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Abstract

We derive a lower bound on the smallest singular value of a random d-regular
matrix, that is, the adjacency matrix of a random d-regular directed graph. Specif-
ically, let C1 < d < cn/ log2 n and let Mn,d be the set of all n× n square matrices
with 0/1 entries, such that each row and each column of every matrix in Mn,d has
exactly d ones. Let M be a random matrix uniformly distributed on Mn,d. Then
the smallest singular value sn(M) of M is greater than n−6 with probability at least
1− C2 log2 d/

√
d, where c, C1, and C2 are absolute positive constants independent

of any other parameters. Analogous estimates are obtained for matrices of the form
M − z Id, where Id is the identity matrix and z is a fixed complex number.
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1 Introduction

The present paper belongs to a sub-area of the random matrix theory often called non-
limiting or non-asymptotic (see e.g. [23, 38]). Development of this direction of research
was motivated by some problems in statistics, compressed sensing and computer science
in general, as well as in asymptotic geometric analysis. The object of the study is a large
random matrix of a fixed size, and a typical goal is to obtain quantitative probabilistic
estimates for its eigenvalues or singular values in terms of dimension of the matrix. In
this paper we avoid a discussion of corresponding limiting results, and refer, in particular,
to books [3, 15] and references therein for more information (see also [13] for interplay
between limiting and non-limiting results and for applications).

The study of the non-limiting behaviour of the smallest and the largest singular values
is a very important research direction. Recall that for an m × n (m ≥ n) matrix A, the
largest and the smallest singular values can be defined as

s1(A) = ‖A‖ = max
‖z‖2=1

‖Az‖2 and sn(A) = min
‖z‖2=1

‖Az‖2,

where ‖A‖ denotes the operator norm of A acting from `n2 to `m2 (also called the spectral
norm). In case when m = n and the matrix A is invertible, we have sn(A) = 1/‖A−1‖.
The knowledge of the magnitude of the extreme singular values gained significance in con-
nection with asymptotic geometric analysis, numerical analysis (in particular, smoothed
analysis of the condition number), the problem of approximating covariance matrices
of multidimensional distributions, the study of delocalization properties of eigenvectors.
Moreover, for square non-Hermitian matrices, estimating the extreme singular values
forms a crucial step in computing the limit of the empirical spectral distribution. We
provide a brief overview of those directions.

First, assume that A is a tall rectangular matrix with independent rows (satisfying
certain conditions). Estimating s1(A) can be quite difficult (excluding the subgaussian
case, see, for example, [29, Fact 2.4]). The lower bounds for sn(A) often require covering
arguments, estimates for small ball probabilities, anti-concentration results, and on many
occasions bounds on s1(A). For bounds on s1(A) and sn(A), we refer to [1, 31, 18, 48]
and references therein. We would like to notice that strong estimates for sn(A) for this
model can be obtained bypassing analysis of s1(A), and under very weak conditions on
the distributions of the rows [22, 34, 52, 53] (see also [17] for related yet different setting).

Another model of randomness, which is closer to the main topic of our paper, involves
square random matrices or matrices with the aspect ratio m/n very close to one, with
i.i.d. entries. In this setting, obtaining optimal quantitative lower bounds for sn(A) re-
quires more delicate arguments, compared to the model considered above. We refer, in
particular, to [29, 45, 36, 37, 43, 35] and references therein (see also [2] for square matrices
with independent log-concave columns). In the context of numerical linear algebra, this
research direction is related to estimating the condition number of a square matrix. Recall
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that the condition number of an n× n matrix A is defined as

σ(A) = s1(A)/sn(A) = ‖A‖ ‖A−1‖.

