[V] for µ > 32. It is worthwhile to note that in the work [GMT] the only
obstruction for letting µ close to 1, is due to the use of an isoperimetric
inequality of Gromov, which is still open in an arbitrary dimension. Our
work also provides a more elementary proof of results from these papers in
the full range of dimensions (hence also codimensions).

Theorem 2.4 Let 1 ≤ k < m < N be integers and a > 0, and set µ :=
m/k. Let K ⊂ RN be a symmetric convex body such that there exists a k-
codimensional subspace E0 with diam (E0 ∩ K) ≤ 2a. Then the subset of
the Grassmann manifold GN,N−m of all m-codimensional subspaces E ⊂ RN

satisfying

diam (E ∩K) ≤ a
(
C
√

N/m
)1+1/(µ−1)

,

has Haar measure larger than 1 − 2 e−m/2 (here 1 < C < 100 is a universal
constant).

Proof: Instead of estimating the measure of the subset of GN,N−m considered
in the theorem we shall prove an analogous estimate for the probability

P
{

diam (ker G ∩K) ≤ a
(
C
√

N/m
)1+1/(µ−1)

}
, (2.6)

where G : RN → Rm is a Gaussian random matrix.
Let ε := 4a. Fix ξ <

√
m/N/e to be determined later, and set ρ :=

4ε/ξ = 16a/ξ. By Corollary 1.6, we have

Nρ(ε) ≤ θk

(
2ρ + ε

ε− 2a

)k

= θk

(
2(1 + 8/ξ)

)k ≤ θk (18/ξ)k .

Therefore applying Lemma 2.1 with A = 5/4 we obtain

Nρ(ε) p(ξ) ≤ θk (18/ξ)k (5/4)
(
ξ
√

e N/m
)m

.
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An elementary calculation shows that the latter expression is less than or
equal to e−m/2 whenever

ξ ≤ ξ0 :=
(
e
√

N/m
)−m/(m−k)

18−k/(m−k)
(
4/(5θk)

)1/(m−k)
.

Letting ξ = ξ0 we get

ρ = 16a/ξ ≤ 16a
(
e
√

N/m
)µ/(µ−1) (

18(5θk/4)1/k
)1/(µ−1)

≤ a
(
C
√

N/m
)1+1/(µ−1)

,

for a certain absolute constant C. Combining this estimate with Proposi-
tion 2.3 and the probability estimate above, we conclude the proof. 2

The previous result gives an estimate of the diameter of random sections
of a symmetric convex body K, when randomness is on the Grassmann man-
ifold, or equivalently, when random sections are generated by kernels of a
Gaussian matrix. The method of proof extends to a large class of matrices.
More precisely, we can consider random sections generated by kernels of a
random matrix, satisfying certain natural conditions required for the proof
to work. We shall outline the new framework but we omit the details of the
proofs which are very similar to those discussed above.

Let 1 ≤ m < N , we consider a set M̄m,N of m × N matrices T (treated
as operators T : RN → Rm), endowed with a probability measure P. We say
that M̄m,N satisfies conditions (M̄1) and (M̄2) whenever

(M̄1) there exist 0 < t̄0 < 1 and 0 < ν̄0 < 1 such that for every x0 ∈ RN we
have

P {|Tx0| ≤ t̄0|x0|} ≤ ν̄0;

(M̄2) there exist ā1 > 0 and 0 < ν̄1 < 1 such that

P
{
‖T : `N

2 → `m
2 ‖ > ā1

}
≤ ν̄1.

Of course the set of Gaussian random m×N matrices with independent
N(0, 1/N) distributed entries satisfies conditions (M̄1) (for an arbitrary 0 <
t̄0 ≤ 1, and a suitable ν̄0) and (M̄2); this follows from (2.1) and Lemma 2.1.
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In fact, these conditions are satisfied for a large class of matrices T , whose
transposed, Γ = T ∗, belong to the class M′(N, m, b, a1, a2) (for some b ≥
1 and a1, a2 > 0), defined by (3.10) and (3.11) below. Condition (M̄1)
which is the one non-trivial to check, follows from Proposition 3.4 in [LPRT].
Namely, the inspection of the proof in [LPRT] shows that the argument
works for any rectangular random matrix satisfying the moment conditions,
but without any relation between the number of rows and the number of
columns. More precisely, taking into account our normalization, a matrix
T = (ξji)1≤j≤m,1≤i≤N satisfying (3.10) admits an estimate, for every x0 ∈ RN ,

P
{
|Tx0| ≤ c′b−3

√
m/N |x0|

}
≤ e−c′′m/b6 , (2.7)

where 0 < c′, c′′ < 1 are universal constants. In particular, all examples of
matrices which work in Section 3, such as matrices with independent ±1/

√
N

entries and, more generally, subgaussian matrices, work as well here (after
transposition).

