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Abstract

This article gives estimates on the covering numbers and diameters
of random proportional sections and projections of quasi-convex bod-
ies in Rn. These results were known for the convex case and played
an essential role in the development of the theory. Because duality re-
lations cannot be applied in the quasi-convex setting, new ingredients
were introduced that give new understanding for the convex case as
well.

1. Introduction and notation.

Let | · | be a Euclidean norm on Rn and D be the ellipsoid associated to this
norm. Denote

A(n, k) =
√

n

k

∫
Sn−1

√√√√ k∑
i=1

x2
i dσ (x) =

√
n Γ

(
k+1
2

)
Γ
(

n
2

)
√

k Γ
(

k
2

)
Γ
(

n+1
2

) ,

where σ is the normalized rotationally invariant measure on the Euclidean sphere
Sn−1 and Γ (·) is the Gamma-function. Then A(n, k) < 1 and A(n, k) −→ 1 as
n, k −→ ∞. For any star-body K in Rn define MK =

∫
Sn−1

‖ x ‖ dσ(x), where

‖ x ‖ is the gauge of K. Let M∗
K be MK0 , where K0 is the polar of K. For any
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subsets K1,K2 of Rn denote by N(K1,K2) the smallest number N such that there
are N points y1, ..., yN in K1 such that

K1 ⊂
N⋃

i=1

(yi + K2).

Recall that a body K is called quasi-convex if there is a constant c such that
K +K ⊂ cK, and given a p ∈ (0, 1] a body K is called p-convex if for any λ, µ > 0
satisfying λp + µp = 1 and any points x, y ∈ K the point λx + µy belongs to K.
Note that for the gauge ‖ · ‖= ‖ · ‖K associated with the quasi-convex (p-convex)
body K the following inequality holds for any x, y ∈ Rn:

‖ x + y ‖≤ cmax{‖ x ‖, ‖ y ‖} (‖ x + y ‖p≤‖ x ‖p + ‖ y ‖p ) .

In particular, every p-convex body K is also quasi-convex and K + K ⊂ 21/pK. A
more delicate result is that for every quasi-convex body K ( K + K ⊂ cK) there
exists a q-convex body K0 such that K ⊂ K0 ⊂ 2cK, where 21/q = 2c. This is
the Aoki-Rolewicz theorem ([KPR], [R], see also [K], p.47). In this note by a body
we always mean a compact star-body, i.e. a body K satisfying tK ⊂ K for all
t ∈ [0, 1].

Let us recall the so-called “low M∗-estimate” result.

Theorem 1 Let λ ∈ (0, 1) and n be large enough. Let K be a centrally-symmetric
convex body in Rn and ‖ · ‖ be the gauge of K. Then there exists a subspace E
of (Rn, ‖ · ‖) such that dim E = [λn] and for any x ∈ E the following inequality
holds

‖ x ‖≥ f(λ)
M∗

K

|x|

for some function f(λ), 0 < λ < 1.

Remark. An inequality of this type was first proved in [M1] with very poor de-
pendence on λ and then improved in [M2] to f(λ) = C(1− λ). It was later shown
([PT]), that one can take f(λ) = C

√
1− λ (for different proofs see [M3] and [G]).

By duality this theorem is equivalent to the following theorem.

Theorem 1′ Let λ ∈ (0, 1) and n be large enough. For every centrally-symmetric
convex body K in Rn there exists an orthogonal projection P of rank [λn] such that

PD ⊂ MK

f(λ)
PK.

2



Theorem 1 was one of the central ingredients in the proof of several recent
results of Local Theory, e.g. the Quotient of Subspace Theorem ([M1]) and the
Reverse Brunn-Minkowski inequality of the second name author (see, e.g. [MS]
or [P]). Both these results were later extended to a p-normed setting in [GK] and
[BBP]. The proofs have essentially used corresponding convex results and some
kind of “interpolation”. However, the main technical tool in the proof of these
convex results, Theorem 1, was a purely “convex” statement. Let us also note an
extension of Dvoretzky’s theorem to the quasi-convex setting by Dilworth ([D]).

In this note we will extend Theorem 1 and Theorem 1′ to quasi-convex, not
necessarily centrally-symmetric bodies. Since duality arguments cannot be applied
to a non-convex body these two theorems become different statements. Also “M∗

K”
should be substituted by an appropriate quantity not involving duality. Note that
by avoiding the use of convexity assumption in fact we also simplified the proof
for the convex case.

2. Main results.

The following theorem is an extension of Theorem 1′.

