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Abstract

We discuss when a generic subspace of some fixed proportional
dimension of a finite-dimensional normed space can be isomorphic to
a generic quotient of some proportional dimension of another space.
We show (in Theorem 4.1) that if this happens (for some natural
random structures) then for any proportion arbitrarily close to 1, the
first space has a lot of Euclidean subspaces and the second space has
a lot of Euclidean quotients.

0 Introduction

In the paper [BM1], Bourgain and Milman studied Banach–Mazur dis-
tances between finite-dimensional normed spaces, their subspaces and
quotients. In particular they proved that given any two normed spaces
X and Y , for a large set of (proportional dimensional) subspaces of
X and a large set of quotients of Y , the distance betwen any two
representatives is less than or equal to c

√
n(log n)2, where c depends

on the proportion only. In fact, these sets of subspaces and quotients
have (Haar) measure close to 1, as subsets of Grassman manifolds
naturally determined by the spaces X and Y . This result should be
compared to the result of Gluskin [Gl] which says that for a large set
of (proportional dimensional) subspaces of `n∞, the distance between
two distinct subspaces is larger than or equal to cn, where c > 0 is
an absolute constant. It was then observed in [BM1] that “random”
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subspaces and “random” quotients are not of the same nature, and
should have some very different properties.

The present paper answers a vaguely put question from [BM1] and
opens a new direction in understanding of what “random” subspaces
and “random” quotients are. We consider a critical case and we show
that if, for some random structure (described below), a generic sub-
space of some fixed proportional dimension is isomorphic (essentially
the same) to a generic quotient of some proportional dimension of an-
other space (with a similarly selected random structure) then for any
proportion arbitrarily close to 1, the first space has a lot of Euclidean
subspaces and the second space has a lot of Euclidean quotients. So a
complete similarity between a generic subspace and a generic quotient
implies that most subspaces (respectively, quotients) are Euclidean.

Of course, the notion of randomness is crucially important and
we introduce and discuss the corresponding Euclidean structure in
Section 3. Just to describe our general point of view, for an arbitrary
n-dimensional normed space X and an arbitrary so-called M -ellipsoid
on X (see Section 3 for the definition), we identify X with Rn in such a
way that the ellipsoid becomes the standard Euclidean ball. Then for
every 0 < λ ≤ 1 we define a certain subset Fdλne(BX) of the Grassman
manifold Gn,dλne of all dλne-dimensional subspaces of Rn, depending
on X, whose (Haar) measure is exponentially close to 1. Our main
result (Theorem 4.1) says that if K,L ⊂ Rn are the unit balls of two
n-dimensional spaces X and Y with the above identification, and for
some 0 < λ < 1 and some d > 1 there exist E ∈ Fdλne(K) and
F ∈ Fdλne(L) such that the Banach-Mazur distance satisfies

d
(

(F,L ∩ F ), (E,QEK)
)
≤ d,

then the volume ratio of Y and the outer volume ratio of X are both
bounded by a function depending on λ and d only. Here (F,L ∩ F )
denotes the space F with the unit ball L ∩ F (which makes it into a
subspace of Y ) and similarly for (E,PEK), where PE is the orthogonal
projection onto E, which makes it into a quotient of X. Let us also
recall for non-specialists, that the condition of bounded volume ratio
implies the existence of a large family of Euclidean subspaces of pro-
portional dimension (for any proportion less than 1), and dually, the
boundness of the outer volume ratio is similarly related to Euclidean
quotients.

The proof of the main theorem is based upon some new properties
of the minimal and maximal volume ellipsoids which are described in
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Section 2. In our opinion, these properties should play a role in the
theory for many other problems as well, and should be independently
noted.

It is well known that every “local” fact in the asymptotic theory
(which means a fact about subspaces or quotients) corresponds to
some global statment, about the body in the whole space, without a
reduction of dimension. It also often happens that some of the facts
are very non trivial but other are very easy. In our case the global
analogies are easy, nevertheless they are presented in the second part
of Section 4 (Theorem 4.6 and before) to complete the picture.

In order to keep our arguments relatively transparent we did not
make an attempt to get the dependence of constants in our inequalities
on appropriate parameters asymptotically sharpest possible. Some
strengthenings of our results as well as their versions for non-symmetric
and p-convex cases will be presented in the forthcoming paper [LMT].

Acknowledgement The authors would like to thank to E. D. Gluskin
for useful dscussions and critical remarks on the first version of the
paper.

1 Basic notations

We consider Rn with the standard Euclidean structure and the Eu-
clidean unit ball denoted by B2. The canonical Euclidean norm on
Rn is denoted by | · |, and the corresponding inner product by 〈·, ·〉.
We shall also consider other Euclidean structures on Rn, with the unit
balls given by ellipsoids.

By a body we mean a compact set with a non-empty interior. We
shall call a convex body symmetric if it is centrally symmetric. For a
symmetric convex body K in Rn the polar body K0 is defined by

K0 := {x ∈ Rn | |〈x, y〉| ≤ 1 for every y ∈ K} .

We recall that for every subspace E of Rn the polar (in E) of K ∩ E
is PEK

0, where PE is the orthogonal projection onto E.
The n-dimensional volume of a body K in Rn is denoted by |K|.

For a symmetric convex body K ⊂ Rn we shall occasionally use the
notation ‖ · ‖K for the Minkowski functional of K. The normed space
(Rn, ‖ · ‖K) will be also denoted by (Rn,K). If L ⊂ Rm is another
symmetric convex body and T : Rn → Rm is a linear operator, by
‖T : K → L‖ we shall denote the operator norm of T from (Rn,K) to
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(Rm, L). If m = n, the geometric distance between K and L is defined
by

dg(K,L) := inf {b/a | a > 0, b > 0, aK ⊂ L ⊂ bK}.

