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Abstract

Let (RN , ‖ · ‖) be the space RN equipped with a norm ‖ · ‖ whose
unit ball has a bounded volume ratio with respect to the Euclidean
unit ball. Let Γ be any random N × n matrix with N > n, whose
entries are independent random variables satisfying some moment as-
sumptions. We show that with high probability Γ is a good isomor-
phism from the n-dimensional Euclidean space (Rn, | · |) onto its im-
age in (RN , ‖ · ‖), i. e. there exist α, β > 0 such that for all x ∈ Rn,
α
√

N |x| ≤ ‖Γx‖ ≤ β
√

N |x|. This solves a conjecture of Schechtman
on random embeddings of `n

2 into `N
1 .

1 Introduction

One of important steps in the study of Euclidean subspaces of finite-dimen-
sional normed spaces was a result of Kashin ([Ka]) who proved that there
exist subspaces of RN of dimension proportional to N on which the `1 and
`2 norms are equivalent. More precisely, for an arbitrary δ > 0, let n and N
be integers satisfying N ≥ n(1 + δ). Denote by ‖ · ‖1 and | · | the `1 and the
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Euclidean norm on RN , respectively. Then there exists a subspace E ⊂ RN

of dimension n such that

ā(δ)
√

N |x| ≤ ‖x‖1 ≤
√

N |x| for all x ∈ E, (1.1)

for a certain function ā(δ). In fact, “random” n-dimensional subspaces E ⊂
RN (in sense of the Haar measure on the Grassman manifold GN,n) satisfy
condition (1.1). When N = 2n, this implies a well-known result of Kashin
on the orthogonal decomposition of `N

1 . Kashin’s theorem was reproved by
Szarek [Sz] by a different argument, which also worked in a more general case
of spaces with so-called bounded volume ratio ([SzT], see also [Pi]).

Let N ≥ n. In this paper we are interested in “random” sections of
convex bodies in RN given by n-dimensional subspaces of RN , spanned by
the columns of rectangular N × n matrices Γ, whose entries are independent
real-valued random variables on some probability space (Ω,A, P).

Observe that the Haar measure on the Grassman manifold GN,n is induced
by an N × n matrix Γ whose entries are independent standard Gaussian
random variables. Recently Schechtman studied in [S] an analogue of (1.1)
for subspaces of `N

1 spanned by the columns of matrices build from Bernoulli
±1 variables. More precisely, he has shown that for a 2n × n matrix A
such that A∗ =

[√
nIn B

]
, where In is the identity n × n matrix, and B

is an n × n matrix whose entries are independent Bernoulli ±1 variables,
the subspace spanned by the columns of A satisfies (1.1) with probability
exponentially close to 1. He further showed ([S], Proposition 3) that for
any δ > 0 and N ≥ (1 + δ)n, there exists an N × n (non-random) matrix
consisting of ±1 entries only, whose columns span a subspace satisfying (1.1),
and he conjectured that the result remains valid for “random” ±1 matrices
as well. In a related direction, it has been recently shown in [MiP] that the
kernels of a random ±1 matrix of size n×N also satisfy (1.1) with probability
exponentially close to 1.

In this paper we consider a general class M of matrices Γ, defined in (2.1)
and (2.2) below, which includes matrices with subgaussian entries (with uni-
form parameters), in particular matrices with standard Gaussian entries or
Bernoulli ±1 entries. We also consider a general class of centrally symmetric
convex bodies in RN with bounded volume ratio with respect to the Eu-
clidean ball (see the definition in Section 2 below). We prove an analogue of
(1.1) for normed spaces determined by such bodies and for subspaces spanned
by the columns of matrices from our class. Moreover the result holds with
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probability exponentially (in N) close to 1. In particular this answers the
question of Schechtman, for all δ, for spaces with bounded volume ratio, and
sections spanned by the columns of matrices from M.

Our approach is a combination of probabilistic estimates in a Euclidean
setting for individual vectors, and entropy arguments for general convex bod-
ies. The former are based in a significant part on the methods developed in
[LPRT]. However the estimates here are more delicate; in particular, The-
orem 3.3 below is an extension of Theorem 3.1 from [LPRT]. The entropy
arguments are new and seem to be of independent interest. The results of
this paper were announced in [LPRTV]; however the outline of the argument
given there lead to a weaker dependence of constants on δ.
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visiting at several universities. Namely, the first and the forth named author
visited the Australian National University at Canberra in February 2004 and the
University of Missouri at Columbia in April 2004. The second named author held
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at Canberra. The authors would like to thank all these universities for their
support and hospitality.
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2 Preliminaries

By | · | and 〈·, ·〉 we denote the canonical Euclidean norm and the canonical
inner product on Rm; and by Bm

2 and Sm−1, the corresponding unit ball
and the unit sphere, respectively. For 1 ≤ p ≤ ∞, by ‖ · ‖p we denote the

`p-norm, i.e., ‖a‖p =
(∑

i≥1 |ai|p
)1/p

for p < ∞, and ‖a‖∞ = supi≥1 |ai|. As
usual, `m

p = (Rm, ‖ · ‖p), and the unit ball of `m
p is denoted by Bm

p .

For any Lebesgue measurable set L ⊂ Rm, by |L| we denote the volume
of L. By a symmetric convex body we mean a centrally symmetric convex
compact set with the non-empty interior.

Let K ⊂ Rm be a convex body whose interior contains the origin. For
x ∈ Rm we denote by

‖x‖K = inf{t ≥ 0 | x ∈ tK}

the Minkowski functional of K. We also set

VK :=

(
|K|
|Bm

2 |

)1/m

.
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Whenever Bm
2 ⊂ K and VK is bounded by a constant independent on the

dimension, we say that K has bounded volume ratio with respect to the
Euclidean ball. The prime example of such a body is K =

√
mBm

1 which
satisfies Bm

2 ⊂ K and

VK =

(
2mmm/2

m!