The condition number serves as a measure of precision of certain matrix algorithms [6,
Chapter III], [41]. The study of the condition number in the random setting goes back
to von Neumann and his collaborators (see [32, pp. 14, 477, 555] and [33, Section 7.8]),
whose numerical experiments suggested that for a random n×n matrix A one should have
σ(A) ≈ n with high probability. In a more general context, when the spectral norm ‖·‖ is
replaced with an operator norm ‖ · ‖X→Y for two n-dimensional Banach spaces X and Y ,
the quantity ‖A‖X→Y ‖A−1‖Y→X plays a crucial role in the local theory of Banach spaces
and asymptotic geometric analysis through its relation to the Banach–Mazur distance
[8, 49]. Estimating the condition number of a shifted matrix A+B (with A random and
B fixed) was put forward as an important problem by Spielman and Teng [42], in context
of smooth analysis of algorithms (see, in particular, [39, 44, 46]). As a very important
application, the quantitative lower bounds for sn(A+B), with B being a complex multiple
of the identity, have been used to establish the circular law for the empirical spectral
distribution in the i.i.d. model (see [47, 7] and references therein for the historical account
of the problem). Indeed, it is known that using the Hermitization technique, one needs to
show the uniform integrability of the logarithmic potential with respect to the empirical
singular value distribution of the shifted matrix. Bounding the smallest singular value
away from zero is therefore essential for such method to work. As the limiting distribution
is not the aim of this paper and since the uniform integrability requires also a control of
the remaining singular values, we leave this for a future investigation (see [27, 26]).

The model studied in this paper differs from the ones discussed above in two crucial
aspects. Let us set up the framework. Let d ≤ n be (large) integers, which we assume to
be fixed throughout the paper. Consider the set Mn,d of square n× n matrices with 0/1
entries such that each row and each column of a matrix M ∈Mn,d contains exactly d ones.
Such matrices will be called d-regular. These are adjacency matrices of d-regular digraphs
(directed graphs), where we allow loops but do not allow multiple edges. On Mn,d we
take the uniform probability measure, turningMn,d into a probability space, and consider
the random matrix distributed according to this measure. The two main differences from
the models mentioned in the previous paragraphs are complex dependencies between the
matrix entries and (for d� n) sparsity of the matrix, i.e., large number of zero entries.

The question of estimating sn(M) (or, more generally, sn(M + B) for a fixed matrix
B), where M is uniformly distributed in Mn,d, can be justified in two respects. First,
this is a natural model with complex dependencies between the matrix entries, which
does not allow the use of standard conditioning arguments (such as fixing the span of
n− 1 rows of a random matrix and studying the conditional distribution of the distance
of the remaining row to the span). Techniques developed for treating this model can
potentially be adapted to more general models with dependencies. Second, as we show
in this paper, unlike the Erdős–Rényi random model (see below for the definition and a
more detailed comparison), the d-regularity condition guarantees strong lower bounds on
sn(M) with large probability even in the case when d � log n when the corresponding
Erdős–Rényi adjacency random matrix with the parameter p = d/n is singular with large
probability. This provides a better understanding as to what causes singularity of sparse
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random matrices (“local” obstructions to invertibility such as a zero row in the Erdős–
Rényi model versus “global” obstructions when the non-trivial null vectors have many
non-zero components).

Singularity of adjacency matrices of uniform random d-regular digraphs was first con-
sidered by Cook in [10]. He adapted to the case of directed graphs a conjecture of Costello
and Vu from [12, Section 10], which asserted that for 3 ≤ d ≤ n−3 with probability going
to 1 as n goes to infinity the adjacency matrix of a random d-regular undirected graph
is non singular (see also Vu’s survey [50, Problem 8.4] and 2014 ICM talks by Frieze [16,
Problem 7] and Vu [51, Conjecture 5.8]). The argument in [10] was based on discrep-
ancy properties of random digraphs studied in [9], together with some anti-concentration
arguments and a sophisticated use of the simple switching operation. It established non-
singularity of the adjacency matrix with a large probability for d ≥ C log2 n.

The question about singularity of adjacency matrices in the case d ≤ log n remained
open, moreover it was not clear whether the condition d � log n comes from limitations
of the method used in [10] or if a random matrix uniformly distributed onMn,d becomes
singular in this regime. As we mentioned above, in the Erdős–Rényi model, a random
matrix is singular with probability close to one in the case d � log n. In [24] (see also
[25]), the authors of the present paper were able to partially answer this question by
showing that a random d-regular matrix is non-singular for all d bigger than a large
universal constant, however, the probability of the singularity was estimated from above
by a negative power of d (see also [28], where we proved that the rank of such matrices
should be at least n− 1 with probability going to one as n grows to infinity). The main
novelty of [24] compared to [10] rested on three new ingredients – a particular version of
the covering argument which is applied to study the structure of the kernel of random
matrices, on a different set of properties of random digraphs, and on a new approach to
anti-concentration results.