If dg(K,L) ≤ C then we say that K and L are C-equivalent. The
Banach-Mazur distance between K and L is defined by

d(K,L) := inf {dg(K,TL)},

where the infimum is taken over all invertible linear operators T from
Rn to Rn. The Banach-Mazur distance between normed spaces is the
Banach-Mazur distance between their unit balls. If the Banach-Mazur
distance between a space and the Euclidean space is bounded by C
we say that the space is C-Euclidean.

For a real number a > 0, by dae we denote the smallest integer
larger than or equal to a.

Given an ellipsoid E on Rn, by GEn,k for 1 ≤ k ≤ n we shall de-
note the Grassman manifold of k-dimensional linear subspaces of Rn
equiped with the normalized Haar measure µE

n,k
determined by the

Euclidean structure given by E . If E = B2 we shall write Gn,k and
µn,k instead of GEn,k, and µE

n,k
. We say that some property holds for a

random orthogonal (in E) projection of rank k whenever the measure
of the set of all subspaces E ∈ GEn,k for which PE has the property, is
larger than 1− exp (ck) for some absolute constant c > 0.

For a symmetric convex body K ⊂ Rn, by EK ⊃ K and E ′K ⊂
K we denote the ellipsoids of minimal and maximal volume for K
respectively.

Recall that the volume ratio of K and the outer volume ratio of
K are defined by

vr (K) =
(
|K|/|E ′K |

)1/n
and outvr (K) = (|EK |/|K|)1/n .

For a symmetric convex body K ⊂ Rn, an ellipsoid E on Rn, and
any 0 < λ < 1 we shall consider certain subsets Fdλne(K) ⊂ GEn,dλne
of dλne-dimensional subspaces of Rn. Each element of Fdλne(K) gives
rise to two different normed spaces. Firstly, it can be treated as a sub-
space of the normed space (Rn,K), in which case we may use a generic
notation sK, that is, sK := (E,K∩E). The set of all these subspaces
will be denoted by Fs,dλne(K). Secondly, every E ∈ Fdλne(K) gives
rise to a quotient space of (Rn,K), via the orthogonal (in E) projec-
tion PE onto E, and in this case we may use a generic notation of qK;
that is, qK := (E,PEK). The set of all these quotient spaces will be
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denoted by Fq,dλne(K). (It should be noted that given a family Fk,
the definition of Fs,k does not depend on the ellipsoid E , while the
definition of Fq,k depends on this ellipsoid in an essential way.)

2 The minimal and maximal volume ellipsoids

We present in this section some new properties of the minimal (resp.,
maximal) volume ellipsoid associated to a convex body, which play
an essential role in our constructions. They deal with relations to
any other ellipsoid containing (resp., contained in) the same body.
These new properties depend on an abstract condition of Dvoretzky-
Rogers-type. All results can be dualized in a standard way to the
corresponding statements for the maximal volume ellipsoids and their
sections.

Let B be a symmetric convex body in Rm and let E ⊂ Rm be an
ellipsoid. Let φ : (0, 1] → (0, 1] be a function. We say that E has
property (∗) with respect to B with function φ, whenever

(∗) for any 1 ≤ k ≤ m and any projection Q of rank k on Rm orthog-
onal with respect to E we have ‖Q : B → E‖ ≥ φ(k/m).

It is well known that the minimal volume ellipsoid satisfies (∗) with
the function φ(t) =

√
t. This is connected to, but simpler than, the

Dvoretzky–Rogers Lemma. (We shall show in Lemma 2.2 below that
proportional-dimensional projections of the minimal volume ellipsoids
satisfy (∗) as well.)

Theorem 2.1 Let E ⊂ Rm and D ⊂ Rm be two ellipsoids, let B :=
E∩D. Let φ : (0, 1]→ (0, 1] and set A := (

∏m
l=1 φ(l/m))−1/m. Assume

that E has property (∗) with respect to B with function φ. Then

|E|1/m ≤ A|D|1/m. (2.1)

Furthermore, if φ(t) ≥ (1/a)tα for some a ≥ 1 and α ≥ 1/2, then
for every 0 < ξ < 1 there is fa,α = fa,α(ξ) ≥ 1 such that a random
projection Q of rank dξme orthogonal with respect to E satisfies

QE ⊂ fa,α(ξ)QD.

The difficulty of the second part of the theorem lies in the fact that
we prove it for a random projection Q. A deterministic statement of
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this type is immediate (by dualizing the proof of Proposition 2.4 (a)
below).

A typical situation when this theorem may be used is when a
symmetric convex body B̃ ⊂ Rm is given, E ⊃ B̃ is any ellipsoid
satisfying property (∗) with respect to B̃ (see e.g., Lemma 2.2 below),
and D ⊃ B̃ is arbitrary.

Proof The first part of the theorem is elementary. Without lost of
generality we may assume that E = B2. Let ρ1 ≥ ... ≥ ρm > 0 and let
{ei}mi=1 be an orthonormal basis such that D is of the form

D =
{
x =

m∑
i=1

xiei ∈ Rm |
m∑
i=1

x2i /ρ
2
i ≤ 1

}
.

Considering the orthogonal projection Q on the span {ei}mi=m−k+1, we
obtain, by property (∗),

ρm−k+1 = ‖Q : D → B2‖ ≥ ‖Q : B → B2‖ ≥ φ(k/m).

