The covering numbers and "low M^{*}-estimate" for quasi-convex bodies.

A.E. Litvak ${ }^{\dagger}$ V.D. Milman ${ }^{\dagger}$ A. Pajor

Abstract

This article gives estimates on the covering numbers and diameters of random proportional sections and projections of quasi-convex bodies in \mathbb{R}^{n}. These results were known for the convex case and played an essential role in the development of the theory. Because duality relations cannot be applied in the quasi-convex setting, new ingredients were introduced that give new understanding for the convex case as well.

1. Introduction and notation.

Let $|\cdot|$ be a Euclidean norm on R^{n} and D be the ellipsoid associated to this norm. Denote

$$
A(n, k)=\sqrt{\frac{n}{k}} \int_{S^{n-1}} \sqrt{\sum_{i=1}^{k} x_{i}^{2}} d \sigma(x)=\frac{\sqrt{n} \Gamma\left(\frac{k+1}{2}\right) \Gamma\left(\frac{n}{2}\right)}{\sqrt{k} \Gamma\left(\frac{k}{2}\right) \Gamma\left(\frac{n+1}{2}\right)},
$$

where σ is the normalized rotationally invariant measure on the Euclidean sphere S^{n-1} and $\Gamma(\cdot)$ is the Gamma-function. Then $A(n, k)<1$ and $A(n, k) \longrightarrow 1$ as $n, k \longrightarrow \infty$. For any star-body K in R^{n} define $M_{K}=\int_{S^{n-1}}\|x\| d \sigma(x)$, where $\|x\|$ is the gauge of K. Let M_{K}^{*} be $M_{K^{0}}$, where K^{0} is the polar of K. For any

[^0]subsets K_{1}, K_{2} of \mathbb{R}^{n} denote by $N\left(K_{1}, K_{2}\right)$ the smallest number N such that there are N points y_{1}, \ldots, y_{N} in K_{1} such that
$$
K_{1} \subset \bigcup_{i=1}^{N}\left(y_{i}+K_{2}\right) .
$$

Recall that a body K is called quasi-convex if there is a constant c such that $K+K \subset c K$, and given a $p \in(0,1]$ a body K is called p-convex if for any $\lambda, \mu>0$ satisfying $\lambda^{p}+\mu^{p}=1$ and any points $x, y \in K$ the point $\lambda x+\mu y$ belongs to K. Note that for the gauge $\|\cdot\|=\|\cdot\|_{K}$ associated with the quasi-convex (p-convex) body K the following inequality holds for any $x, y \in \mathbb{R}^{n}$:

$$
\|x+y\| \leq c \max \{\|x\|,\|y\|\} \quad\left(\|x+y\|^{p} \leq\|x\|^{p}+\|y\|^{p}\right) .
$$

In particular, every p-convex body K is also quasi-convex and $K+K \subset 2^{1 / p} K$. A more delicate result is that for every quasi-convex body $K(K+K \subset c K)$ there exists a q-convex body K_{0} such that $K \subset K_{0} \subset 2 c K$, where $2^{1 / q}=2 c$. This is the Aoki-Rolewicz theorem ([KPR], [R], see also [K], p.47). In this note by a body we always mean a compact star-body, i.e. a body K satisfying $t K \subset K$ for all $t \in[0,1]$.

Let us recall the so-called "low M^{*}-estimate" result.
Theorem 1 Let $\lambda \in(0,1)$ and n be large enough. Let K be a centrally-symmetric convex body in \mathbb{R}^{n} and $\|\cdot\|$ be the gauge of K. Then there exists a subspace E of $\left(\mathbb{R}^{n},\|\cdot\|\right)$ such that $\operatorname{dim} E=[\lambda n]$ and for any $x \in E$ the following inequality holds

$$
\|x\| \geq \frac{f(\lambda)}{M_{K}^{*}}|x|
$$

for some function $f(\lambda), 0<\lambda<1$.
Remark. An inequality of this type was first proved in [M1] with very poor dependence on λ and then improved in $[\mathrm{M} 2]$ to $f(\lambda)=C(1-\lambda)$. It was later shown ([PT]), that one can take $f(\lambda)=C \sqrt{1-\lambda}$ (for different proofs see [M3] and [G]).