Γ(m/2 + 1)

πm/2

)1/m

≤
(

2e

π

)1/2

.

(The Γ(·) above denotes the Gamma-function.)

The cardinality of a finite set A is denoted by |A|. This does not lead to a
confusion with the volume, since the meaning of the notation will be always
clear from the context.

Given a set L ⊂ Rm, a convex body K ⊂ Rm and ε > 0, we say that a
set A is an ε-net of L with respect to K if A ⊂ L ⊂ ∪x∈A (x+ εK). It is well
known that if K = L is a symmetric convex body (or if K is the boundary of
a symmetric convex body L) then for every ε > 0 there exists an ε-net A of
K with respect to L with cardinality |A| ≤ (1 + 2/ε)m (see e.g. [MiS], [Pi],
[T]).

For a finite subset σ ⊂ {1, 2, . . . ,m} we denote by Pσ the coordinate
projection onto Rσ. Sometimes we consider Pσ as an operator Rm → Rm

and sometimes as an operator Rm → Rσ.
Given a number a we denote the largest integer not exceeding a by [a]

and the smallest integer larger than or equal to a by dae.

By g, gi, i ≥ 1, we denote independent N(0, 1) Gaussian random vari-
ables. By P(·) we denote the probability of an event, and E denotes the
expectation.

In this paper, we are interested in rectangular N × n matrices Γ, with
N ≥ n, whose entries are independent real-valued random variables on some
probability space (Ω,A, P). We consider these matrices as operators acting
from the Euclidean space `n

2 to `N
2 and we denote by ‖Γ‖ the norm of Γ in

L(`n
2 , `

N
2 ). If entries of Γ are independent N(0, 1) Gaussian variables we say

that Γ is a Gaussian random matrix. If the entries of Γ are independent ±1
Bernoulli random variables we say that Γ is a ±1 random matrix.

For µ ≥ 1 and a1, a2 > 0, we let M(N, n, µ, a1, a2) be the set of N ×
n matrices Γ = (ξij)1≤i≤N,1≤j≤n whose entries are real-valued independent
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symmetric random variables ξij on (Ω,A, P) satisfying:

1 ≤ ‖ξij‖L2 and ‖ξij‖L3 ≤ µ for every 1 ≤ i ≤ N, 1 ≤ j ≤ n (2.1)

and P
(
‖Γ‖ ≥ a1

√
N
)
≤ e−a2N . (2.2)

Condition (2.2) on the operator norm is not easy to check in general,
even for the case of independent identically distributed variables. However
there is a natural class of random variables for which this condition can be
shown to hold. Namely, a real-valued random variable ξ on (Ω,A, P) is called
subgaussian if there exists b > 0 such that for all t > 0 one has

E etξ ≤ eb2t2/2. (2.3)

To emphasize the role of the parameter b we shall call a variable satisfying
(2.3) b-subgaussian. If ξ is b-subgaussian, then it is classical to check by
Chebyshev inequality and an easy optimization argument that

P(ξ ≥ u) ≤ exp

(
− u2

2b2

)
for any u ≥ 0. (2.4)

It can be also shown by a direct computation that (2.4) implies that ξ is
b̄-subgaussian, with b̄ = 2b.

The following basic fact, proved in [LPRT], makes subgaussian variables
the main example in our context.

Fact 2.1 Let b > 0, a2 > 0 and N ≥ n ≥ 1. Let Γ = (ξij)1≤i≤N,1≤j≤n be a
matrix with independent b-subgaussian symmetric entries. Then

Γ ∈ M(N, n, b, a1, a2), (2.5)

where a1 = 6 b
√

2(a2 + 4).

The notable examples of subgaussian variables are the standard Gaussian
variables, the Bernoulli ±1 variables, and variables uniformly distributed on
the interval [−1, 1]. This makes our results applicable, in particular, for
Gaussian random matrices and ±1 random matrices.

Finally, we discuss how under some additional but still general assump-
tions (2.2) implies subgaussian-type estimates. If N and n are fixed and the
entries of each column of a matrix Γ are independent identically distributed
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(i.i.d.) random variables then condition (2.2) is very close to the subgaussian
estimates (2.3) and (2.4). More precisely, let ξ1, ξ2, ..., ξn be symmetric ran-
dom variables and let Γ = (ξij)i≤N,j≤n be a matrix such that for every j ≤ n
the random variables ξ1j, ξ2j, ..., ξNj are independent copies of ξj. Assume
that Γ satisfies (2.2). For every i ≤ N and j ≤ n denote by

ξ̄j = ξj · 1
(
|ξj| ≤ a1

√
N
)

and ξ̄ij = ξij · 1
(
|ξij| ≤ a1

√
N
)

the truncated random variables and let Γ̄ =
(
ξ̄ij

)
i≤N,j≤n

. Then the entries of

each column j of Γ̄ are independent copies of ξ̄j. Moreover, since by (2.2),

P
(
|ξij| ≥ a1

√
N
)
≤ e−a2N ,

we have
P
(
Γ̄ = Γ

)
≥ 1−N n e−a2N .

We show that ξ̄j, j ≤ n, are subgaussian. Fix j ≤ n. Note that (2.2) applied
to the standard basic vector ej yields

P

(
N∑

i=1

(ξ̄ij)
2 ≥ a2

1N

)
≤ P

(
N∑

i=1

ξ2
ij ≥ a2

1N

)
= P

(
|Γej| ≥ a1

√
N
)
≤ e−a2N .

(2.6)
This inequality implies that for every k ≤ N one has

P
(
(ξ̄ij)

2 ≥ a2
1N/k for all i ≤ k

)
≤ e−a2N .

Since ξ̄ij, i ≤ N , are i.i.d., we obtain

P
(
(ξ̄j)

2 ≥ a2
1N/k

)
=

(
k∏

i=1

P
(
(ξ̄ij)

2 ≥ a2
1N/k

))1/k

≤ e−a2N/k.