However, both papers [10] and [24] didn’t provide any quantitative estimates. Com-
bining methods from [10] and [24] with an elaborate chaining argument, in recent papers
[11] and [4], quantitative lower bounds on the smallest singular value of the adjacency
matrix were proved for the uniform and permutation models, under an assumption that d
is polylogarithmic in n. Moreover, considering shifted adjacency matrices, the authors of
[11, 4] were able to obtain the circular law for the eigenvalue distribution (again, for d at
least polylogarithmic in n). Precisely, in [11, 4] it was shown that, with some conditions
on the shift W, the smallest singular value sn(M + W ) of a random shifted matrix is
at least n−C logd n with probability close to one. Still papers [11, 4] do not provide any
bounds for sn when d is growing slower than log n and moreover, even for d growing faster
than log n but subpolynomial in n, they don’t provide a polynomial in n bound for sn.

The goal of the present paper is to provide polynomial in n lower bounds on the
smallest singular value of a random matrix uniformly distributed onMn,d for d larger than
a (fixed large) absolute constant. Our approach results in better bounds not only for small
d but for the entire range C ≤ d ≤ cn/ log2 n. Our main result is the following theorem,
in which we also allow shifts of random matrices for the sake of future applications (see
also Remark 4.9 for more precise bounds).

Theorem 1.1. There are universal constants C, c > 0 with the following property. Let
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C < d < cn/((log n)(log log n)). Then for every z ∈ C with |z| ≤ d/6 one has

P
{
M ∈Mn,d : sn(M − zId) ≥ n−6

}
≥ 1− C log2 d/

√
d.

It is natural to compare our model with the Erdős–Rényi model, i.e. matrices whose
elements are i.i.d. Bernoulli 0/1 variables with the expectation d/n. Intuitively one would
expect that d-regular matrices should behave in a similar way to the Erdős–Rényi model.
This in turn seems to be similar (after applying a proper normalization

√
d/n) to random

±1 matrices, where values 1 and −1 appears with probability 1/2. Since for the latter
model one has sn ≈ 1/

√
n, we would expect the answer sn ≈

√
d/n for both d-regular

matrices and for the Erdős–Rényi model. Indeed, the Erdős–Rényi model was recently
treated in [5], where it was proved that with high probability sn ≥ c(d/n)−c/ log d

√
d/n,

provided that c log n ≤ d ≤ n− c log n. Note that if d is polynomial in n then this gives
the expected bound

√
d/n. However, there is one delicate point in such a comparison.

It is easy to see that for d < log n a matrix in the Erdős–Rényi model has a zero row
with probability more than half, therefore more than half of matrices in this model are
singular. To the contrary, our theorem shows that in the case of d-regular matrices most
matrices are non-singular. In particular, this means that the regularity prevents a matrix
from being singular, in a sense reducing the randomness.

The remaining part of the introduction is devoted to a brief description of main ideas
and to a short overview of the proof of Theorem 1.1. An often employed approach to
estimating the smallest singular value (in other words, to bounding ‖Mx‖2/‖x‖2 from
below for every non-zero x ∈ Cn) is to partition Cn and work separately with different
types of vectors. The idea to split the Euclidean sphere into two parts goes back to
Kashin’s work [20] on an orthogonal decomposition of `2n1 , where the splitting was defined
using the ratio of `2- and `1-norms. A similar idea was used by Schechtman [40] in the same
context. In the context of the smallest singular value one usually splits Cn into vectors
of smaller complexity (close to sparse vectors) and “spread” vectors (in particular, with
a relatively small `∞-norm). Such a splitting was introduced in [29] (see also [30]) and
was further formalized later in [36] into a concept of “compressible” and “incompressible”
vectors in Cn. Compressible vectors are essentially vectors of smaller dimension, so the set
of compressible vectors has a relatively small complexity. Therefore, using the standard
ε-nets argument and the union bound one can obtain good bounds for ‖Mx‖2/‖x‖2 for
all compressible vectors. For incompressible vectors, the question can be reduced to
estimating the distance between a column of the matrix and the linear span of remaining
columns, which is in turn bounded using Littlewood–Offord–type inequalities.