Let ρ̄i = min {1, ρi}. Clearly we have

E1 :=
{
x =

m∑
i=1

xiei ∈ Rm |
m∑
i=1

x2i /ρ̄
2
i ≤ 1

}
⊂ E ∩ D.

Thus

|E ∩ D|/|E| ≥
m∏
l=1

ρ̄l ≥
m∏
l=1

φ(l/m) = A−m,

which implies the first part of the theorem.
To prove the second part of the theorem, let us note that, by

duality, it is enough to prove that

D0 ∩ E ⊂ fa,α(ξ) B2 ∩ E (2.2)

for a random (in B2) subspace E. To show this we shall use the well-
known lower M∗-estimate ([M1, PT, Go, M5]) which says that for
every convex body K ⊂ Rm a random dξme-dimensional subspace E
satisfies

K ∩ E ⊂ 2M∗(K)√
1− ξ

B2,

where

M∗(K) =

 1

m
E

∥∥∥∥∥
m∑
i=1

giei

∥∥∥∥∥
2

K0

1/2

,
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for independent identically distributed standard Gaussian random vari-
ables g1, . . . , gm and the Minkowski functional ‖ · ‖K0 .

Note that D0 is the ellipsoid with the semiaxes 1/ρi, 1 ≤ i ≤ m,
and that for every b > 0 one has

D0 ∩ bB2 ⊂
√

2E2,

where

E2 :=
{
x =

m∑
i=1

xiei ∈ Rm |
m∑
i=1

x2i /λ
2
i ≤ 1

}
for λi = min {b, 1/ρi}, 1 ≤ i ≤ m. It is easy to see that

M∗
(√

2E2
)

=
1√
m

(
2

m∑
i=1

λ2i

)1/2

Fix b ≥ a to be determined later. Since ρm−k+1 ≥ a−1(k/m)α,
then λi ≤ min {b, a(m/i)α} for 1 ≤ i ≤ m, and we obtain

m∑
i=1

λ2i ≤
∑

i≤(a/b)1/αm

b2 +
∑

m≥i≥(a/b)1/αm

a2(m/i)2α.

In the case α = 1/2 the latter expression is less than or equal to

a2m+ a2m(1 + ln(b2/a2)) = 2a2m(1 + ln(b/a)).

In the case α > 1/2, this expression is less than or equal to

ma1/αb2−1/α + b2 +
a2m

2α− 1
(b/a)2−1/α ≤ 2α+ 1

2α− 1
ma1/αb2−1/α,

if m(a/b)1/α ≥ 1. Otherwise, if m(a/b)1/α ≤ 1, the expression is less
than or equal to

a2m2α 2α

2α− 1
≤ 2α

2α− 1
ma1/αb2−1/α.

Thus, by the lower M∗-estimate, we obtain for a random dξme-
dimensional subspace E

D0 ∩ (bB2) ∩ E ⊂
√

2E2 ∩ E ⊂ Aα B2 ∩ E, (2.3)

where for α = 1/2 we set

A1/2 :=
4a

(1− ξ)1/2
√

1 + ln(b/a),
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and for α > 1/2 we set

Aα := 2
√

2

(
2α+ 1

2α− 1

)1/2

(1− ξ)−1/2a1/2αb1−1/2α.

We now treat the two cases separately. Let first α = 1/2. Then
let

b :=
4a

(1− ξ)1/2
√

ln(20/(1− ξ)),

so that A1/2 < b. To prove (2.2) fix x ∈ D0 ∩ E. Let x′ = (b/|x|)x.
If b < |x| then x′ ∈ D0 ∩ E, and hence x′ ∈ D0 ∩ (bB2) ∩ E. By (2.3)
we then get x′ ∈ A1/2B2 ∩ E. But |x′| = b > A1/2, a contradiction.
This shows that b ≥ |x| and thus (2.2) holds with fa,1/2(ξ) ≤ 4a(1 −
ξ)−1/2

√
ln(20/(1− ξ)). This concludes the proof in the case α = 1/2.

In the case α > 1/2 we let

b := 8α
(2α+ 1

2α− 1

)α
(1− ξ)−αa

so that Aα = b. A similar argument as before shows (2.2) with
fa,α(ξ) ≤ 8α((2α+ 1)/(2α− 1))α(1− ξ)−αa. This concludes the proof
of the theorem. 2

As the proof above shows the second part of the theorem still holds
for certain functions going to 0 faster than a power type functions;
however as this case seems less important at the present time we omit
the details.

As already mentioned, the minimal volume ellipsoid satisfies (∗)
with φ(t) =

√
t. A more general class of examples is provided by

proportional-dimensional projections of the minimal volume ellipsoids.

Lemma 2.2 Let K ⊂ Rn be a symmetric convex body and let EK be
the ellipsoid of minimal volume for K. Let P be an arbitrary projection
in Rn with rank P = m = αn, for some 0 < α ≤ 1. Then PEK has
property (∗) with respect to PK with function φ(t) =

√
αt.

Proof Without loss of generality assume that EK is the canonical
ball B2 in Rn. If P is an orthogonal projection on a subspace E :=
P (Rn) ⊂ Rn, then for any orthogonal projection Q in E of rank k,
QP can be considered as an orthogonal projection in Rn of rank k.
Thus, by duality,

‖Q : PK → PB2‖ ≥ ‖QP : K → B2‖ = ‖i |H : B2 ∩H → K0‖,
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where i : B2 → K0 is the formal identity operator and H = QP (Rn).
By the well-known property of the ellipsoid of minimal volume, the
last operator has norm larger than or equal to

√
k/n =

√
α
√
k/m

(see e.g., [T], §15 or [GM]).
If P is an arbitrary projection then let F := P (Rn), set E =

(kerP )⊥ and let PE be the orthogonal projection onto E. Then the
operator T := (PE) |F : F → E is invertible. It is easy to check
that TPx = PEx for all x ∈ Rn. In particular, TPK = PEK and
TPB2 = PEB2, in addition, for any projection Q : F → F orthogonal
in PB2, the operator TQT−1 is an orthogonal projection in E with
the same rank as Q. This, and the first part of the proof, clearly imply

‖Q : PK → PB2‖ = ‖TQT−1 : TPK → TPB2‖
= ‖TQT−1 : PEK → PEB2‖ ≥

√
α
√
k/m.