Now let a1 ≤ t ≤ a1

√
N . Choose k such that a2

1N/(k + 1) ≤ t2 ≤ a2
1N/k.

Then

P(|ξ̄j| > t) ≤ exp

(
−a2

N

k + 1

)
≤ exp

(
− a2

2a2
1

t2
)

.

Since ξj is symmetric and P(|ξ̄j| > a1

√
N) = 0, standard calculations show

that ξj is b-subgaussian, where b depends on a1 and a2 only.
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We would like to note that the truncation of the ξj’s is necessary since
condition (2.2) does not provide any information about the events of proba-
bility less than exp(−a2N). On the other hand, by considering a sequence of
conditions rather than just one condition as above, we may indeed conclude
that the entries of a matrix are subgaussian, even without the truncation.
More precisely, let ξ be a random variable and let {ξi}i be a sequence of non-
necessarily independent copies of ξ satisfying for every m ≥ 1 the estimate

P

(
m∑

i=1

ξ2
i ≥ a2

1m

)
≤ e−a2m (2.7)

(compare with (2.6)). Then P (ξ ≥ a1

√
m) ≤ e−a2m for every m and, by

a similar calculation as above, it can be shown that ξ is subgaussian. In
other words if Γ = (ξij)i≥1,j≥1 is an infinite matrix such that for each fixed j
the sequence (ξij)i is a sequence of identically (non-necessarily independent)
distributed random variables satisfying (2.7) for every m, then for every
N ≥ 1 and every n ≤ N the matrix ΓN,n = (ξij)i≤N,j≤n has subgaussian
entries. In particular, if the entries are independent, ΓN,n satisfies (2.2).

In the conclusion of this section let us mention that in the case of iden-
tically distributed independent entries, the boundedness of the norms of a
sequence of (properly normalized) matrices implies the finiteness of the fourth
moment of the entries (see [BSY]).

3 Main results

Our main theorem says.

Theorem 3.1 Let δ > 0, let n ≥ 1 and N = (1 + δ)n. Let Γ be an N × n
matrix from M(N, n, µ, a1, a2), for some µ ≥ 1, a1, a2 > 0. Let K ⊂ RN be a
symmetric convex body such that BN

2 ⊂ K. There exist constants C1 ≥ 1 and
c1 ≥ 1 depending on a1 and µ only, such that whenever n ≥ (C1VK)1+1/δ, we
have

P
(
‖Γx‖K ≥ (c1VK)−(c1+1/δ)

√
N |x| for all x ∈ Rn

)
≥ 1− exp(−c2N),

where c2 > 0 depends on µ and a2.
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Remark 1. Our proof below gives that the desired probability can be made
less than exp(−N) + exp(−cN/µ6) + exp(−a2N), where c is an absolute
positive constant.
Remark 2. Since for every convex body K ⊂ RN with 0 in its interior we
have |K − K| ≤ 2N |K| and ‖ · ‖K ≥ ‖ · ‖K−K , Theorem 3.1 holds for every
convex body K ∈ RN with 0 in its interior.

We have an immediate corollary, the second part of which is an analogue
of (1.1) and solves a substantial generalization of the aforementioned question
of Schechtman.

Corollary 3.2 Under the assumptions of Theorem 3.1, the subspace E spann-
ed by the n columns of the matrix Γ satisfies, with α := (c1VK)−(c1+1/δ), and
with probability ≥ 1− e−c2N ,

(1/a1

√
N)Γ(Bn

2 ) ⊂ BN
2 ∩ E ⊂ K ∩ E ⊂ (1/α

√
N)Γ(Bn

2 ) ⊂ (a1/α)BN
2 ∩ E

and √
Nα|x| ≤ ‖Γx‖K ≤ a1

√
N |x| for all x ∈ Rn.

As we mentioned in introduction the proof of Theorem 3.1 combines prob-
ability results, parallel to the proof of the main result from [LPRT], and new
covering estimates (see Proposition 3.10 below). In particular, a slight mod-
ification of the argument from [LPRT] is sufficient to show the following
extension of the main result from that paper.

Theorem 3.3 Let δ > 0, let n ≥ 1 and N = (1 + δ)n. Let Γ be an N × n
matrix from M(N, n, µ, a1, a2), for some µ ≥ 1, a1, a2 > 0. There exist
positive constants C1 and c1 depending on a1 and µ only, such that whenever
n ≥ C

(1+δ)/δ
1 , then, for every fixed w ∈ RN , we have

P
(
∃x ∈ Sn−1 s.t. Γx ∈ w + c

(1+δ)/δ
1

√
NBN

2

)
≤ exp(−c2N),

where c2 > 0 depends on µ and a2.

Remark. It is noteworthy that, as can be seen from the proof below, the
case when δ ≥ δ0, where δ0 > 0 is a certain (large) absolute constant, is much
simpler than the case of a general (small) δ. Indeed, this former case follows
directly from Proposition 3.6, without use of Proposition 3.4.
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The proofs of both theorems are based on two key propositions. The first
result will be used to estimate a single coordinate (hence ‖·‖∞), of the vector
Γx, for a fixed x ∈ Rn. We state it here in a more general form, as we believe
it is of an independent interest.

Recall that for any subset σ ⊂ {1, . . . , n}, Pσ denotes the coordinate
projection in Rn.

Proposition 3.4 Let (ξi)
n
i=1 be a sequence of symmetric independent random

variables with 1 ≤ ‖ξi‖L2 ≤ ‖ξi‖L3 ≤ µ for all i = 1, . . . , n. Then for any
x = (xi) ∈ Rn, σ ⊂ {1, . . . , n} we have, for all s ∈ R and t > 0,

P
(∣∣ n∑

i=1

ξixi − s
∣∣ < t

)
≤
√

2/π
t

|Pσx|
+ c
(‖Pσx‖3

|Pσx|
µ
)3

,

where c > 0 is a universal constant.