By duality this theorem is equivalent to the following theorem.
Theorem 1' Let $\lambda \in(0,1)$ and n be large enough. For every centrally-symmetric convex body K in \mathbb{R}^{n} there exists an orthogonal projection P of rank $[\lambda n]$ such that

$$
P D \subset \frac{M_{K}}{f(\lambda)} P K .
$$

Theorem 1 was one of the central ingredients in the proof of several recent results of Local Theory, e.g. the Quotient of Subspace Theorem ([M1]) and the Reverse Brunn-Minkowski inequality of the second name author (see, e.g. [MS] or $[\mathrm{P}]$). Both these results were later extended to a p-normed setting in [GK] and [BBP]. The proofs have essentially used corresponding convex results and some kind of "interpolation". However, the main technical tool in the proof of these convex results, Theorem 1, was a purely "convex" statement. Let us also note an extension of Dvoretzky's theorem to the quasi-convex setting by Dilworth ([D]).

In this note we will extend Theorem 1 and Theorem 1^{\prime} to quasi-convex, not necessarily centrally-symmetric bodies. Since duality arguments cannot be applied to a non-convex body these two theorems become different statements. Also " M_{K}^{*} " should be substituted by an appropriate quantity not involving duality. Note that by avoiding the use of convexity assumption in fact we also simplified the proof for the convex case.

2. Main results.

The following theorem is an extension of Theorem 1^{\prime}.
Theorem 2 Let $\lambda \in(0,1)$ and n be large enough $\left(n>c /(1-\lambda)^{2}\right)$. For any p-convex body K in \mathbb{R}^{n} there exists an orthogonal projection P of rank $[\lambda n]$ such that

$$
P D \subset \frac{A_{p} M_{K}}{(1-\lambda)^{1+1 / p}} P K,
$$

where $A_{p}=$ const $\frac{\ln (2 / p)}{p}$.
Remark. To appreciate the strength of this inequality apply it to the standard simplex S inscribed in D. Then $M_{S} \approx \sqrt{n \cdot \log n}$ and therefore for every $\lambda<1$ there are λn-dimensional projections containing a Euclidean ball of radius $f(\lambda) / \sqrt{n \cdot \log n}$. At the same time S contains only a ball of radius $1 / n$. In fact, using this theorem for $S \cap r D$ for some special value r, we can eliminate the logarithmic factor and obtain the existence of λn-dimensional projections containing a Euclidean ball of radius $f_{1}(\lambda) / \sqrt{n}$. Another example is " p-convex simplex", S_{p}, defined for $p \in(0,1)$ as a p-convex hull of extremum points of S, i.e.

$$
S_{p}=\left\{\sum_{i=1}^{n+1} \lambda_{i} x_{i} ; \quad \lambda_{i} \geq 0 \text { and } \sum_{i=1}^{n+1} \lambda_{i}^{p} \leq 1\right\},
$$

where $\left\{x_{i}\right\}_{i=1}^{n+1}=\operatorname{extr} S$. Then Theorem 2 gives us the existence of λn-dimensional projections containing a Euclidean ball of radius $\frac{f(\lambda, p)}{n^{1 / p}} \sqrt{\frac{n}{\log n}}$ however S_{p} contains only a ball of radius $1 / n^{1 / p}$.

The proof of Theorem 2 is based on the next three lemmas. The first one was proved by W.B. Johnson and J. Lindenstrauss in [JL]. The second one was proved in [PT] for centrally-symmetric convex bodies and is the dual form of the Sudakov's minoration theorem.

Lemma 1 There is an absolute constant c such that if $\varepsilon>\sqrt{c / k}$ and $N \leq 2 e^{\varepsilon^{2} k / c}$, then for any set of points $y_{1}, \ldots, y_{N} \in \mathbb{R}^{n}$ and any orthogonal projection P of rank k

$$
\mu\left(\left\{U \in O_{n}|\forall j: A(1-\varepsilon) \sqrt{k / n}| y_{j}\left|\leq\left|P U y_{j}\right| \leq A(1+\varepsilon) \sqrt{k / n}\right| y_{j} \mid\right\}\right)>0
$$

where μ is the Haar probability measure on O_{n} and $A=A(n, k) \in(1 / 2,1)$
Lemma 2 Let K be a body such that $K+K \subset a K$. Then

$$
N(D, t K) \leq 2 e^{8 n\left(a M_{K} / t\right)^{2}}
$$

Proof: M. Talagrand gave a direct simple proof of this lemma for the convex case ([LT], pp. 82-83). One can check that his proof does not use symmetry and convexity of the body and produces the estimate $N(D, t B) \leq 2 e^{2 n\left(a M_{B} / t\right)^{2}}$ for every body B, such that $B-B \subset a B$.