This completes the proof. 2

For future reference we formulate an important case.

Corollary 2.3 Let m ≤ n = βm for some β ≥ 1. Let K ⊂ Rn be a
symmetric convex body and let EK be the ellipsoid of minimal volume
for K. Let P be an arbitrary projection in Rn with rank P = m. Set
E = P (Rn) and E = P (EK). Let D ⊂ E be an arbitrary ellipsoid such
that D ⊃ PK. Then

|E|1/m ≤ c
√
β|D|1/m, (2.4)

where c > 0 is an absolute constant. Furthermore, for every 0 < ξ < 1,
a random projection Q in E of rank dξme orthogonal with respect to
E satisfies

QE ⊂ f(ξ)QD,

where f(ξ) = 4
√
β(1− ξ)−1/2

√
ln(20/(1− ξ)).

Proof By Lemma 2.2, E has property (∗) with respect to PK with
function φ(t) =

√
t/β. Since PK ⊂ E ∩ D implies ‖Q : PK → E‖ ≤

‖Q : E ∩ D → E‖ for every projection Q, it also has (∗) with respect
to E ∩ D. The conclusion follows from Theorem 2.1 and the form of
function fa,1/2. 2

Theorem 2.1 suggests a “relaxation” of the relation of containment
between two ellipsoids, which seems to be of independent interest.
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We formalized it in the following definition. Let E1 and E2 be two
ellipsoids on Rn. We say that E1 is essentially contained in E2 if for
every 0 < λ < 1 there is C(λ) ≥ 1, depending on λ only, and a
subspace E ⊂ Rn with dimE ≥ λn such that

E1 ∩ E ⊂ C(λ) E2 ∩ E. (2.5)

In such a case we may also say that E2 essentially contains E1. We shall
say that two ellipsoids are essentially equivalent if there is a number
a > 0 such that E1 is essentially contained in aE2 and aE2 is essentially
contained in E1. (We could also consider the dual notion in terms of
projections, but for the time being there does not seem to be much
advantage in doing this.)

Since (2.5) deals with sections rather than projections, it is con-
nected with the property (∗∗) dual to property (∗), introduced as
follows. Let B ⊂ Rm, E ⊂ Rm and φ : (0, 1]→ (0, 1] be the same as in
the definition of property (∗) above. We say that E has property (∗∗)
with respect to B with function φ, whenever

(∗∗) for any 1 ≤ k ≤ m and any subspace E ⊂ Rm of dimension k we
have ‖i |E : E ∩ E → B‖ ≥ φ(k/n).

A prime example of ellipsoids satisfying property (∗∗) are propor-
tional dimensional sections of ellipsoids of maximal volume. If K ⊂ Rn
is a symmetric convex body and E ′K ⊂ K is the ellipsoid of maximal
volume for K, and E ⊂ Rn with dimE = m = αn, for some 0 < α < 1,
then E ′K ∩ E satsifies (∗∗) with respect to K ∩ E with φ(t) =

√
αt.

An easy straightforward argument shows relations between an el-
lipsoid satisfying property (∗∗) with respect to a body K and any
ellipsoid D ⊂ K, and in particular a distance ellipsoid for K. Both
parts of the proposition below are most interesting for ellipsoids of
maximal volume.

Proposition 2.4 Let K ⊂ Rn be a symmetric convex body and let E
be an ellipsoid satisfying property (∗∗) with respect to K with a certain
function φ.

(a) Then E essentially contains every ellipsoid D ⊂ K, with C(λ) ≤
1

φ(1−λ) .

(b) If additionally E ⊂ K then there exists an ellipsoid D with D ⊂
K ⊂

√
2dKD which is essentially equivalent to E (here dK =

d(K,B2) denotes the Banach–Mazur distance to the Euclidean
space).
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Proof (a) With the same notation as at the beginning of the proof
of Theorem 2.1, for every 1 ≤ k ≤ n consider the subspace Fk :=
span {ei}ki=1. Then our assumptions imply

ρ−1k = ‖i |E : E ∩ E → D‖ ≥ ‖i |E : E ∩ E → K‖ ≥ φ(k/n).

On the other hand, given 0 < λ < 1, let l = dλne and let E :=
span {ei}ni=n−l+1. Then dimE = l ≥ λn and we have

D ∩ E ⊂ ρn−l+1B2 ∩ E ⊂
1

φ(1− λ)
E ∩ E,

completing the proof of (a).
(b) Pick any D′ ⊂ K ⊂ dKD′ and consider B = conv (D′ ∪ E).

Pick an ellipsoid D such that D ⊂ B ⊂
√

2D. Clearly, D ⊂ B ⊂
K ⊂

√
2dKD. Since E satisfies (∗∗) then (a) implies that E essentially

contains D with C(λ) ≤ 1/φ(1 − λ). On the other hand, clearly
E ⊂ B ⊂

√
2D, completing the proof of (b). 2

Remark For functions φ as in the second part of Theorem 2.1,
this theorem provides, by duality, a “randomized” version of Propo-
sition 2.4 in which the existence of a subspace E satisfying (2.5) is
replaced by the statement about “random subspaces” E.