In our model, due to special structure of the matrices (in particular, due to the lack
of independence and due to the sparsity of a matrix) the concept of compressible and
incompressible vectors is not directly applicable. In [10], Cook replaced these notions with
another type of structural dichotomy, namely sparse vectors were replaced with a bigger
class of vectors having at least one large level set (where “large” means of cardinality at
least n/dc) while unstructured vectors were the ones with small level sets. These notions
we also used in [4, 11, 24]. In [24] the structured vectors were referred to as almost
constant vectors, since there “a large level set” meant of cardinality at least n− n/ log d.
Thus, an almost constant vector is a very sparse vector shifted by a constant vector.
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In the present work, we further refine this splitting in order to take full advantage of
the discrepancy properties of random d-regular matrices. Specifically, we define four
(overlapping) classes on Cn, which we call steep vectors, gradual vectors (that is non-
steep), the almost constant vectors, and the essentially non-constant vectors (that is the
complement of almost constant vectors). Roughly speaking, almost constant vectors are
those with many coordinates almost equal to each other. The gradual vectors are vectors
x = (xi)i ∈ Cn, whose sequence (x∗i )i (a non-increasing rearrangement of (|xi|)i) has a
regular decay, i.e., has no significant jumps, where by a jump we mean x∗k � x∗m for some
k � m. The steep vectors are vectors possessing such jumps.

The idea to consider steep vectors comes from the following observation. A steep
vector x possesses a “steep” jump in its non-increasing rearrangement which induces a
partitioning of the graph into the set of vertices (indices) corresponding to large coor-
dinates and those associated with small coordinates. Now the expansion properties of
the random d-regular graph automatically imply that the set of vertices corresponding to
large coordinates has a large neighborhood (many vertices are connected to the set) and,
moreover, many vertices are simply (i.e., through one edge) connected to the set. In terms
of the d-regular matrix, this translates into having relatively many rows which have ex-
actly one entry equal to one within the set of columns corresponding to large coordinates
of x. Then the inner product of each such row with the steep vector x is large by absolute
value thanks to the big ratio of the magnitudes of large and small coordinates of x: the
inner product is dominated by the value of the unique large coordinate of x corresponding
to the aforementioned non-zero component of the selected row. The implementation of
this naive idea is more involved and requires a careful selection of the size of the jump (re-
sponsible for the magnitude of the inner product) and its location (which must take into
consideration the graph expansion properties). To this, another difficulty adds up, lying
in the construction of the associated nets as one needs to balance the size of the net with
the individual probability bounds. The actual argument is technically involved since we
are required to distinguish several types of jumps as well as different jump locations and
combine these with very delicate construction of the ε-nets. It will be further discussed
in Section 3.

Bounding the magnitude of the matrix-vector product for almost constant gradual
vectors is straightforward. First, notice that the `2-norm of an almost constant gradual
vector is comparable to the `2-norm of its “constant part”. Moreover, employing proper-
ties of random d-graphs, one can show that there are many rows for which most of their
support lies on the “almost constant” part of the vector. This further implies that the
inner product of such rows with the vector is separated from zero, and knowing the `2
norm of the vector thus provides uniform quantitative lower bounds on the product of
our random matrix with almost constant gradual vectors.

After we obtain bounds for the above two classes it remains to deal with essentially
non-constant vectors. Using general algebraic properties of square matrices we reduce
the problem of estimating the smallest singular number to estimating distances between
rows (or columns) of the matrix and certain subspaces (similar reductions were used in
[36, 47]). More precisely, we consider quantities of the form

dist
(
Ri(M), span

{
{Rk(M)}k 6=i,j, Ri(M) +Rj(M)

})
,
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for pairs of indices 1 ≤ i 6= j ≤ n. The first observation is that the subspace appearing
above is invariant under simple switchings between the i-th and j-th rows. Then we
condition on a realization of the subspace {Rk(M)}k 6=i,j and consider all matrices sharing
the same realization of this subspace (which will form an equivalence class). We use the
randomness of the remaining two rows to control the inner product of a normal vector
to the subspace with the i-th row. A key observation is that for most pairs of rows, the
restriction of an essentially non-constant vector to the support of those two rows remains
“non-constant”. This step requires two properties of random d-regular digraphs which
we proved in [24]. We show that within the equivalence class the inner product of the
i-th row with an essentially non constant vector can be viewed as a sum of independent
random variables, to which anti-concentration inequalities can be applied. This strategy
was developed in [10, 11, 24] and is further refined in this work by splitting each class
above into subclasses on which the same normal vector can be used to have a control on
the smallest singular value.

Acknowledgement. We are grateful to an anonymous referee for careful reading the
first draft of the manuscript and many valuable suggestions, which helped us to improve
presentation. The second and the third named authors would like to thank University of
Alberta for excellent working conditions in January–August 2016, when a significant part
of this work was done.