Just repeating the proof of Proposition 2.3 we get the following:

Proposition 2.3’ Let 1 ≤ m < N and ε > 0. Let M̄m,N with a probability
measure P satisfy conditions (M̄1) and (M̄2). Let K ⊂ RN . Then

P
{
diam

(
ker T ∩K

)
< 2ρ

}
≥ 1−Nρ(ε)ν̄0 − ν̄1,

where ρ = ε(1 + ā1/t̄0).

Using this and the proof of Theorem 2.4, we get the general statement:

Theorem 2.4’ Let 1 ≤ k < m < N be integers and a > 0. Let M̄m,N with
a probability measure P satisfy conditions (M̄1) and (M̄2). Let

M̄ := θk

(
6 + 4ā1/t̄0

)k ≤ θk

(
10 max(ā1/t̄0, 1)

)k
.

Let K ⊂ RN be a symmetric convex body such that there exists a k-codimensional
subspace E0 with diam (E0 ∩K) ≤ 2a. Then

P
{
diam

(
ker T ∩K

)
< 8 a (1 + ā1/t̄0)

}
≥ 1− M̄ ν̄0 − ν̄1. (2.8)

As an example of an application we have the following result for sections
determined by kernels of matrices with independent ±1 entries.
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Corollary 2.5 Let m < N and a > 0. Let T be an m × N matrix with
independent ±1 entries. Let 1 ≤ k < c m/ log(N/m). Let K ⊂ RN be a
symmetric convex body such that there exists a k-codimensional subspace E0

with diam (E0 ∩K) ≤ 2a. Then

P
{

diam
(
ker T ∩K

)
< C a

√
N/m

}
≥ 1− e−c′′′m. (2.9)

Here 0 < c < 1 and C, c′′′ > 0 are universal constants.

Sketch of the proof : Note that the matrix T/
√

N satisfies conditions
(M̄1) and (M̄2) with t̄0 = c′

√
m/N , ā1 an absolute constant, and ν̄0 = ν̄1 =

e−c′′m, where c′, c′′ > 0 are absolute constants. Therefore (2.9) follows from
(2.8) provided that M̄ ν̄0 ≤ e−c′′m/2. Similarly as in the proof of Theorem 3.4
below, this inequality is satisfied once we have(

C ′
√

N/m
)k/m

e−c′′ ≤ e−c′′/2

which can be ensured by the assumption k < c m/ log(N/m), for an appro-
priately chosen constant c > 0. 2

3 Diameters via random embeddings

In this section, we shall consider rectangular N×n matrices (with 1 ≤ n < N)
acting as embeddings from Rn into RN . Accordingly, for 1 ≤ n < N , we shall
consider a set MN,n of N×n matrices Γ, endowed with a probability measure
P. We say that MN,n satisfies conditions (M1) and (M2) whenever

(M1) for some 0 < t0 < 1 and 0 < ν0 < 1 we have

P
{
∃x ∈ Sn−1 s.t. Γx ∈ z + t0B

N
2

}
≤ ν0,

for every z ∈ RN ;

(M2) for some a1 > 0 and 0 < ν1 < 1 we have

P
{
‖Γ : `n

2 → `N
2 ‖ > a1

}
≤ ν1.
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It turns out that the above conditions are already sufficient to estimate
the diameters of sections determined by Γ(Rn) ⊂ RN , given by a “random”
embedding Γ. This is shown in the following theorem, similar in character
to Proposition 2.3 and Theorem 2.4.

Theorem 3.1 Let 1 ≤ n < N . Let MN,n with a probability measure P satisfy
conditions (M1) and (M2) (with t0 < 6a1). Let k ≥ 1 satisfy

M := θk(6a1/t0)
k < (1− ν1)/ν0. (3.1)

If K ⊂ RN is a symmetric convex body, and for some a > 0 there exists a
k-codimensional subspace F ⊂ RN such that

diam (K ∩ F ) ≤ 2a, (3.2)

then
P
{
diam

(
K ∩ Γ(Rn)

)
< 8 a a1/t0

}
≥ 1−M ν0 − ν1. (3.3)

Recall that for a set K ⊂ RN and ρ > 0, the set Kρ was defined in (2.3).