Now for a body K, satisfying $K+K \subset a K$ denote $B=K \cap-K$.
Then $B-B \subset a B$ and $M_{B} \leq 2 M_{K}$, since

$$
\|x\|_{B}=\max \left(\|x\|_{K},\|x\|_{-K}\right) \leq\|x\|_{K}+\|x\|_{-K} .
$$

Thus

$$
N(D, t K) \leq N(D, t B) \leq 2 e^{2 n\left(2 a M_{K} / t\right)^{2}} .
$$

Lemma 3 Let B be a body, K be a p-convex body, $r \in(0,1),\left\{x_{i}\right\} \subset r B$ and $B \subset \bigcup\left(x_{i}+K\right)$. Then $B \subset t_{r} K$, where $t_{r}=\frac{1}{\left(1-r^{p}\right)^{1 / p}}$.

Proof: Let t_{r} be the smallest $t>0$ for which $B \subset t K$. Then, obviously $t_{r}=\max \left\{\|x\|_{K} \quad \mid x \in B\right\}$. Since $B \subset \bigcup\left(x_{i}+K\right)$, for any point x in B there are points x_{0} in $r B$ and y in K such that $x=x_{0}+y$. Then by maximality of t_{r} and p-convexity of K we have $t_{r}^{p} \leq r^{p} t_{r}^{p}+1$. That proves the lemma.

Proof of Theorem 2:
Any p-convex body K satisfies $K+K \subset a K$ with $a=2^{1 / p}$. By Lemma 2 we have

$$
N=N(D, t K) \leq 2 \cdot \exp \left(2^{3+2 / p} n\left(M_{K} / t\right)^{2}\right),
$$

i.e. there exist points x_{1}, \ldots, x_{N} in D, such that

$$
D \subset \bigcup_{i=1}^{N}\left(x_{i}+t K\right)
$$

Denote $c_{p}=2^{3+2 / p}$. Let t and ε satisfy

$$
c_{p} n\left(\frac{M_{K}}{t}\right)^{2} \leq \frac{\varepsilon^{2} k}{c}
$$

and $\varepsilon>\sqrt{c / k}$ for c being the constant from Lemma 1.
Choose

$$
\varepsilon=\frac{1-\sqrt{\lambda}}{2 \sqrt{\lambda}}
$$

Applying Lemma 1 we obtain that there exist an orthogonal projection P of rank k such that

$$
P D \subset \bigcup\left(P x_{i}+t P K\right) \text { and } \quad\left|P x_{i}\right| \leq(1+\varepsilon) \sqrt{\frac{k}{n}}\left|x_{i}\right|
$$

Let $\lambda=k / n$. Denote $r=(1+\varepsilon) \sqrt{\lambda}$. Since K is p-convex Lemma 3 gives us

$$
P D \subset t t_{r} P K \text { for } t=\frac{\sqrt{c c_{p}} M_{K}}{\varepsilon \sqrt{\lambda}} \text { and } \varepsilon^{2}>\frac{c}{\lambda n}, r<1
$$

Then for n large enough we get

$$
P D \subset \frac{A_{p} M_{K}}{(1-\lambda)^{1+1 / p}} P K
$$

for $A_{p}=$ const $\frac{\ln (2 / p)}{p}$. This completes the proof.

Theorem 2 can be also formulated in a global form.
Theorem 2^{\prime} Let K be a p-convex body in \mathbb{R}^{n}. Then there is an orthogonal operator U such that

$$
D \subset A_{p}^{\prime} M_{K}(K+U K)
$$

where $A_{p}^{\prime}=$ const $\frac{\ln (2 / p)}{p}$.
This theorem can be proved independently, but we show how it follows from Theorem 2.