2 Preliminaries

By “universal” or “absolute” constants we always mean numbers independent of all in-
volved parameters, in particular independent of d and n. When we say that a parameter
(or a constant) is sufficiently large (resp. sufficiently small) it means that there exists
an absolute positive constant such that the corresponding statement or inequality holds
whenever the parameter is larger (resp. smaller) than this absolute constant. Given pos-
itive integers ` < k, we denote the sets {1, 2, . . . , `} and {`, `+ 1, . . . , k} by [`] and [`, k],
respectively. For any two real-valued functions f and g we write f ≈ g if there are two
absolute positive constants c and C such that cf ≤ g ≤ Cf . By Id we denote the n× n
identity matrix. For I ⊂ [n], let Ic := [n] \ I denote the complement of I in [n] and let PI
denote the operator of orthogonal projection on the coordinate subspace CI . For a vector
x = (x1, . . . , xn) ∈ Cn, we denote its `∞-norm by ‖x‖∞ = maxi |xi| and its `2-norm by
‖x‖2. We denote also x̄ = (x̄i)

n
i=1, where z̄ is the complex conjugate of z ∈ C, and by

(x∗i )
n
i we denote the non-increasing rearrangement of the sequence (|xi|)ni=1. We use 〈·, ·〉

for the standard inner product on Cn, that is 〈x, y〉 =
∑n

i=1 xiȳi. The unit ball of the
complex space `n∞ is denoted by Bn

∞. To simplify notation, we don’t distinguish between
row and column vectors, this will always be clear from the context. In particular, for an
n× n matrix U and a vector x ∈ Cn, we have

Ux = (〈Ri(U), x̄〉)ni=1 and xU =
n∑
i=1

xiRi(U),

where Ri(U), i ≤ n, denote rows of U . By ‖U‖ we denote the operator norm of U ,
considered as a linear operator U from (complex) `2 to `2. Note also that by the Perron–
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Frobenius theorem for every M ∈Mn,d one has ‖M‖ = d.

We will use the following anti-concentration Littlewood–Offord type lemma ([14], see
also [21]).

Proposition 2.1. Let ξ1, ξ2, ..., ξm be independent ±1 Bernoulli random variables and
let x1, x2, ..., xm be complex numbers such that |xi| ≥ 1, i ≤ m. Then for every t ≥ 1
one has

sup
a∈C

P
(∣∣ m∑

i=1

ξixi − a
∣∣ < t

)
≤ C2.1 t√

m
,

where C2.1 > 0 is a universal constant.

The next lemma is a “quantified” version of Claim 4.7 from [24].

Lemma 2.2. Let x = (x1, x2, . . . , xm) ∈ Cm be a vector such that for some ρ > 0 and
ε ∈ (0, 1) we have

∀λ ∈ C
∣∣{i ≤ m : |xi − λ| ≥ ρ

}∣∣ ≥ εm.

Then there are disjoint subsets J and Q of [m] such that

|J |, |Q| ≥ εm/4 and ∀i ∈ J, ∀j ∈ Q |xi − xj| ≥ ρ/
√

2.

Proof. Let y1 := Re(x) and y2 := Im(x) be the real and imaginary part of x, respectively.
First, observe that there is k ∈ {1, 2} such that

∀λ ∈ R
∣∣{i ≤ m : |yki − λ| ≥ ρ/

√
2
}∣∣ ≥ εm/2. (1)

Indeed, assume the opposite, i.e., that there exist real numbers λ1 and λ2 such that∣∣{i ≤ m : |yki − λk| ≥ ρ/
√

2
}∣∣ < εm/2, k = 1, 2.

Then for λ := λ1 + i λ2 we necessarily have∣∣{i ≤ m : |xi − λ| ≥ ρ
}∣∣ < εm,

contradicting the assumption of the lemma.
Without loss of generality, we can assume that condition (1) holds for k = 1, and

that the coordinates of y1 are arranged in the non-increasing order. Denote p := dεm/4e.
Set J := {1, 2, . . . , p} and Q := {m − p + 1, . . . ,m}. Clearly, it is enough to show that
y1p ≥ ρ/

√
2 + y1m−p+1. Assume the opposite. Then the set I := {p, . . . ,m − p + 1} has

cardinality strictly greater than m− εm/2, and for λ := y1p we have |y1i − λ| < ρ/
√

2 for
all i ∈ I contradicting (1). The result follows.