3 Bodies in M-position

Let us first recall the definition and a few basic facts aboutM -ellipsoids
and M -positions of symmetric convex bodies.

LetK and L be two sets on Rn. ByN(K,L) we denote the covering
number, i.e. the minimal number of translations of L needed to cover
K.

Let K ⊂ Rn be a symmetric convex body and let C > 0. We say
that B2 is an M -ellipsoid for K with constant C if we have

max
{
N(K,B2), N(B2,K), N(K0, B2), N(B2,K

0)
}
≤ exp(Cn).

(3.1)
In this case we shall often say that K is in M -position with constant
C. It is a deep theorem first proved in [M3] that there is an absolute
constant C0 > 0 such that for every symmetric convex body K in Rn
there exists a linear transformation taking K into M -position with
constant C0. Throughout the paper we shall use the notation C0 for
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such a constant in (3.1). However we shall often omit to mention
it explicitely and we may just write, for example, that K is in M -
position. Still, the reader should always remember that from now on
all our absolute constants later actually depend on this C0.

It follows from the definition that if K is in M -position then so is
K0 and that

|e−C0B2| ≤ min(|K|, |K0|) ≤ max(|K|, |K0|) ≤ |eC0B2|.

Without loss of generality we assume from now on that whenever K
is in M -position then |K| = |B2|.

In fact the estimates (3.1) are consequences of the conditions |K| =
|B2| and one estimateN(K,B2) ≤ exp(C ′0n) with C ′0 > 0 (see Lemma 4.2
of [MS2] or Lemma 10 and Remark 1 that follows in [MPa]).

Note, for future reference, that the covering K ⊂
⋃N
i=1(xi + B2)

(with N ≤ exp(C0n)) easily implies the volume estimates(
|K +B2|
|B2|

)1/n

,

(
|K|

|(B2 ∩K)|

)1/n

≤ 2 eC0 . (3.2)

Furthermore, for any two sets in Rn and every projection P and every
subspace E one has

N(PK,PL) ≤ N(K,L) and N(K ∩ E, (L− L) ∩ E) ≤ N(K,L).
(3.3)

The first estimate is trivial. For the second, note that a covering
K ⊂

⋃N
i=1(xi + L) implies the covering K ∩ E ⊂

⋃
i∈I(xi + L) ∩ E,

where I := {i | (xi +L)∩E 6= ∅}. For each i ∈ I it is easy to see that
(xi + L) ∩E ⊂ zi + (L− L) ∩E, for any zi ∈ (xi + L) ∩E. Also note
that if L is symmetric and convex then L− L = 2L.

Let us now describe a functorial construction which plays a funda-
mental role in our results. For each symmetric convex body K in Rn
in M -position and every 0 < λ < 1 we shall define a certain subset
Fdλne(K) ⊂ Gn,dλne such that

µ
n,dλne

(
Fdλne(K)

)
≥ 1− e−cλn, (3.4)

where cλ > 0 is a function of λ only. In the future we shall refer to a
subset satisfying measure estimates of this type as a random family.

Given K ⊂ Rn as above, recall that the ellipsoids of minimal and
maximal volume for K are denoted by EK ⊃ K and E ′K ⊂ K, respec-
tively. We shall denote the semi-axes of EK by ρ1 ≥ ρ2 ≥ . . . ≥ ρn
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and a corresponding orthonormal basis by {ei}ni=1. Similar notation
is adopted for E ′K with the semi-axes ρ′1 ≥ ρ′2 ≥ . . . ≥ ρ′n and a
corresponding orthonormal basis {e′i}ni=1.

Define Fdλne(K) as the set of all E ∈ Gn,dλne satisfying

(i) PEB2 ⊂ CλPEK, where PE is orthogonal in B2;

(ii) K ∩ E ⊂ CλB2 ∩ E;

(iii) |PEx| ≥ bλ|x| for every x ∈ span {ei}mi=1 ∪ span {e′i}ni=n−m+1,
where m = dλn/2e,

where Cλ > 0 is an appropriate function on λ, and bλ = c0
√
λ with

an appropriate absolute constant c0 > 0. Below we keep the notation
Cλ, bλ and c0 for these constants.

Proposition 3.1 Let K be a symmetric convex body in M -position.
Then there exist a choice of Cλ, cλ and c0 such that the corresponding
family Fdλne(K) satisfies (3.4).

Proof The first two conditions in the definition of Fdλne(K) are
closely related to the fact that for a body K in M -position, random
proportional-dimensional projections of K have finite volume ratio.
This was discovered (even before the existence of an M -ellipsoid) in
[M2] (Theorem 4.1, Step d, p. 389), see also [M4], p. 107 for a slightly
stronger statement. We shall use the general volume ratio argument
that if K ⊂ Rn is a symmetric convex body and (|K +B2|/|B2|)1/n ≤
a then for any 0 < λ < 1, for a set of subspaces E ∈ Gn,dλne of

large measure we have K ∩ E ⊂ CB2 ∩ E, where C ≤ (4πa)1/(1−λ)

(see e.g. Chapter 6 of [Pi]). By duality, if (|B2|/|K ∩B2|)1/n ≤ b
then for a set of subspaces E ∈ Gn,dλne of large measure we have

PEB2 ⊂ C1PEK, where C1 = (cb)1/(1−λ) and c > 0 is an absolute
constant. Since in our situation K is in M -position, it easily follows
from (3.2) that the required upper estimates for a and b are satisfied,
with a and b depending on C0, and hence conditions (i) and (ii) hold
with Cλ depending on λ only.