Proof of Theorem 2': First, let us assume that K is symmetric body. It follows from the proof of Theorem 2 that actually the measure of such projections is large. So we can choose two orthogonal subspaces E_{1}, E_{2} of R^{n} such that $\operatorname{dim} E_{1}=$ $[n / 2], \operatorname{dim} E_{2}=[(n+1) / 2]$ and

$$
P_{i} D \subset A_{p}^{\prime \prime} M_{K} P_{i} K,
$$

where P_{i} is the projection on the space $E_{i}(i=1,2)$. Denote by $I=i d_{\mathrm{R}^{n}}=P_{1}+P_{2}$ and $U=P_{1}-P_{2}$. So $P_{1}=\frac{I+U}{2}$ and $P_{2}=\frac{I-U}{2}$. Then U is an orthogonal operator and for any $x \in D$ we have

$$
\begin{aligned}
x & =P_{1} x+P_{2} x \subset A_{p}^{\prime \prime} M_{K}\left(\frac{I+U}{2}\right) K+A_{p}^{\prime \prime} M_{K}\left(\frac{I-U}{2}\right) K \subset \\
& \subset A_{p}^{\prime \prime} M_{K} \frac{K+K}{2}+A_{p}^{\prime \prime} M_{K} \frac{U K-U K}{2}=A_{p}^{\prime} M_{K}(K+U K) .
\end{aligned}
$$

That proves Theorem 2^{\prime} for symmetric bodies. In general case we need to apply the same trick as in the proof of Lemma 2. Denote $B=K \cap-K$. Then B is symmetric p-convex body so, by first part of the proof, there is an orthogonal operator U such that

$$
D \subset A_{p}^{\prime} M_{B}(B+U B),
$$

Since $B \subset K$ and $M_{B} \leq 2 M_{K}$ (see proof of Lemma 2), we get the result.
Let us complement Lemma 2 by mentioning how the covering number $N(K, t D)$ can be estimated. In the convex case this estimate is given by the Sudakov's inequality ([S]), in terms of the quantity M_{K}^{*}. More precisely, if K is a centrallysymmetric convex body, then

$$
N(K, t D) \leq 2 e^{c n\left(M_{K}^{*} / t\right)^{2}}
$$

Of course, using duality for a non-convex setting leads to a weak result, and we suggest below a substitute for the quantity M_{K}^{*}.

For two quasi-convex bodies K, B define the following number

$$
M(K, B)=\frac{1}{|K|} \int_{K}\|x\|_{B} d x,
$$

where $|K|$ is the volume of K, and $\|x\|_{B}$ is the gauge of B. Such numbers are considered in [MP1], [MP2] and [BMMP].

Lemma 4 Let K be a p-convex body and B be a body. Assume $B-B \subset a B$. Then

$$
N(K, t B) \leq 2 e^{(c n / p)(a M(K, B) / t)^{p}}
$$

where c is an absolute constant.

Proof: We follow the idea of M. Talagrand of estimating the covering numbers in the case $K=D$ ([LT], pp. 82-83, see also [BLM] Proposition 4.2). Denote the gauge of K by $\|\cdot\|$ and the gauge of B by $|\cdot|_{B}$. Define the measure μ by

$$
d \mu=\frac{1}{A} e^{-\|x\|^{p}} d x, \text { where } A \text { is chosen so that } \int_{\mathbb{R}^{n}} d \mu=1
$$

Let $L=\int_{\mathbb{R}^{n}}|x|_{B} d \mu$. Then $\mu\left\{|x|_{B} \leq 2 L\right\} \geq 1 / 2$. Let x_{1}, x_{2}, \ldots be a maximal set of points in K such that $\left|x_{i}-x_{j}\right|_{B} \geq t$. So the sets $x_{i}+\frac{t}{a} B$ have mutually disjoint interiors. Let $y_{i}=\frac{a b}{t} x_{i}$ for some b. Then, by p-convexity of K and convexity of the function e^{t}, we have

$$
\begin{gathered}
\mu\left\{y_{i}+b B\right\}=\frac{1}{A} \int_{b B} e^{-\left\|x+y_{i}\right\|^{p}} d x \geq \frac{1}{A} \int_{b B} e^{-\left(\|x\|^{p}+\left\|y_{i}\right\|^{p}\right)} d x= \\
=\frac{1}{A} e^{-\left\|y_{i}\right\|^{p}} \int_{b B} e^{-\|x\|^{p}} d x \geq e^{-(b a / t)^{p}} \mu\{b B\}
\end{gathered}
$$