This proposition depends on the well-known Berry-Esséen theorem (cf.,
e.g., [St], Section 2.1).

Lemma 3.5 Let (ζi)
n
i=1 be a sequence of symmetric independent random

variables with finite third moments, and let A2 :=
∑n

i=1 E|ζi|2. Then for
every τ ∈ R one has∣∣∣P( n∑

i=1

ζi < τA
)
− P (g < τ)

∣∣∣ ≤ (c/A3)
n∑

i=1

E|ζi|3,

where g is a Gaussian random variable with N(0, 1) distribution and c ≥ 1
is a universal constant.

Proof of Proposition 3.4: First we show a stronger estimate for σ =
{1, . . . , n}. Namely, for any a < b,

P
( n∑

i=1

ξixi ∈ [a, b)
)
≤
√

1/2π
b− a

|x|
+ c
(‖x‖3

|x|
µ
)3

, (3.1)

where c > 0 is a universal constant.
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Indeed, let ζi = ξixi. Then A2 :=
∑

i Eζ2
i =

∑
i x

2
i Eξ2

i ≥ |x|2 and
E
∑

i |ζi|3 ≤ µ3‖x‖3
3. By Lemma 3.5 we get

P
(
a ≤

n∑
i=1

ζi < b
)

≤ P
(
a/A ≤ g < b/A

)
+ c
(‖x‖3

A
µ
)3

≤ b− a

A
√

2π
+ c
(‖x‖3

A
µ
)3

≤
√

1/2π
b− a

|x|
+ c
(‖x‖3

|x|
µ
)3

,

as required.
Now, if σ is arbitrary, denote the sequence (ξi)i∈σ by (ξ′i) and the sequence

(ξi)i6∈σ by (ξ′′i ), and by P′ (resp., P′′) and E′ (resp., E′′) the corresponding
probabilities and expectations. The independence and Fubini theorem imply

P
(∣∣∣ n∑

i=1

ξixi − s
∣∣∣ < t

)
= P

(
s− t−

n∑
i=1

ξ′′i xi <
n∑

i=1

ξ′ixi < s + t−
n∑

i=1

ξ′′i xi

)
= E′′P′

(
s− t−

n∑
i=1

ξ′′i xi <
n∑

i=1

ξ′ixi < s + t−
n∑

i=1

ξ′′i xi

)
≤

√
1/2π

2t

|Pσx|
+ c
(‖Pσx‖3

|Pσx|
µ
)3

.

The latter inequality follows from (3.1), the fact that the vector appearing
in the sum

∑
i ξ
′
ixi is exactly Pσx, and by the independence of the ensembles

(ξi)i∈σ and (ξi)i/∈σ. 2

Our second proposition is a general estimate for the norm |Γx| for a fixed
vector x.

Proposition 3.6 Let 1 ≤ n < N be positive integers. Let Γ be an N × n
random matrix from M(N, n, µ, a1, a2), for some µ ≥ 1 and a1, a2 > 0. Then
for every x ∈ Rn and every w ∈ RN we have

P
(
|Γx− w| ≤ c′µ−3

√
N |x|

)
≤ exp

(
−c′′N/µ6

)
,

where 0 < c′, c′′ < 1 are absolute constants.
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The proof of this proposition will be using the following simple estimate
which is a general form of the Paley-Zygmund inequality (see e.g. [LPRT]
for the formulation used here).

Lemma 3.7 Let p ∈ (1,∞), q = p/(p− 1). Let f ≥ 0 be a random variable
with Ef 2p < ∞. Then for every 0 ≤ λ ≤

√
Ef 2 we have

P (f > λ) ≥ (Ef 2 − λ2)q

(Ef 2p)q/p
.

Corollary 3.8 Let µ ≥ 1 and (ξi)i≥1 be a sequence of independent symmetric
random variables such that 1 ≤ E|ξi|2 ≤ E|ξi|3 ≤ µ3 for every i ≥ 1. Let
s ∈ R, x = (xi)i≥1 ∈ `2 be such that |x| = 1 and f = |

∑
i≥1 xiξi − s|. Then

for every 0 ≤ λ ≤ 1 one has

P (f > λ) ≥ (1− λ2)
3

32µ6
.

Proof: Set h =
∑

i≥1 xiξi. By the symmetry of the ξi’s and Khinchine’s
inequality ([H]),

E|h|3 = EξEε

∣∣∣∣∣∑
i≥1

εiξixi

∣∣∣∣∣
3

≤
√

8 Eξ

(∑
i≥1

ξ2
i x

2
i

)3/2

,

where εi’s are independent Bernoulli ±1 random variables. (In the inequality
above we used the estimate for the Khinchine’s constant B3 =

√
2π−1/6 ≤

√
2,

while the standard proof gives B3 ≤ 2.) Consider the function ϕ(s) defined
on the set

E :=

{
s = (si)i≥1 ∈ `1 | si ≥ 0 for every i and

∑
i≥1

si = 1

}
by

ϕ(s) = Eξ

(∑
i≥1

ξ2
i si

)3/2

.

Clearly ϕ is convex, since a power larger than 1 of a linear function is convex.
Thus to estimate the supremum of ϕ it is enough to estimate the supremum
of values ϕ(ei) for the standard unit vectors ei ∈ `1. Therefore

sup
E

ϕ(s) = sup
i≥1

ϕ(ei) = sup
i≥1

Eξ

(
ξ2
i

)3/2 ≤ µ3,
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which implies
E|h|3 ≤

√
8µ3.

Since the ξi’s are symmetric we have that h is symmetric. Using this and
a simple inequality |a|3 + |b|3 ≤ (a2 + b2)3/2 ≤

√
2(|a|3 + |b|3) we obtain that

Ef 3 = E|h− s|3 = (1/2)E
(
|h− s|3 + | − h− s|3

)
≤ (1/2)E

(
|h− s|2 + |h + s|2

)3/2
= (1/2)E

(
2|h|2 + 2s2

)3/2

≤ 2(E|h|3 + |s|3) ≤ 4
√

2µ3 + 2|s|3.