Proof: We first show that for an arbitrary ρ > 0, letting ε := (t0/a1)ρ, we
have

P
{
diam

(
K ∩ Γ(Rn)

)
< 2ρ

}
≥ 1−Nρ(ε) ν0 − ν1, (3.4)

where the notation of Nρ(ε) = N(Kρ, εB
N
2 ) was introduced in (2.4).

We start by considering the probability

P
{
‖Γx‖Kρ > (a1/ρ)|x| for all x ∈ Rn

}
. (3.5)

Observe that
N((a1/ρ)Kρ, t0B

N
2 ) = Nρ(ε).

Let Λ be an t0-net in (a1/ρ)Kρ with respect to the Euclidean norm and such
that |Λ| ≤ Nρ(ε). Then the complement of the set considered in (3.5) has
probability

P
{
∃ x ∈ Sn−1 s.t. Γx ∈ (a1/ρ)Kρ

}
≤ P

(⋃
z∈Λ

{
∃x ∈ Sn−1 s.t. Γx ∈ z + t0B

N
2

})
≤ Nρ(ε) ν0.
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Thus the probability in (3.5) is ≥ 1−Nρ(ε) ν0.

To conclude the proof of (3.4) we note that the set considered in (3.5) is
contained in the union{

‖Γ‖ ≤ a1 and ‖Γx‖Kρ > (a1/ρ)|x| for all x ∈ Rn
}
∪
{
‖Γ‖ > a1

}
⊂

{
‖Γx‖Kρ > (1/ρ)|Γx| for all x ∈ Rn

}
∪
{
‖Γ‖ > a1

}
.

By property (M2) this implies that, with probability ≥ 1 − Nρ(ε) ν0 − ν1,
we have diam (Kρ ∩ Γ(Rn)) < 2ρ. Thus (3.4) follows by Fact 2.2.

Now returning to the proof of (3.3), set ε = 4a and ρ = εa1/t0 = 4a a1/t0.
By Corollary 1.6, we immediately get

Nρ(ε) ≤ θk

(
2ρ + ε

ε− 2a

)k

= θk

(
2(2a1/t0 + 1)

)k ≤ θk(6a1/t0)
k = M.

Therefore the proof of the theorem is concluded by applying (3.4). 2

Theorem 3.1 can be used to obtain a still different proof of estimates
on the Grassmann manifold of the same type (and the same asymptotic
order with respect to all parameters) as Theorem 2.4. In this case the proof
is based on an estimate on the Grassmann manifold (or, equivalently, on
the orthogonal group) which is considerably deeper than its counterpart in
Section 2. The following proposition is of independent interest (and plays a
similar role in the further argument as the estimate from Lemma 2.1).

Proposition 3.2 Let δ > 0, let n ≥ 1 and N = (1 + δ)n. Let µN,n be the
Haar measure on the Grassmann manifold GN,n. For every 0 < t ≤ 1/2 and
every z ∈ RN we have the estimate

µN,n

{
E : ∃x ∈ SN−1 ∩ E s.t. x ∈ z + tBN

2

}
≤
(

4 e t2
1 + δ

δ

)δn/2

. (3.6)

Proof: We may assume that z = re1 for some r > 0. Denote the subset
of GN,n discussed in the statement by Ft. If Ft is non-empty then we must
have |1− r| ≤ t, equivalently,

1− t ≤ r ≤ 1 + t. (3.7)
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A direct two-dimensional calculation shows that for x = (x1, . . . , xN) ∈
SN−1 the condition |x− re1| ≤ t is equivalent to

x1 ≥
1 + r2 − t2

2r
=: s.

Using this it is easy to see that Ft consists of all subspaces E for which
there exists x ∈ SN−1 ∩ E such that x1 ≥ s; in other words, such that
the (Euclidean) distance from x to the subspace spanned by e1 satisfies
d (x, [e1]) ≤

√
1− s2. Since for such E we have d (e1, E) ≤ d (e1, [x]) =

d (x, [e1]) ≤
√

1− s2 (where [x] is the subspace spanned by x), then

Ft ⊂
{

E : E ∩
(
e1 +

√
1− s2 BN

2

)
6= ∅
}

.

The measure of this latter set can be estimated for example by the inequality
from [MiP1], Lemma 6, which can be reformulated that for every w ∈ RN

and every 0 < α < 1, we have

µN,n

{
E : E ∩ (w + α |w|BN

2 ) 6= ∅
}
≤

(
α

√
N e

N − n

)N−n

. (3.8)

Therefore,

µN,n(Ft) ≤
(
(1 + δ) e (1− s2)/δ

)δn/2
.