Choose $b=2 L$. Then $\mu\{b B\} \geq 1 / 2$ and, hence,

$$
N(K, t B) \leq 2 e^{(2 a L / t)^{p}}
$$

Now compute L. First, the normalization constant A is equal

$$
\begin{gathered}
A=\int_{\mathbb{R}^{n}} e^{-\|x\|^{p}} d x=\int_{\mathbb{R}^{n}\|x\|} \int_{\|}^{\infty}\left(-e^{-t^{p}}\right)^{\prime} d t d x=\int_{0}^{\infty} p t^{p-1} e^{-t^{p}} \int_{\|x\| \leq t} d x d t= \\
=\int_{\|x\| \leq 1} d x \int_{0}^{\infty} p t^{p+n-1} e^{-t^{p}} d t=|K| \cdot \Gamma\left(1+\frac{n}{p}\right),
\end{gathered}
$$

where Γ is the gamma-function. The remaining integral is

$$
\int_{\mathbb{R}^{n}}|x|_{B} e^{-\|x\|^{p}} d x=\int_{\mathbb{R}^{n}}|x|_{B} \int_{\|x\|}^{\infty}\left(-e^{-t^{p}}\right)^{\prime} d t d x=\int_{0}^{\infty} p t^{p-1} e^{-t^{p}} \int_{\|x\| \leq t}|x|_{B} d x d t=
$$

$$
=\int_{\|x\| \leq 1}|x|_{B} d x \int_{0}^{\infty} p t^{p+n} e^{-t^{p}} d t=|K| \cdot M(K, B) \cdot \Gamma\left(1+\frac{n+1}{p}\right) .
$$

Using Stirling's formula we get

$$
L \approx\left(\frac{n}{p}\right)^{1 / p} M(K, B)
$$

That proves the lemma.

Remark. An analogous lemma for a p-smooth $(1 \leq p \leq 2)$ body K and a convex centrally-symmetric body B was announced in [MP2]. Of course, the proof holds for all $p>0$ and every quasi-convex centrally-symmetric body B. More precisely the following lemma holds.

Lemma 4^{\prime} Let K and B be bodies. Let $B-B \subset a B$ and assume that for some $p>0$ there is a constant c_{p} which depends only on p and the body K, such that

$$
\|x+y\|_{K}^{p}+\|x-y\|_{K}^{p} \leq 2 \cdot\left(\|x\|_{K}^{p}+c_{p} \cdot\|y\|_{K}^{p}\right) \quad \text { for all } x, y \in \mathbb{R}^{n} .
$$

Then

$$
N(K, t B) \leq 2 e^{c n\left(c_{p} / p\right)(a M(K, B) / t)^{p}}
$$

where c is an absolute constant.
Lemma 4^{\prime} is an extension of Lemma 2 in the symmetric case. Indeed, since Euclidean space is a 2-smooth space, then in the case where $K=D$ is an ellipsoid, we have $c_{2}(D)=1$. By direct computation, $M(D, B)=\frac{n}{n+1} M_{B}$. Thus,

$$
N(D, t B) \leq 2 e^{(c n)\left(M_{B} / t\right)^{2}}
$$

Define the following characteristic of K :

$$
\tilde{M}_{K}=\frac{1}{|K|} \int_{K}|x| d x
$$

where $|\cdot|=|\cdot|_{D}$ is the Euclidean norm associated to D.
Lemma 4 shows that for p-convex body K

$$
N(K, t D) \leq 2 e^{(c n / p)\left(2 \tilde{M}_{K} / t\right)^{p}}
$$

Theorem 3 follows from this estimate by arguments similar to those in [MPi].