To prove that the third condition is also satisfied for the set of
large measure we need the following lemma well known to experts.

Lemma 3.2 Let m ≤ n and 1 ≤ k ≤ m/2, and let H ⊂ Rn be a
k-dimensional subspace. Then

µn,m

({
E | |PEx| ≥ c

√
m/n |x| for all x ∈ H

})
≥ 1− e−ck,

where c > 0 is an absolute constant.
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Remark The estimate is also valid for k ≤ ξm, for any 0 < ξ < 1,
with the constant c replaced by a function of ξ.

Returning to the proof ot Proposition 3.1, condition (iii) uses the

estimate from Lemma 3.2 twice, separately for H = span {ei}dλn/2ei=1

and for H ′ = span {e′i}ni=n−dλn/2e+1. Combining this with the esti-

mates for the sets satisfying (i) and (ii) we finally get

µn,λn (Fλn(K)) ≥ 1− exp (−cλn),

which is required in (3.4). 2

Remark The function Cλ in conditions (i) and (ii) can be improved
to a polynomial dependence on 1/(1− λ) by choosing a stronger defi-
nition of an M -ellipsoid. For example, using Theorem 7.13 of [Pi] and
Theorem 3.2 of [LT], we immediately get Cλ ≤ Cε−3/2(1−λ)−(ε+1/2),
for any ε > 0.

Proof of the Lemma 3.2 The lemma can be proved by a reduction
to the Gaussian case (as in [MT], Proposition 3.1) and then using
a similar fact for k × m Gaussian matrices (cf. e.g., [Sz], Lemma
2.9). For the reader’s convenience we also outline a standard direct
argument, which however works for k ≤ c1m only, where 0 < c1 < 1
is a universal constant. First we estimate the measure of the subset
of all E ∈ Gn,m satisfying a slightly stronger inequality for a fixed
vector x0 with |x0| = 1; and then we combine this measure estimate
with a so-called ε-net argument. To get the first measure estimate we
observe that

µn,m

({
E | |PEx0| ≥ 2c

√
m/n

})
= hn

({
U ∈ On | |PmUx0| ≥ 2c

√
m/n

})
= µn

({
z ∈ Sn−1 | |Pmz| ≥ 2c

√
m/n

})
,

where hn denotes the normalized Haar measure on the orthogonal
group On, Pm is the orthogonal projection in Rn on the first m coor-
dinates, and µn denotes the normalized measure on the sphere Sn−1.
The measure of the latter set can be then estimated by noting that
E|Pmz| ∼

√
m/n and then using the standard concentration inequal-

ity for Lipschitz functions on the sphere ([MS1]). 2
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4 Main results

The main result of this paper is the following theorem.

Theorem 4.1 Let K and L be two symmetric convex bodies in Rn in
M -position, and assume that for some 0 < λ < 1 and some d > 1 there
is a quotient space qK ∈ Fq,dλne(K) and a subspace sL ∈ Fs,dλne(L)
such that the Banach-Mazur distance satisfies

d(qK, sL) ≤ d.

Then
outvr (K) ≤ C and vr (L) ≤ C,

where C = C(λ, d) is a function of λ and d only.

The proof of the theorem is based on the following proposition.

Proposition 4.2 Let K ⊂ Rn be a symmetric convex body in M -
position. Let 0 < λ < 1. Let E ∈ Fdλne(K) and let PE be the
orthogonal projection on E. Then

outvr (K) ≤ C ′λ
(

outvr (PEK)
)2
, (4.1)

where C ′λ depends on λ (and on constant C0 which defines the M -
position we use).

In other words, the proposition says that if K is in M -position
then for any quotient space qK ∈ Fq,dλne(K) we have outvr (K) ≤
C ′λ(outvr (qK))2.

Remark As it can be seen from the proof below, the power 2 in the
estimate (4.1) can be improved to any α > 1.

Proof of Proposition 4.2 Recall that EK ⊃ K is the ellipsoid of
minimal volume for K, and we denoted its semi-axes by ρ1 ≥ ρ2 ≥
. . . ≥ ρn, and the corresponding orthonormal basis by {ei}ni=1. To
simplify the notation, set P := PE . Consider the ellipsoid PEK in
E, and denote its semi-axes by ρ′1 ≥ ρ′2 ≥ . . . ≥ ρ′m (where m :=
dλne). (There will be no confusion with the semi-axes of the ellipsoid
of maximal volume since we do not consider this ellipsoid in this proof.)

The natural Euclidean structure in E is of course given by PB2 =
B2 ∩ E, and by the definition of Fm(K) we have PB2 ⊂ CλPK. On
the other hand, clearly, PK ⊂ PEK , and hence ρ′m ≥ C−1λ .

15



We first observe that since E ∈ Fm(K) then for all 1 ≤ j ≤ dm/2e
we have

ρ′j ≤ ρj ≤ (1/bλ)ρ′j . (4.2)

Indeed, given an ellipsoid D ⊂ Rm with semi-axes λ1 ≥ λ2 ≥ . . . ≥ λm
one has

λj = inf
L

sup
x∈L∩D

|x|,

where infimum is taken over all (m− j + 1)-dimensional subspaces L.
Thus, since |Px| ≤ |x| for x ∈ Rn, we have ρ′j ≤ ρj for every j ≤ m.
On the other hand, since dm/2e = dλn/2e, by the definition of Fm(K),
we have |Px| ≥ bλ|x| for every x ∈ E0 := span {ei | 1 ≤ i ≤ dm/2e},
which means that the operator

P |E0 : (E0, B2 ∩ E0)→ (PE0, PB2)

is invertible with the norm of the inverse bounded by 1/bλ. That
implies ρj ≤ (1/bλ)ρ′j .