Next, by our normalization,

Eh2 = E
∑
i≥1

ξ2
i |xi|2 ≥ 1.

Using the symmetry of h again we observe

Ef 2 = E|h− s|2 = (1/2)E
(
|h− s|2 + | − h− s|2

)
= E

(
|h|2 + s2

)
≥ 1 + s2.

Applying Lemma 3.7 with p = 3/2 we obtain

P (f > λ) ≥ (1 + s2 − λ2)3

(4
√

2µ3 + 2|s|3)2
.

The right hand side is minimal when s = 0 and this implies the desired result.
2

Proof of Proposition 3.6 Let x = (xi)i ∈ Rn with |x| = 1. Let
Γ = (ξji)j≤N,i≤n where ξji are independent symmetric random variables
with 1 ≤ ‖ξji‖L2 ≤ ‖ξji‖L3 ≤ µ, for every j ≤ N and every i ≤ n. Let
fj = |

∑n
i=1 ξjixi − wj|. Note that f1, . . . , fN are independent. For any

t, τ > 0 we have

P
(
|Γx− w|2 ≤ t2N

)
= P

(
N∑

j=1

f 2
j ≤ t2N

)
= P

(
N − 1

t2

N∑
j=1

f 2
j ≥ 0

)

≤ E exp

(
τN − τ

t2

N∑
j=1

f 2
j

)
= eτN

N∏
j=1

E exp
(
−τf 2

j /t2
)
.
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To estimate the latter expectations first observe that by Corollary 3.8, for
every λ ∈ (0, 1) and for every j

P (fj > λ) ≥ (1− λ2)3

32µ6
=: β.

Therefore, by the distribution function formula,

E exp
(
−τf 2

j /t2
)

=

∫ ∞

0

P
(
exp

(
−τf 2

j /t2
)

> s
)
ds

=

∫ 1

0

P
(
1/s > eτf2

j /t2
)

ds

≤
∫ e−τλ2/t2

0

ds +

∫ 1

e−τλ2/t2
(1− β)ds

= e−τλ2/t2 + (1− β)
(
1− e−τλ2/t2

)
= 1− β

(
1− e−τλ2/t2

)
.

Set τ = αt2/λ2, for some α > 0. Then for any t > 0 we get, for arbitrary
α > 0 and λ ∈ (0, 1),

P
(
|Γx− w|2 ≤ t2N

)
≤
(
eαt2/λ2 (

1− β(1− e−α)
))N

. (3.2)

For example, letting λ = 1/2 we get β = 27/(211µ6), and using 1−s < e−s

for s > 0, the left hand side expression in (3.2) is less than

exp
((

4αt2 − β(1− e−α)
)
N
)
.

Thus letting α = ln 2 and t =
√

β/4 we conclude the required estimates with
c′ = (27/215)1/2 and c′′ = 27/213. 2

Now we prove a lemma which will imply both theorems. First we intro-
duce more notations. Fix a, b to be defined later (they will depend on µ, a1,
a2 and satisfy 0 < 2a ≤ b ≤ 1/4). Given x ∈ Rn let σ(x, a) := {i : |xi| ≤ a}.
We set

S(a, b) = Sn−1 ∩
{
x : |Pσ(x,a)x| ≤ b

}
,

S ′(a, b) = Sn−1 ∩
{
x : |Pσ(x,a)x| > b

}
,
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and, given w ∈ RN and t > 0, we denote

Ω(w, t, a, b) = Ω ∩
(
∃x ∈ S(a, b) s.t. |Γx− w| ≤ t

√
N
)
, (3.3)

Ω′(w, t, a, b) = Ω ∩
(
∃x ∈ S ′(a, b) s.t. |Γx− w| ≤ t

√
N
)
, (3.4)

where Ω =
{

ω : ‖Γ‖ ≤ a1

√
N
}

.

We shall estimate the probabilities of these sets separately. In both cases
the idea of the proof is the same. We shall estimate the probability that
|Γx − w| ≤ t

√
N for a single vector x and then use the ε-net argument and

approximation. However, the balance between the probabilistic estimate and
the cardinality of an ε-net will be different in each case. If x ∈ S ′(a, b), we
have a good control of the `∞-norm of the vector Pσ(x,a)x, which allows us
to apply the powerful estimate of Proposition 3.4. In this case the standard
estimate (3/ε)n for the cardinality of an ε-net on the sphere Sn−1 will be
sufficient. In the case when x ∈ S(a, b), to bound the probability for a fixed
x, we shall use a weaker, but more general estimate from Proposition 3.6.
However, since in this case |Pσ(x,a)x| ≤ b, a vector x can be approximated
by another vector having a small support. This observation yields a much
better bound for the cardinality of an ε-net for S(a, b).

Lemma 3.9 Let 0 < δ < 1, n ≥ 1 and N = (1 + δ)n. Let Γ be an N × n
matrix from M(N, n, µ, a1, a2), for some µ ≥ 1, a1, a2 > 0. Let w ∈ RN .
There are absolute positive constants c1, c2, c3 and a positive constant c̄
depending only on a1 and µ such that

(i) for every V ≥ 1, b ≤ 1/4, and a, t satisfying

aa1 = t ≤ min

{
a1b

2
,

b

c̄V

(
b

3c̄a1V

)1/δ
}

one has
P (Ω′(w, t, a, b)) ≤ V −N ;

(ii) for b = min{1/4, c1/(a1µ
3)}, t = a1b/2 and every a satisfying

c2µ
3
√

ln(c2µ6/b)/
√

n ≤ a ≤ b/2

(assuming n is large enough) one has

P (Ω(w, t, a, b)) ≤ exp
(
−c3N/µ6

)
.
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Proof: Case I: Probability of Ω′(w, t, a, b). Let N ⊂ Sn−1 be an ε-net in
Sn−1 of cardinality |N | ≤ (3/ε)n. Setting ε := a = t/a1 ≤ b/2 a standard
approximation argument shows that if there exists x ∈ Sn−1 such that |Γx−
w| ≤ t

√
N and |Pσ(x,a)x| > b then there exist v ∈ N and σ ⊂ {1, . . . , n} such

that

|Γv−w| ≤ (t+εa1)
√

N = 2t
√

N, ‖Pσv‖∞ ≤ a+ε = 2a, |Pσv| ≥ b−ε ≥ b/2.