Theorem 3 Let $\lambda \in(0,1)$ and n be large enough. Let K be a p-convex body in \mathbb{R}^{n} and $\|\cdot\|$ be the gauge of K. Then there exists a subspace E of $\left(\mathbb{R}^{n},\|\cdot\|\right)$ such that $\operatorname{dim} E=[\lambda n]$ and for any $x \in E$ the following inequality holds

$$
\|x\| \geq \frac{(1-\lambda)^{1 / 2+1 / p}}{a_{p} \tilde{M}_{K}}|x|,
$$

where a_{p} depends on p only (more precisely $a_{p}=$ const $\frac{\ln (2 / p)}{p}$).
Proof: By Lemma 4 there are points x_{1}, \ldots, x_{N} in K, such that $N<e^{c_{p} n\left(\tilde{M}_{K} / t\right)^{p}}$ and for any $x \in K$ there exists some x_{i} such that $\left|x-x_{i}\right|<t$. By Lemma 1 there exists an orthogonal projection P on a subspace of dimension $[\delta n]$ such that if t and ε satisfy

$$
c_{p} n\left(\frac{\tilde{M}_{K}}{t}\right)^{p}<\frac{\varepsilon^{2} \delta n}{c} \text { and } \varepsilon>\sqrt{\frac{c}{\delta n}}
$$

we have

$$
b\left|x_{i}\right|:=(1-\varepsilon) A \sqrt{\delta}\left|x_{i}\right| \leq\left|P x_{i}\right| \leq(1+\varepsilon) A \sqrt{\delta}\left|x_{i}\right|
$$

for every x_{i}. Let $E=\operatorname{Ker} P$. Then $\operatorname{dim} E=\lambda n$, where $\lambda=1-\delta$. Take x in $K \cap E$. There is x_{i} such that $\left|x-x_{i}\right|<t$. Hence

$$
\begin{gathered}
|x| \leq\left|x-x_{i}\right|+\left|x_{i}\right| \leq t+\frac{\left|P x_{i}\right|}{b}=t+\frac{\left|P\left(x-x_{i}\right)\right|}{b} \leq \\
\leq t+\frac{\left|x-x_{i}\right|}{b} \leq t\left(1+\frac{1}{b}\right) \leq \frac{\text { const } \cdot t}{(1-\varepsilon) \sqrt{\delta}} .
\end{gathered}
$$

Therefore for n large enough and

$$
t=\left(\frac{\text { const } \cdot c_{p}}{\varepsilon^{2} \delta}\right)^{1 / p} \tilde{M}_{K}
$$

we get

$$
\|x\| \geq \frac{\text { const } \cdot \varepsilon^{2}(1-\varepsilon) \delta^{1 / 2+1 / p}}{c_{p}^{1 / p} \tilde{M}_{K}}|x| .
$$

To obtain our result take ε, say, equal to $1 / 2$.
As was noted in [MP2] in some cases $\tilde{M}_{K} \ll M_{K}^{*}$ and then Theorem 3 gives better estimates than Theorem 1 even for a convex body (in some range of λ). As an example, if $K=B\left(l_{1}^{n}\right)$, then $\tilde{M}_{K} \leq c \cdot n^{-1 / 2}$, but $M_{K}^{*} \geq c \cdot n^{-1 / 2}(\log n)^{1 / 2}$ for some absolute constant c.

3. Additional remarks.

In fact, the proof of Theorem 2 shows a more general fact.
Fact. Let D be an ellipsoid and K be a p-convex body. Let

$$
N(D, K) \leq e^{\alpha n}
$$

For an integer $1 \leq k \leq n$ write $\lambda=k / n$. Then for some absolute constant c and

$$
\gamma=c \sqrt{\alpha}, \quad k \in\left(\gamma^{2} n,(1-2 \gamma)^{2} n\right)
$$

there exists an orthogonal projection P of rank k such that

$$
c_{1}(p(1-\sqrt{\lambda}) / 2)^{1 / p} P D \subset P K
$$

where c_{1} is an absolute constant.
In terms of entropy numbers this means that

$$
c_{1} \frac{(p(1-\sqrt{k / n}) / 2)^{1 / p}}{e_{k}(D, K)} P D \subset P K
$$

where $e_{k}(D, K)=\inf \left\{\varepsilon>0 \mid N(D, \varepsilon K) \leq 2^{k-1}\right\}$.
It is worthwhile to point out that Theorem 2 can be obtained from this result.
We thank E. Gluskin for his remarks on the first draft of this note.