Now by (4.2) we get

(
|EK |
|K|

)1/n

=

(
|EK |
|B2|

)1/n

=

(
n∏
i=1

ρi

)1/n

≤

dm/2e∏
i=1

ρi

1/dm/2e

≤ Cλ
bλ

(
m∏
i=1

ρ′i

)2/m

=
Cλ
bλ

(
|PEK |
|PB2|

)2/m

. (4.3)

Let D ⊃ PK be the ellipsoid of minimal volume for PK, so that

|D|1/m = outvr (PK) |PK|1/m. (4.4)

Applying Corollary 2.3 for the ellipsoids E = PEK ⊂ E and D ⊂ E
we get, by (2.4),

|PEK |1/m ≤
(
c/
√
λ
)
|D|1/m.

By the definition of M -ellipsoid we have |PK| ≤ exp (C0n)|PB2|.
Thus we get(

|PEK |
|PB2|

)2/m

≤ (c2/λ)(outvr (PK))2
(
|PK|
|PB2|

)2/m

≤ (c2 exp(2C0/λ)/λ) (outvr (PK))2 .
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Combining this with (4.3) and the form of bλ we obtain (4.1) with
C ′λ = (c2/c0) Cλ λ

−3/2 exp(2C0/λ), which completes the proof. 2

Now we are in the position to prove Theorem 4.1.

Proof of Theorem 4.1 By the definition of M -position (3.1) and
by (3.3), we have

|PK| ≤ exp (C0n) |PB2| and |B2 ∩ E| ≤ exp (C0n) |2L ∩ E|

for every projection P and every subspace E. Thus, by the definitions
of Fdλne(K) we have that every quotient qK ∈ Fq,λn(K) admits an
estimate for the volume ratio,

vr (qK) ≤
(
|PEK|/|C−1λ PEB2|

)1/dλne
≤ Cλ exp (C0/λ).

Similarly, every subspace sL ∈ Fs,dλne(L) admits an estimate for the
outer volume ratio, outvr (sL) ≤ aλ := 2Cλ exp (C0/λ). Now, let qK
and sL satisfy the hypothesis of the theorem, then

outvr (qK) ≤ d outvr (sL) ≤ aλd.

By Proposition 4.2 we obtain

outvr (K) ≤ C ′λ (aλd)2 .

The estimate for vr (L) follows by duality. 2

Remark The dependence on d in C(λ, d) can be improved by using
the remark after Proposition 4.2 and a modification of the family
Fdλne(K). We then obtain that for every α > 1, C(λ, d) ≤ Cλ,αd

α,
where Cλ,α depends on λ and α only.

Setting K = B2 in Theorem 4.1 we get an interesting corollary.

Corollary 4.3 Let L be a symmetric convex body in Rn in M -position.
If for some 0 < λ < 1 and some d > 1 a random dλne section sL of L
is d-Euclidean, then vr (L) ≤ C, where C = C(λ, d) is a function of λ
and d only.

This corollary was proved in [MS2] in the case when the Euclidean
distance was replaced by the geometric distance to the ball B2. In
this case it is shown by combining Theorems 3.1’ and 2.2 in [MS2],
that for any 0 < ξ < 1, a random section of L is C-equivalent to B2.

Theorem 4.1 has the following standard consequence about the
existence of a large family of Euclidean quotients and subspaces.
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Corollary 4.4 Let K and L be two symmetric convex bodies in Rn in
M -position, and assume that for some 0 < λ < 1 and some d > 1 there
is a quotient space qK ∈ Fq,dλne(K) and a subspace sL ∈ Fs,dλne(L)
such that the Banach-Mazur distance satisfies

d(qK, sL) ≤ d.

Then for every 0 < ξ < 1 a random orthogonal (in EK) projection of
K is C̄-Euclidean and a random (in E ′L) section of L is C̄-Euclidean,
where C̄ = C̄(λ, ξ, d) is a function of λ, ξ and d only.

Proof The proof relies on the volume ratio argument. Recall that
since EK is the ellipsoid of minimal volume for K then a random
orthogonal (in EK) projection satisfies

PEEK ⊂ (4π outvr (K))1/(1−λ) PEK; (4.5)

and since E ′L is the ellipsoid of maximal volume for L then a random
(in E ′L) subspace E of Rn satisfies

K ∩ E ⊂ (4π vr (K))1/(1−λ) E ′K ∩ E (4.6)

(see e.g. Chapter 6 of [Pi]).
The conclusion of the corollary follows directly from Theorem 4.1

and (4.5), (4.6) with C̄ = (4πC)1/(1−ξ), where C is a function from
Theorem 4.1. 2

As we have just seen, the closeness of spaces qK and sL in The-
orem 4.1 and Corollary 4.4 implies the existence of many Euclidean
quotients and subspaces, of an arbitrary proportional dimension, for
K and L, respectively. However one may ask whether spaces qK and
sL themselves are isomorphic to Euclidean as well? Surprisingly, the
answer in general is no: an example below shows that for some K and
L one may select M -ellipsoids in such a way that random quotients
of K and subspaces of L are far from Euclidean, while being close
together. At the same time we believe that it might be true that for a
judiciously selected M -ellipsoid, the hypothesis of our theorem indeed
implies that qK and sL are Euclidean, with a high probability.