Denote by A the set of all v ∈ N for which there exists σ = σ(v) ⊂ {1, . . . , n}
such that

‖Pσv‖∞ ≤ 2a, |Pσv| ≥ b/2.

Then |A| ≤ |N | ≤ (3/ε)n and

P (Ω′(w, t, a, b)) ≤ P
(
∃v ∈ A : |Γv − w| ≤ 2t

√
N
)

. (3.5)

Now, fix v = (vi)i ∈ A. For every j = 1, . . . , N , set

fj(λ) = P
(∣∣∣ n∑

i=1

ξjivi − wj

∣∣∣ < λ
)
,

and let f(λ) = supj fj(λ). Since ‖ · ‖3
3 ≤ ‖ · ‖∞| · |2, by Proposition 3.4 we get

f(λ) ≤ c
(
λ + ‖Pσv‖∞µ3

)
/|Pσv|

≤ 2c
(
λ + 2aµ3

)
/b ≤ (4c/b) max

{
λ, 2aµ3

}
, (3.6)

where σ = σ(v) and c ≥
√

2/π is an absolute constant.
Now we have

P
(
|Γv − w|2 ≤ 4t2N

)
= P

( N∑
j=1

|
n∑

i=1

ξjivi − wj|2 ≤ 4t2N
)

= P
(
N −

N∑
j=1

|
n∑

i=1

ξjivi − wj|2/4t2 ≥ 0
)

≤ E exp
(
N −

N∑
j=1

|
n∑

i=1

ξjivi − wj|2/4t2
)

= eN

N∏
j=1

E exp
(
−|

n∑
i=1

ξjivi − wj|2/4t2
)
.
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We estimate the expectations by passing to the integral formula. Denote
A :=

√
2aµ3/t. Then

E exp
(
−|

n∑
i=1

ξjivi − wj|2/4t2
)

=

∫ 1

0

P
(
exp
(
−|

n∑
i=1

ξjivi − wj|2/4t2
)

> s
)
ds

=

∫ ∞

0

ue−u2/2 P
(
|

n∑
i=1

ξjivi − wj| <
√

2tu
)
du

=

∫ ∞

0

ue−u2/2fj(
√

2tu)du

≤ (4c/b)

(
2

∫ A

0

uaµ3 du +

∫ ∞

A

√
2tu2e−u2/2 du

)
≤ (4c/b)

(
aµ3A2 + t

√
π
)

= (4c/b)
(
2a3µ9/t2 + t

√
π
)

= (4ct/b)
(
2µ9/a3

1 +
√

π
)

= c̄t/b,

where c̄ := 4c (2µ9/a3
1 +

√
π). So

P
(
|Γv − w|2 ≤ 4t2N

)
≤ (c̄e t/b)N .

Finally, since ε = a = t/a1, we get by (3.5),

P
(
Ω′(w, t, a, b)

)
≤ |A| (c̄e t/b)N ≤

(
3a1/t

)n
(c̄e t/b)N ≤ V −N , (3.7)

for any t satisfying

t ≤ b

ec̄V

(
b

3ec̄a1V

)1/δ

(3.8)

Case II: Probability of Ω(w, t, a, b). Given x ∈ Sn−1 recall that σ(x, a) = {i :
|xi| ≤ a}, and set σ′(x, a) = {1, . . . , n} \ σ(x, a). By the definition of σ(x, a),
clearly, |σ′(x, a)| ≤ [1/a2] =: m. Let y = Pσ′(x,a)x. If now x is a vector

appearing in the definition (3.3) of Ω(w, t, a, b) then |Γy−w| ≤ (t+a1b)
√

N ,
|y| ≥ (1− b2)1/2 ≥ 1− b and | supp (y)| ≤ m.

Of course we want m ≤ n, which is satisfied since a ≥ 1/
√

n.
Let ε = b and let N ⊂ Bn

2 such that for every y′ with |y′| ≤ 1 and the
support ≤ m there exists v ∈ N such that |y′ − v| ≤ ε. We can chose N
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with cardinality |N | ≤
(

n
m

)
(3/ε)m ≤ (e n/m)m(3/ε)m. Thus choosing v for y

as above we get v ∈ N such that |v| ≥ |y| − ε ≥ 1− 2b ≥ 1/2 and

|Γv − w| ≤ (t + 2 a1b)
√

N ≤ (5/2)a1b
√

N ≤ 5a1b
√

N |v|.

(We used the fact that t = a1b/2, by our conditions.) Thus, by Proposi-
tion 3.6, we get that if

b ≤ c′/(5a1µ
3) (3.9)

then

P
(
Ω(w, t, a, b)

)
≤ (e n/m)m(3/b)m exp

(
−c′′N/µ6

)
≤ exp

(
−c′′N/(2µ6)

)
(3.10)

for m satisfying

m ln

(
3en

bm

)
≤ c′′N/(2µ6). (3.11)

Since m = [1/a2] ≤ n, the last inequality holds if

(1/a2) ln

(
3ena2

b

)
≤ c′′n/(2µ6). (3.12)

To satisfy the latter inequality it is enough to take a such that

1/a2 ≤ c′′n

4µ6 ln (6eµ6/ (c′′b))
. (3.13)

This proves the lemma. 2

Theorem 3.3 immediately follows from Lemma 3.9.