Theorem 2 Let λ ∈ (0, 1) and n be large enough (n > c/(1 − λ)2). For any
p-convex body K in Rn there exists an orthogonal projection P of rank [λn] such
that

PD ⊂ ApMK

(1− λ)1+1/p
PK,

where Ap = const
ln(2/p)

p .

Remark. To appreciate the strength of this inequality apply it to the stan-
dard simplex S inscribed in D. Then MS ≈

√
n · log n and therefore for every

λ < 1 there are λn-dimensional projections containing a Euclidean ball of radius
f(λ)/

√
n · log n. At the same time S contains only a ball of radius 1/n. In fact,

using this theorem for S ∩ rD for some special value r, we can eliminate the log-
arithmic factor and obtain the existence of λn-dimensional projections containing
a Euclidean ball of radius f1(λ)/

√
n. Another example is “p-convex simplex”, Sp,

defined for p ∈ (0, 1) as a p-convex hull of extremum points of S, i.e.

Sp =

{
n+1∑
i=1

λixi ; λi ≥ 0 and
n+1∑
i=1

λp
i ≤ 1

}
,

where {xi}n+1
i=1 = extrS. Then Theorem 2 gives us the existence of λn-dimensional

projections containing a Euclidean ball of radius f(λ,p)

n1/p

√
n

log n however Sp contains

only a ball of radius 1/n1/p.
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The proof of Theorem 2 is based on the next three lemmas. The first one
was proved by W.B. Johnson and J. Lindenstrauss in [JL]. The second one was
proved in [PT] for centrally-symmetric convex bodies and is the dual form of the
Sudakov’s minoration theorem.

Lemma 1 There is an absolute constant c such that if ε >
√

c/k and N ≤ 2eε2k/c,
then for any set of points y1, ..., yN ∈ Rn and any orthogonal projection P of rank k

µ

(
{U ∈ On | ∀j : A(1− ε)

√
k/n |yj | ≤ |PUyj | ≤ A(1 + ε)

√
k/n |yj |}

)
> 0,

where µ is the Haar probability measure on On and A = A(n, k) ∈ (1/2, 1)

Lemma 2 Let K be a body such that K + K ⊂ aK. Then

N(D, tK) ≤ 2e8n(aMK/t)2 .

Proof: M. Talagrand gave a direct simple proof of this lemma for the convex
case ([LT], pp. 82-83). One can check that his proof does not use symmetry and
convexity of the body and produces the estimate N(D, tB) ≤ 2e2n(aMB/t)2 for
every body B, such that B −B ⊂ aB.

Now for a body K, satisfying K + K ⊂ aK denote B = K ∩ −K.
Then B −B ⊂ aB and MB ≤ 2MK , since

‖ x ‖B= max (‖ x ‖K , ‖ x ‖−K) ≤‖ x ‖K + ‖ x ‖−K .

Thus
N(D, tK) ≤ N(D, tB) ≤ 2e2n(2aMK/t)2 .

2

Lemma 3 Let B be a body, K be a p-convex body, r ∈ (0, 1), {xi} ⊂ rB and
B ⊂

⋃
(xi + K). Then B ⊂ trK, where tr = 1

(1−rp)1/p .

Proof: Let tr be the smallest t > 0 for which B ⊂ tK. Then, obviously
tr = max{‖ x ‖K | x ∈ B}. Since B ⊂

⋃
(xi + K), for any point x in B

there are points x0 in rB and y in K such that x = x0 + y. Then by maximality
of tr and p-convexity of K we have tpr ≤ rptpr + 1. That proves the lemma. 2

Proof of Theorem 2:
Any p-convex body K satisfies K + K ⊂ aK with a = 21/p. By Lemma 2 we have

N = N(D, tK) ≤ 2 · exp
(
23+2/pn(MK/t)2

)
,
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i.e. there exist points x1, ..., xN in D, such that

D ⊂
N⋃

i=1

(xi + tK).

Denote cp = 23+2/p. Let t and ε satisfy

cpn

(
MK

t

)2

≤ ε2k

c

and ε >
√

c/k for c being the constant from Lemma 1.
Choose

ε =
1−

√
λ

2
√

λ
.

Applying Lemma 1 we obtain that there exist an orthogonal projection P of
rank k such that

PD ⊂
⋃

(Pxi + tPK) and |Pxi| ≤ (1 + ε)

√
k

n
|xi|.

Let λ = k/n. Denote r = (1 + ε)
√

λ. Since K is p-convex Lemma 3 gives us

PD ⊂ ttrPK for t =
√

ccpMK

ε
√

λ
and ε2 >

c

λn
, r < 1.