It is easy to check that 1−s2 ≤ 2(1−s) ≤ 4t2/(2r) ≤ 4t2 (the latter inequal-
ity follows from the fact that t ≤ 1/2 implies r ≥ 1/2). Putting this into the

last estimate we get µN,n(Ft) ≤ (4 e t2 (1 + δ)/δ )
δn/2

, as required. 2

Remark. Condition (3.6) can be equivalently expressed in terms of the
orthogonal group ON . Namely, if µN denotes the Haar measure on ON then,
for every 0 < t ≤ 1/2 and z ∈ RN ,

µN

{
U : ∃x ∈ SN−1 ∩ Rn s.t. Ux ∈ z + tBN

2

}
≤
(

4 e t2
1 + δ

δ

)δn/2

. (3.9)

Now, let again δ > 0, n ≥ 1 and N = (1 + δ)n. Consider the set MN,n of
N × n matrices whose n columns are orthonormal in RN , with the natural
probability measure induced from the orthogonal group ON . Then (3.9)
implies that MN,n satisfies condition (M1) for every 0 < t0 ≤ 1/2, with the
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corresponding ν0 =
(
4 e t20 (1 + 1/δ)

)δn/2
. Since (M2) is obviously satisfied

with a1 = 1, for all U ∈ MN,n, we are in position to apply Theorem 3.1 in a
strong way.

Let 1 ≤ k < δn and set µ = δn/k. Then it is easy to check that letting

ξ0 :=

(
1

2 e

√
δ

1 + δ

)1+1/(µ−1)

18−1/(µ−1),

we get that for t0 = ξ0,

θk

(
6

t0

)k (
4e t20

1 + δ

δ

)δn/2

≤ e−δn/2.

Thus, whenever for some F ⊂ RN of codimension k, (3.2) is satisfied, then
(3.3) holds, which translates into the same estimate on the Grassmann man-
ifold as in Theorem 2.4.

As another application of Theorem 3.1 let us note that conditions (M1)
and (M2) are in fact satisfied by a wide class of matrices, namely, the class
M(N, n, b, a1, a2) considered in [LPRT], [LPRTV1] and [LPRTV2] (for some
parameters b, a1, a2). In our setting it is more convenient to consider this class
with a different normalization. For 1 ≤ n < N , b ≥ 1 and a1, a2 > 0, we
define the set of N×n matrices M′(N, n, b, a1, a2) to consist of matrices Γ with
real-valued independent symmetric random variable entries (ξij)1≤i≤N,1≤j≤n

satisfying:

1/
√

N ≤ ‖ξij‖L2 ≤ ‖ξij‖L3 ≤ b/
√

N for 1 ≤ i ≤ N, 1 ≤ j ≤ n (3.10)

and P
(
‖Γ : `n

2 → `N
2 ‖ ≥ a1

)
≤ e−a2N . (3.11)

Basic examples of matrices from M′(N, n, µ, a1, a2) are random matrices whose
entries are centered Gaussian of variance 1/N or symmetric (±1/

√
N) ran-

dom variables, and we will be mostly interested in the latter one. We refer
the reader to [LPRT] for more information.

The fact that the set M′(N, n, b, a1, a2) satisfies (M1) is one of the main
technical results in [LPRTV1], [LPRTV2]. Due to a technical form of depen-
dencies of constants on the parameters, we state it as a separate lemma.

Lemma 3.3 Let δ > 0, n > 1 and N = (1+δ)n, and let b ≥ 1 and a1, a2 > 0.

There exist c1 > 0 of the form c1 = c
1+1/δ
3 , and c̃1, c2 > 0 such that whenever
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n ≥ c̃
1+1/δ
1 then the set M′(N, n, b, a1, a2) satisfies (M1) with t0 = c1 and

ν0 = exp(−c2N). Here 0 < c3 < 1 and c̃1 depend on b and a1, while c2 > 0
depends on b and a2 only.

Since M′(N, n, b, a1, a2) satisfies (M2) with ν1 = exp(−a2N), we get a
result for random sections of bodies generated by columns of matrices from
M′(N, n, b, a1, a2).

For the convenience of the proof we shall assume, as we clearly may
without loss of generality, that a1 ≥ 1.

Theorem 3.4 Let δ > 0, n > 1 and N = (1 + δ)n, and let a1, b ≥ 1 and
a2 > 0. There exist µ0 > 1 such that for 1 ≤ k ≤ δn/µ0 the following
holds. Let Γ be a random matrix from M′(N, n, b, a1, a2). Let K ⊂ RN be
a symmetric convex body and assume that for some a > 0 there exists a
k-codimensional subspace F ⊂ RN such that

diam (K ∩ F ) ≤ 2a.