Proof of Theorem 3.3: Let c1, c2, c3, c̄ be constants from Lemma 3.9. Let

V = e, b = min{1/4, c1/(a1µ
3)}, t0 = a1b/2, t = min

{
t0 , b

c̄V

(
b

3c̄a1V

)1/δ
}

,

a = t/a1. Note that Ω(w, t, a, b) ⊂ Ω(w, t0, a, b). Therefore, by Lemma 3.9
(condition on a will be satisfied by an appropriate choice of C1 in the condi-
tions of Theorem 3.3) we obtain

P (Ω′(w, t, a, b)) ≤ e−N and P (Ω(w, t, a, b)) ≤ exp
(
−c3N/µ6

)
.

To obtain Theorem 3.3 observe that we are interested in the set(
∃x ∈ Sn−1 s.t. |Γx− w| ≤ t

√
N
)
,
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which is the union of Ω′(w, t, a, b), Ω(w, t, a, b) and complement of Ω. More-
over, by the definition of the class M(N, n, µ, a1, a2) we also have that P(Ω) ≥
1− exp(−a2N). Putting the three estimates together

P
(
∃x ∈ Sn−1 s.t. |Γx− w| ≤ t

√
N
)
≤ e−N + e−c3N/µ6

+ e−a2N ,

which concludes the proof. 2

To prove Theorem 3.1 we need the following proposition.

Proposition 3.10 There exists an absolute constant c > 0 such that for
every 0 < r ≤ 1/e, every symmetric convex body K ⊂ RN satisfying BN

2 ⊂
K, and every 0 < η ≤ ln(4πVK)/ ln(1/r) one has

N
(
αK ∩BN

2 , rBN
2

)
≤ 2ηN for α = (4πVK)(c/η) ln r .

Proof: Set L := αK ∩BN
2 , and A = 4πVK . By Szarek’s volume ratio theo-

rem, for every 1 ≤ k ≤ n there exists a subspace E ⊂ RN with codim E = k
such that L ∩ E ⊂ min(1, αAN/k)BN

2 ∩ E. It is now convenient to use some
terminology of so-called s-numbers of operators. Let (RN , W ) be a Banach
space equipped with the norm defined by a symmetric convex body W . For
an operator u : (RN , W ) → `N

2 and any j, the j’th Gelfand number is de-
fined by cj(u) = inf{‖u|E‖ : E ⊂ RN , codim E < j}, and the j’th entropy
number is defined by ej(u) = inf{ε : N(u(W ), εBN

2 ) ≤ 2j−1}. In particular,
letting u to be the formal identity operator from (RN , L) to `N

2 , we have
ck+1(u) ≤ min(1, αAn/k).

Set β = ln(1/r) ≥ 1, and m = [ηN ]. By Carl’s theorem ([C], cf., [Pi] Th.
5.2) one has

mβem(u) ≤ ρβ sup
k≤m

kβck+1(u).

Moreover, following precisely the proof of Carl’s theorem, it can be observed
that for β ≥ 1 one can take ρβ ≤ (cβ)β, where c is an absolute constant.
Therefore

mβem(u) ≤ (cβ)β sup
0<t≤m

(
tβ min

(
1, αAN/t

))
.

Since the function f(t) = tβAN/t is decreasing on the interval (0, N(ln A)/β]
and m ≤ N(ln A)/β, the supremum above is attained for t = N(ln A)/ ln(1/α).
Thus

em(u) ≤
(

cβN ln A

m ln(1/α)

)β

≤
(

2c (ln(1/r)) (ln A)

η ln(1/α)

)ln(1/r)

≤ r
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for α ≤ A(2ec/η) ln r. That proves the result. 2

Theorem 3.1 (with worse dependence of constants on δ) follows directly
from Theorem 3.3 and Proposition 3.10 (see [LPRTV]), however applica-
tion of Lemma 3.9 together with Proposition 3.10 and the standard volume
covering estimates implies better dependence of constants on δ.

Proof of Theorem 3.1: The proof is similar to the proof of Theorem 3.3.
First we split the Euclidean sphere into two parts and define corresponding
events. Then for each event we will use covering of K by small balls reducing
the problem of estimating of probability that a vector belongs to a multiple
of K to the problem of estimating of probability that a vector belongs to
a shift of the Euclidean ball, which we already considered. Note that in
two different cases we will use different estimates for covering numbers, in
one we apply Proposition 3.10 in the second the standard volume estimate
N(K, BN

2 ) ≤ (3VK)N is enough.
First we define the following two events corresponding to Ω(w, t, a, b) and

Ω′(w, t, a, b). As above, fix some positive a, b and let S(a, b), S ′(a, b) be the
corresponding splitting of Sn−1. Set

ΩK(t, a, b) = Ω ∩
(
∃x ∈ S(a, b) s.t. ‖Γx‖K ≤ t

√
N
)
, (3.14)

Ω′
K(t, a, b) = Ω ∩

(
∃x ∈ S ′(a, b) s.t. ‖Γx‖K ≤ t

√
N
)
, (3.15)

where, as before, Ω =
{

ω : ‖Γ‖ ≤ a1

√
N
}

.

Now let c1, c2, c3, c̄ be constants from Lemma 3.9. Let V = 3eVK , b =

min{1/4, c1/(a1µ
3)}, t0 = a1b/2, t = min

{
t0 , b

c̄V

(
b

3c̄a1V

)1/δ
}

, a = t/a1.

Note that we can ensure that a satisfies the conditions of Lemma 3.9 by an
appropriate choice of constant C1 in the condition of Theorem 3.1.