Then for n large enough we get

PD ⊂ ApMK

(1− λ)1+1/p
PK,

for Ap = const
ln(2/p)

p . This completes the proof. 2

Theorem 2 can be also formulated in a global form.

Theorem 2′ Let K be a p-convex body in Rn. Then there is an orthogonal operator
U such that

D ⊂ A
′
pMK(K + UK) ,

where A
′
p = const

ln(2/p)
p .

This theorem can be proved independently, but we show how it follows from
Theorem 2.
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Proof of Theorem 2′: First, let us assume that K is symmetric body. It follows
from the proof of Theorem 2 that actually the measure of such projections is large.
So we can choose two orthogonal subspaces E1, E2 of Rn such that dim E1 =
[n/2], dim E2 = [(n + 1)/2] and

PiD ⊂ A
′′
pMKPiK,

where Pi is the projection on the space Ei (i = 1, 2). Denote by I = idRn = P1+P2

and U = P1 −P2. So P1 = I+U
2 and P2 = I−U

2 . Then U is an orthogonal operator
and for any x ∈ D we have

x = P1x + P2x ⊂ A
′′
pMK

(
I + U

2

)
K + A

′′
pMK

(
I − U

2

)
K ⊂

⊂ A
′′
pMK

K + K

2
+ A

′′
pMK

UK − UK

2
= A

′
pMK(K + UK) .

That proves Theorem 2′ for symmetric bodies. In general case we need to apply
the same trick as in the proof of Lemma 2. Denote B = K ∩ −K. Then B is
symmetric p-convex body so, by first part of the proof, there is an orthogonal
operator U such that

D ⊂ A
′
pMB(B + UB) ,

Since B ⊂ K and MB ≤ 2MK (see proof of Lemma 2), we get the result. 2

Let us complement Lemma 2 by mentioning how the covering number N(K, tD)
can be estimated. In the convex case this estimate is given by the Sudakov’s
inequality ([S]), in terms of the quantity M∗

K . More precisely, if K is a centrally-
symmetric convex body, then

N(K, tD) ≤ 2ecn(M∗
K/t)2 .

Of course, using duality for a non-convex setting leads to a weak result, and we
suggest below a substitute for the quantity M∗

K .
For two quasi-convex bodies K, B define the following number

M(K, B) =
1
|K|

∫
K

‖ x ‖B dx,

where |K| is the volume of K, and ‖ x ‖B is the gauge of B. Such numbers are
considered in [MP1], [MP2] and [BMMP].
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Lemma 4 Let K be a p-convex body and B be a body. Assume B − B ⊂ aB.
Then

N(K, tB) ≤ 2e(cn/p)(aM(K,B)/t)p
,

where c is an absolute constant.

Proof: We follow the idea of M. Talagrand of estimating the covering numbers
in the case K = D ([LT], pp. 82-83, see also [BLM] Proposition 4.2). Denote the
gauge of K by ‖ · ‖ and the gauge of B by | · |B. Define the measure µ by

dµ =
1
A

e−‖x‖
p
dx, where A is chosen so that

∫
Rn

dµ = 1.

Let L =
∫

Rn
|x|Bdµ. Then µ{|x|B ≤ 2L} ≥ 1/2. Let x1, x2, ... be a maximal set of

points in K such that |xi − xj |B ≥ t. So the sets xi + t
aB have mutually disjoint

interiors. Let yi = ab
t xi for some b. Then, by p-convexity of K and convexity of

the function et, we have

µ{yi + bB} =
1
A

∫
bB

e−‖x+yi‖p
dx ≥ 1

A

∫
bB

e−(‖x‖p+‖yi‖p)dx =

=
1
A

e−‖yi‖p
∫
bB

e−‖x‖
p
dx ≥ e−(ba/t)p

µ{bB}.

Choose b = 2L. Then µ{bB} ≥ 1/2 and, hence,

N(K, tB) ≤ 2e(2aL/t)p
.

Now compute L. First, the normalization constant A is equal

A =
∫
Rn

e−‖x‖
p
dx =

∫
Rn

∞∫
‖x‖

(−e−tp)′dtdx =
∞∫
0

ptp−1e−tp
∫

‖x‖≤t

dxdt =

=
∫

‖x‖≤1

dx

∞∫
0

ptp+n−1e−tpdt = |K| · Γ
(

1 +
n

p

)
,

where Γ is the gamma-function. The remaining integral is∫
Rn

|x|Be−‖x‖
p
dx =

∫
Rn

|x|B
∞∫

‖x‖

(−e−tp)′dtdx =
∞∫
0

ptp−1e−tp
∫

‖x‖≤t

|x|Bdxdt =
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=
∫

‖x‖≤1

|x|Bdx

∞∫
0

ptp+ne−tpdt = |K| ·M(K, B) · Γ
(

1 +
n + 1

p

)
.