Example 4.5 Let k = dn/ lnne and m = n−k. Write Rn = Rm⊕Rk.
Let V be an arbitrary k-dimensional symmetric convex body such that
Bk

2 ⊂ V ⊂ kBk
∞, where Bk

p is the unit ball of `kp. Set K = Bm
2 ⊕2 V .
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Note that B2 = Bn
2 is contained in K and K has bounded volume ratio

with respect to B2. This immediately implies that a multiple of B2 by
a universal constant is anM -ellipsoid forK. Of course the randomness
with respect to this M -ellipsoid is the same as with respect to B2.
Since k is small, random proportional dimensional projections (with
respect to B2) are good isomorphisms, when restricted to Rk that
corresponds to V (see Lemma 3.2). Thus, since Bk

2 is contained in V ,
we have that PK is well isomorphic to B`

2⊕2V , where ` = rank P −k.
Actually, PK is isomorphic to the convex hull of V and Brank P

2 , but
since V contains Bk

2 , it is easy to see that this convex hull is isomorphic
to the direct sum above.

Now set L = Bm
2 ⊕2W where W is an arbitary symmetric convex

body in Rk such that Bk
2 ⊃ W ⊃ (1/k)Bk

1 . Then applying the above
argument for L0 and then dualizing again we get that (a multiple of)
B2 is an M -ellipsoid for L and L has random sections isomorphic to
B`

2 ⊕2 W .
Now fix an arbitrary V as above (and set K = Bm

2 ⊕2 V ). Let W
be an affine image of V satisfying Bk

2 ⊃W ⊃ (1/k)Bk
1 (note that if we

make Bk
2 to be the ellipsoid of minimal volume for W then the second

inclusion is automatically satisfied), and let L = Bm
2 ⊕2 W . Then

random projections of K (being equivalent to B`
2 ⊕2 V ) and random

sections of L (being equivalent to B`
2 ⊕2 W ) are well isomorphic to

each other, while being very far from Euclidean. 2

We now pass to a discussion of the global form of the results of the
first part of this section. Although we always have an analogy between
local and global results, there is no an abstract argument proving this.
In the present context the global result is much easier.

Instead of working with random families of subspaces of Rn we
will work with random families of orthogonal operators. Let O(n)
denote the group of orthogonal operators on Rn and let ν denote the
normalized Haar measure on O(n). Given symmetric convex body
K ⊂ Rn in M -position define H(K) as the set of all operators U ∈
O(n) satisfying

(i) cB2 ⊂ K + UK,

(ii) c(K ∩ UK) ⊂ B2

for some absolute constant c > 0. These two conditions are the global
form of the conditions (i) and (ii) in the definition of the random
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family F[λn](K). It can be shown ([M5]) that there exists a choice of
c > 0 such that

ν (H(K)) ≥ 1− e−c1n,
where c1 > 0 is an absolute constant.

Note that (K +UK)0 is 2-equivalent to K0 ∩ (U∗)−1K0 and (K ∩
UK)0 is 2-equivalent to K0 + (U∗)−1K0. Thus, since (U∗)−1 = U
for U ∈ O(n), we obtain that H(K) = H(K0), possibly replacing the
constant c in the definition by c/2.

The following theorem is the global version of Theorem 4.1.

Theorem 4.6 Let K and L be two symmetric convex bodies in Rn in
M -position. Assume that there are operators U ∈ H(K), V ∈ H(L),
and some d > 1 such that

d(K0, L0) ≤ d,

where K0 = K + UK and L0 = L ∩ V L. Then

outvr (K) ≤ (C1/c) exp(4C0)d and vr (L) ≤ (C1/c) exp(4C0)d,

where C1 is an absolute constant and c is from the definition of the
families H(K) and H(L).

Proof By the definition of the set H(K) we have cB2 ⊂ K0. On
the other hand, by the definition of M -ellipsoid and covering numbers
we obtain that K +UK can be covered by exp (2C0n) translations of
2B2. That implies

vr (K0) ≤ (|K0|/|cB2|)1/n ≤ (2/c) exp (2C0).

To find the upper bound for the outer volume ratio of L0 we could use
a similar covering argument (cf. proof of the Claim 6.5 in [LMS]), how-
ever it is simplier to use duality. Indeed, cB2 ⊂ L0

0 = conv (L0, V L0) ⊂
L0 + V L0. Thus repeating the proof above and using Bourgain-
Milman’s inverse Santaló inequality ([BM2]) we obtain

outvr (L0) ≤
(
|(1/c)B2|/|L0|

)1/n
≤ C1

(
|L0

0|/|cB2|
)1/n

≤ (2C1/c) exp (2C0),

where C1 > 0 is an absolute constant. Since d(K0, L0) ≤ d, then K0

has outer volume ratio bounded by (2C1d/c) exp (2C0). Let E be the
minimal volume ellipsoid for K0. Then K ⊂ K0 ⊂ E and(
|E|
|K|

)1/n

=

(
|E|
|K0|

)1/n ( |K0|
|B2|

)1/n ( |B2|
|K|

)1/n

≤ (4C1/c) exp (2C0) d,
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which implies boundedness of outvr (K). The result for vr L follows
by the similar argument. 2

Remark It is clear from the proof that the theorem can be gen-
eralized to the case of many orthogonal operators. Namely, let K,
L, U , and V be as in the theorem. Assume further that U1, ...,
Uk and V1, ..., Vm are arbitrary orthogonal operators on Rn. Let
K0 = K +UK +U1K + ...+UkK and L0 = L∩V L∩V1L∩ ...∩VmL.
Then if d(K0, L0) ≤ d then

outvr (K) ≤ Cd and vr (L) ≤ Cd,

where C is a function of k, m, c and C0 only.
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