Case I: Probability of Ω′
K(t, a, b). Since N(K, BN

2 ) ≤ A := (3VK)N there
are w1, ..., wA such that for every z ∈ t

√
NK there exists i ≤ A such that

z ∈ wi + t
√

NBN
2 . Therefore, by Lemma 3.9,

P (Ω′
K(t, a, b)) ≤

A∑
i=1

P (Ω′(wi, t, a, b)) ≤ AV −N = e−N .
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Case II: Probability of ΩK(t, a, b). We apply Proposition 3.10 for

r = min

{
t0
a1

,
1

e

}
, η = min

{
c3

2µ6
,
ln(4πVK)

ln(1/r)

}
, and α = (4πVK)(c/η) ln r.

There exist w1, ..., wA, where A ≤ exp(c3N/(2µ6)), such that for every
z ∈ a1

√
N(αK ∩ BN

2 ) there exists i ≤ A such that z ∈ wi + ra1

√
NBN

2 .
Since for every ω ∈ Ω and every x ∈ Sn−1 one has Γx ∈ a1

√
NBN

2 , applying
Lemma 3.9, we obtain

P (ΩK(αa1, a, b))

≤
A∑

i=1

P (Ω(wi, ra1, a, b)) ≤
A∑

i=1

P (Ω(wi, t0, a, b))

≤ A exp(−c3N/µ6) ≤ exp(−c3N/(2µ6)).

Finally, let γ = min{t, αa1}. Then γ > (C(a1, µ)/VK)1+1/δ and

P (Ω′
K(γ, a, b)) ≤ P (Ω′

K(t, a, b)) ≤ e−N ,

P (ΩK(γ, a, b)) ≤ P (ΩK(αa1, a, b)) ≤ exp(−c3N/(2µ6)).

We conclude as in Theorem 3.3 obtaining that the desired probability does
not exceed e−N + exp(−c3N/(2µ6)) + exp(−a2N). This completes the proof
of Theorem 3.1. 2

We describe below an alternative approach to Proposition 3.10. Let K ⊂
RN be a symmetric convex body. Recall the important definition of the
M∗-functional,

M∗(K) :=

∫
SN−1

sup
y∈K

〈x, y〉 dx.

Now, consider the function M∗
K(·) : (0,∞) → [0, 1] defined by M∗

K(r) =
M∗(L), where L := (K/r) ∩ BN

2 . In [GM1], [GM2] many properties of
K were investigated using the function M∗

K(r). The following proposition
provides estimates for this function in terms of VK .

Proposition 3.11 Let K ⊂ RN be a symmetric convex body such that BN
2 ⊂

K. There exists an absolute constant C such that M∗
K(r) ≤ C

√
ln(2VK)

ln(1+r2 ln(2VK))

for every r > 0. In particular, if r ≥ 2(2VK)1/η then M∗
K(r) ≤ C

√
η.
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Remark. By Sudakov’s inequality this proposition implies Proposition 3.10
with α = (2VK)−c/(ηr2).

Proof: Note that for r2 ln(2Vk) ≤ 1 Proposition 3.11 is trivially satisfied,
since VK ≥ 1 and M∗

K(r) ≤ 1. Hence we may assume that r > 1/
√

ln(2Vk).
Denote M∗

K(r) = M∗(L) by M∗. Since L ⊂ BN
2 , by the dual version

of Dvoretzky theorem, there exist an absolute constant 0 < c′ < 1/4 and a
subspace E ⊂ RN of dimension k ≥ c′(M∗)2N such that PEK ⊃ rPEL ⊃
(rM∗/2)PEBN

2 . Here PE denotes the orthogonal projection onto E. Since
K ⊃ BN

2 , the Rogers-Shephard inequality (see [Pi] Lemma 8.8) implies

VK =

(
|K|
|BN

2 |

)1/N

≥
(

N

k

)−1/N ( |PEK| |K ∩ E|
|BN

2 |

)1/N

≥
(

N

k

)−1/N ( |(rM∗/2)Bk
2 ||BN−k

2 |
|BN

2 |

)1/N

≥ 1

2

(
rM∗

2

)k/N

.

Thus if M∗ > 2/r then 2VK ≥ (rM∗/2)c′M∗2
, which implies

M∗2 ≤ 4 ln(2VK)/(c′ ln(r2 ln(2VK))).

Finally, if M∗ ≤ 2/r, then the conclusion follows from the fact that r >
1/
√

ln(2Vk). 2

As an application, we show how the last proposition implies a volume
ratio result. Firstly, it was noticed in [GM2] that the well-known lower M∗-
estimate ([Mi], [PT], [Go]) can be formulated as follows:

Proposition 3.12 Let λ, ε ∈ (0, 1). Let n be large enough, k = [λn], and
K be a symmetric convex body in Rn. Assume r be such that M∗

K(r) =
(1 − ε)

√
1− λ. Then there exists a k-dimensional subspace E of Rn such

that K ∩ E ⊂ rBn
2 . Moreover, the measure (normalized Haar measure on

the Grassman manifold Gn,k) of such subspaces is larger than 1− exp(−cεn),
where cε depends only on ε.

Now, combining Propositions 3.11 and 3.12 (for, say, ε = 1 − 1/
√

2) we
immediately obtain
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Theorem 3.13 Let λ ∈ (0, 1). Let n be large enough, k = [λn], and K
be a symmetric convex body in Rn such that Bn

2 ⊂ K. Then there exists a
k-dimensional subspace E of Rn such that

K ∩ E ⊂ 2(2VK)C/(1−λ) Bn
2 ,

where C is an absolute constant from Proposition 3.11. Moreover, the mea-
sure of such subspaces is larger than 1 − exp(−cn), where c is a positive
absolute constant.

Szarek’s volume ratio theorem ([Sz], [SzT], see also [Pi]) stated under
the assumptions of Theorem 3.13 is the same result with explicit constants.
Namely, the set of all k-dimensional subspaces E ⊂ Rn satisfying

K ∩ E ⊂ (4πVK)1/(1−λ) Bn
2 ,

has measure larger than or equal to 1− 2−n.
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