Using Stirling’s formula we get

L ≈
(

n

p

)1/p

M(K, B).

That proves the lemma. 2

Remark. An analogous lemma for a p-smooth (1 ≤ p ≤ 2) body K and a
convex centrally-symmetric body B was announced in [MP2]. Of course, the proof
holds for all p > 0 and every quasi-convex centrally-symmetric body B. More
precisely the following lemma holds.

Lemma 4′ Let K and B be bodies. Let B − B ⊂ aB and assume that for some
p > 0 there is a constant cp which depends only on p and the body K, such that

‖ x + y ‖p
K + ‖ x− y ‖p

K≤ 2 · (‖ x ‖p
K +cp· ‖ y ‖p

K) for all x, y ∈ Rn.

Then
N(K, tB) ≤ 2ecn(cp/p)(aM(K,B)/t)p

,

where c is an absolute constant.

Lemma 4′ is an extension of Lemma 2 in the symmetric case. Indeed, since
Euclidean space is a 2-smooth space, then in the case where K = D is an ellipsoid,
we have c2(D) = 1. By direct computation, M(D,B) = n

n+1MB. Thus,

N(D, tB) ≤ 2e(cn)(MB/t)2 .

Define the following characteristic of K:

M̃K =
1
|K|

∫
K

|x|dx ,

where | · | = | · |D is the Euclidean norm associated to D.
Lemma 4 shows that for p-convex body K

N(K, tD) ≤ 2e(cn/p)(2M̃K/t)p
.

Theorem 3 follows from this estimate by arguments similar to those in [MPi].
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Theorem 3 Let λ ∈ (0, 1) and n be large enough. Let K be a p-convex body in
Rn and ‖ · ‖ be the gauge of K. Then there exists a subspace E of (Rn, ‖ · ‖) such
that dim E = [λn] and for any x ∈ E the following inequality holds

‖ x ‖≥ (1− λ)1/2+1/p

apM̃K

|x| ,

where ap depends on p only (more precisely ap = const
ln(2/p)

p ).

Proof: By Lemma 4 there are points x1, ..., xN in K, such that N < ecpn(M̃K/t)p

and for any x ∈ K there exists some xi such that |x− xi| < t. By Lemma 1 there
exists an orthogonal projection P on a subspace of dimension [δn] such that if t
and ε satisfy

cpn

(
M̃K

t

)p

<
ε2δn

c
and ε >

√
c

δn

we have
b|xi| := (1− ε)A

√
δ|xi| ≤ |Pxi| ≤ (1 + ε)A

√
δ|xi|

for every xi. Let E = KerP . Then dim E = λn, where λ = 1 − δ. Take x in
K
⋂

E. There is xi such that |x− xi| < t. Hence

|x| ≤ |x− xi|+ |xi| ≤ t +
|Pxi|

b
= t +

|P (x− xi)|
b

≤

≤ t +
|x− xi|

b
≤ t(1 +

1
b
) ≤ const · t

(1− ε)
√

δ
.

Therefore for n large enough and

t =
(

const · cp

ε2δ

)1/p

M̃K

we get

‖ x ‖≥ const · ε2(1− ε)δ1/2+1/p

c
1/p
p M̃K

|x| .

To obtain our result take ε, say, equal to 1/2. 2

As was noted in [MP2] in some cases M̃K << M∗
K and then Theorem 3 gives

better estimates than Theorem 1 even for a convex body (in some range of λ). As
an example, if K = B(ln1 ), then M̃K ≤ c · n−1/2, but M∗

K ≥ c · n−1/2(log n)1/2 for
some absolute constant c.
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3. Additional remarks.

In fact, the proof of Theorem 2 shows a more general fact.

Fact. Let D be an ellipsoid and K be a p-convex body. Let

N(D,K) ≤ eαn.

For an integer 1 ≤ k ≤ n write λ = k/n. Then for some absolute constant c and

γ = c
√

α, k ∈ (γ2n, (1− 2γ)2n)

there exists an orthogonal projection P of rank k such that

c1

(
p(1−

√
λ)/2

)1/p
PD ⊂ PK,

where c1 is an absolute constant.
In terms of entropy numbers this means that

c1

(
p(1−

√
k/n)/2

)1/p

ek(D,K)
PD ⊂ PK,

where ek(D,K) = inf{ε > 0 | N(D, εK) ≤ 2k−1} .
It is worthwhile to point out that Theorem 2 can be obtained from this result.
We thank E. Gluskin for his remarks on the first draft of this note.
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