References

[BBP] J. Bastero, J. Bernués and A. Peña, An extension of Milman's reverse BrunnMinkowski inequality, GAFA 5 (1995), 572-581.
[BLM] J. Bourgain, J. Lindenstrauss, V. Milman, Approximation of zonoids by zonotopes. Acta Math. 162 (1989), no. 1-2, 73-141.
[BMMP] J. Bourgain, M. Meyer, V. Milman, A. Pajor, On a geometric inequality. Geometric aspects of functional analysis (1986/87), 271-282, Lecture Notes in Math., 1317, Springer, Berlin-New York, 1988.
[D] S.J. Dilworth, The dimension of Euclidean subspaces of quasi-normed spaces, Math. Proc. Camb. Phil. Soc., 97, 311-320, 1985.
[G] Y. Gordon, On Milman's inequality and random subspaces which escape through a mesh in \mathbb{R}^{n}. Geometric aspects of functional analysis (1986/87), 84-106, Lecture Notes in Math., 1317, Springer, Berlin-New York, 1988.
[GK] Y. Gordon, N.J. Kalton, Local structure theory for quasi-normed spaces, Bull. Sci. Math., 118, 441-453, 1994.
[JL] W.B. Johnson, J. Lindenstrauss, Extensions of Lipschitz mappings into a Hilbert space. Conference in modern analysis and probability (New Haven, Conn., 1982), 189-206,
[KPR] N.J. Kalton, N.T. Peck, J.W. Roberts, An F-space sampler, London Mathematical Society Lecture Note Series, 89, Cambridge University Press, Cambridge-New York, 1984.
[K] H. König, Eigenvalue Distribution of Compact Operators, Birkhäuser, 1986.
[LT] M. Ledoux, M. Talagrand, Probability in Banach spaces, Springer-Verlag, Berlin Heidelberg, 1991.
[M1] V.D. Milman, Almost Euclidean quotient spaces of subspaces of a finite-dimensional normed space. Proc. Amer. Math. Soc. 94 (1985), no. 3, 445-449.
[M2] V.D. Milman, Random subspaces of proportional dimension of finite-dimensional normed spaces: approach through the isoperimetric inequality. Banach spaces (Columbia, Mo., 1984), 106-115, Lecture Notes in Math., 1166, Springer, Berlin-New York, 1985.
[M3] V.D. Milman, A note on a low M^{*}-estimate. Geometry of Banach spaces (Strobl, 1989), 219-229, London Math. Soc. Lecture Note Ser., 158, Cambridge Univ. Press, Cambridge, 1990.
[MP1] V.D. Milman, A. Pajor, Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space. Geometric aspects of functional analysis (1987-88), 64-104, Lecture Notes in Math., 1376, Springer, Berlin-New York, 1989.
[MP2] V. Milman, A. Pajor, Cas limites dans des inégalités du type de Khinchine et applications géométriques. (French) [Limit cases of Khinchin-type inequalities and some geometric applications] C. R. Acad. Sci. Paris Sér. I Math. 308 (1989), no. 4, 91-96.
[MPi] V. Milman, G. Pisier, Banach spaces with a weak cotype 2 property, Isr. J. Math., 54 (1980), 139-158.
[MS] V.D. Milman and G. Schechtman, Asymptotic theory of finite dimensional normed spaces, Lecture Notes in Math. 1200, Springer-Verlag (1986).
[PT] A. Pajor, N. Tomczak-Jaegermann, Subspaces of small codimension of finite-dimensional Banach spaces. Proc. Amer. Math. Soc. 97 (1986), no. 4, 637-642.
[P] G. Pisier, The Volume of Convex Bodies and Banach Space Geometry, Cambridge University Press (1989).
[R] S. Rolewicz, Metric linear spaces. Monografie Matematyczne, Tom. 56. [Mathematical Monographs, Vol. 56] PWN-Polish Scientific Publishers, Warsaw, 1972.
[S] V.N. Sudakov, Gaussian measures, Cauchy measures and ε-entropy. Soviet. Math. Dokl., 10 (1969), 310-313.

A.E. Litvak and V.D. Milman A. Pajor
Department of Mathematics
Tel Aviv University
Ramat Aviv, Israel
email: alexandr@math.tau.ac.il vitali@math.tau.ac.il
Universite de Marne-la-Vallee Equipe de Mathematiques 2 rue de la Butte Verte, 93166 Noisy-le-Grand Cedex, France email: pajor@math.univ-mlv.fr

[^0]: *This research was done while the authors visited MSRI; we thank the Institute for its hospitality.
 ${ }^{\dagger}$ Research partially supported by BSF.