There exist c̃1, c
′
2 > 0 and 0 < c3 < 1 such that whenever n ≥ c̃

1+1/δ
1 then,

with probability ≥ 1− exp(−c′2N), we have

diam (K ∩ Γ(Rn)) ≤ 8 a a1/c
1+1/δ
3 .

Here 0 < c3 < 1 and c̃1 depend on b and a1; c′2 > 0 depends on b and a2; and
µ0 depends on b and a1, a2.

Proof: Let c̃1, c2 > 0 and 0 < c3 < 1 be from Lemma 3.3. We are looking
for a bound for k which ensures that

θk

(
6a1/c

1+1/δ
3

)k

e−c2N < e−c2N/2. (3.12)

Combining this condition with Lemma 3.3 and Theorem 3.1, we would get the
required estimate on the diameter, with probability ≥ 1− e−a2N − e−c2N/2 ≥
1− e−c′2N , for an appropriate c′2.

Since θ
1/k
k ≤ e then (3.12) is implied by(

6 e a1/c
1+1/δ
3

)k

< ec2N/2,
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which, in turn, is yield by

6 e a1 <
(
ec2 µ0 /2 c3

)1+1/δ
.

Since 6 e a1 ≥ 1, it is clear that the latter inequality will be satisfied once
we choose µ0 ≥ 1 so that, for example, exp(c2µ0/2) c3 > 6 e a1. This can be
trivially done with µ0 depending on a1, c2 and c3. 2

Remark. Let us reiterate that the above theorem is valid for sections gen-
erated by n vectors in RN with random ±1 coordinates. Here N = (1 + δ)n
as above, and µ0, c3, c̃1 and c′2 are absolute constants.

Let us finish with one more application of our results, which could be
called a “lower M∗-estimate” for subspaces generated by columns of random
matrices satisfying conditions (M1) and (M2). In fact the estimate below
follows immediately from the known results, by combining a “lower M∗-
estimate”, in the form proved in [Mi] or [PT], with Theorem 3.4; but the
methods developed in this paper allow a direct and relatively shorter proof.
We shall prove the result for matrices from M′(N, n, b, a1, a2). An analogous
inequality for a general matrix satisfying (M1) and (M2) is quite obvious and
is left for the interested reader.

Recall that for a symmetric convex body K ⊂ RN we let

M∗(K) =

∫
SN−1

sup
y∈K

|(x, y)| dx.

Theorem 3.5 Let δ > 0, n > 1 and N = (1 + δ)n, and let a1, b ≥ 1 and
a2 > 0. Let Γ ∈ M′(N, n, b, a1, a2) and let K ⊂ RN be a symmetric convex

body. There exist c̃1, c
′
2, C > 0 and c′3 > 1 such that whenever n ≥ c̃

1+1/δ
1

then, with probability ≥ 1− exp(−c′2N), we have

diam (K ∩ Γ(Rn)) ≤ C a1 c′3
1+1/δ

M∗(K). (3.13)

Here c′3 and c̃1 depend on b and a1, while C and c′2 depend on b and a2.

Proof: Recall that by Sudakov’s inequality (cf. e.g., [P]), for every sym-
metric convex body K ⊂ RN and every ε > 0 we have

ε
√

log N(K, εBN
2 ) ≤ C ′M∗(K)

√
N, (3.14)
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where C ′ > 0 is an absolute constant.
Now, let c̃1, c2 > 0 and 0 < c3 < 1 be from Lemma 3.3, and set c′3 = 1/c3.

Let
ρ = (2C ′/

√
c2) a1 c′3

1+1/δ
M∗(K),

and ε = (2C ′/
√

c2) M∗(K).

We shall now use (3.4) with t0 = 1/c′3
1+1/δ, ν0 = exp(−c2N) and ν1 =

exp(−a2N). Then, by Lemma 3.3, we get that whenever n ≥ c̃
1+1/δ
1 , then

diam (K ∩ Γ(Rn)) ≤ (2C ′/c2) a1 c′3
1+1/δ

M∗(K),

with probability ≥ 1 − Nρ(ε) exp(−c2N) − exp(−a2N). Thus it is enough
to notice that, by (3.14),

Nρ(ε) ≤ N(K, εBN
2 ) ≤ eC′2M∗(K)2N/ε2 ≤ ec2N/4,

to get the lower estimate for the probability ≥ 1−exp(−3c2N/4)−exp(−a2N)
≥ 1−exp(−c′2N), for a suitable choice of c′2 > 0 depending on b and a2 only. 2
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