We will need the following simple combinatorial claim about relations. Let A, B be
sets, and R ⊂ A×B be a relation. Given a ∈ A and b ∈ B, the image of a and preimage
of b are defined by

R(a) = {y ∈ B : (a, y) ∈ R} and R−1(b) = {x ∈ A : (x, b) ∈ R}.

We also set R(A) = ∪a∈AR(a). We have the following standard estimate (see e.g.
Claim 2.1 in [24]).
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Claim 2.3. Let s, t > 0. Let R be a relation between two finite sets A and B such that
for every a ∈ A and every b ∈ B one has |R(a)| ≥ s and |R−1(b)| ≤ t. Then s|A| ≤ t|B|.

We turn now to properties of d-regular matrices. Recall that Mn,d denotes the set of
all n× n 0/1-valued matrices having sums of elements in every row and in every column
equal to d (the set corresponds to adjacency matrices of directed d-regular graphs where
we allow loops but do not allow multiple edges). Given n×n matrix U = (vij) we denote
its i’th row by Ri(U) and suppRi(U) = {j ≤ n : uij 6= 0}. For J ⊂ [n] we also denote

SJ := {i ≤ n : suppRi(M) ∩ J 6= ∅}, (2)

that is, SJ is the union of supports of columns indexed by J .
Given k ≤ n and ε ∈ (0, 1), let

Ωk,ε :=
{
M ∈Mn,d : ∀J ⊂ [n] with |J | = k one has |SJ | ≥ (1− ε)dk

}
.

Clearly, if k = 1 then Ωk,ε =Mn,d. The following theorem is essentially Theorem 2.2 of
[24] (see also Theorem 3.1 there).

Theorem 2.4. Let e8 < d ≤ n, ε0 =
√

log d/d, and ε ∈ [ε0, 1). Let k ≤ c2.4εn/d, where
c2.4 ∈ (0, 1) is a sufficiently small absolute positive constant. Then

P(Ωk,ε) ≥ 1− exp

(
−ε

2dk

8
log
(eεc2.4n

kd

))
,

in particular,

P

 ⋃
k≤c2.4εn/d

Ωk,ε

 ≥ 1− (C2.4d/εn)ε
2d/8 .

We will need two more results from [24]. The following is [24, Proposition 3.3].

Proposition 2.5 (Row and columns are almost disjoint). Let ε ∈ (0, 1) and 8 ≤ d ≤ εn/6.
Denote

Ω1(ε) :=
{
M ∈Mn,d : ∀i, j ∈ [n] |supp(Ri(M) +Rj(M))| ≥ 2(1− ε)d

and
∣∣supp

(
Ri

(
MT

)
+Rj

(
MT

) )∣∣ ≥ 2(1− ε)d
}
.

Then

P(Ω1(ε)) ≥ 1− n2

(
ed

εn

)εd
.

Given 0 ≤ α, β ≤ 1, denote by Ω0(α, β) the set of matrices in Mn,d having a zero
submatrix of size at least αn× βn, that is

Ω0(α, β) := {M ∈Mn,d : ∃I, J ⊂ [n] such that |I| ≥ αn, |J | ≥ βn,

and ∀i ∈ I ∀j ∈ J µij = 0}.

The next result is Theorem 3.4 from [24] (note that the condition β ≤ 1/4 there can
be removed by adjusting absolute constants).
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Proposition 2.6 (No large zero submatrices). There exist absolute positive constants c, C
such that the following holds. Let 2 ≤ d ≤ n/24, 0 < β ≤ 1, and 0 < α ≤ min(β, 1/4).
Assume that

α ≥ C log(e/β)

d
.

Then
P (Ω0(α, β)) ≤ exp (−cαβdn) .

We now discuss another property of matrices in Ωm,ε. We start with the following
construction. Given two disjoint sets J `, Jr ⊂ [n] and a matrix M ∈Mn,d, denote

I` = I`(M,J `, Jr) := {i ≤ n : |suppRi ∩ J `| = 1 and suppRi ∩ Jr = ∅}
and

Ir = Ir(M,J `, Jr) := {i ≤ n : suppRi ∩ J ` = ∅ and |suppRi ∩ Jr| = 1}.
The sets J `, Jr will always be clear from the context. The upper indexes ` and r refer to
left and right, since later, given a vector x ∈ Rn with x1 ≥ x2 ≥ . . . ≥ xn ≥ 0, we choose
J ` = [k1] and Jr = [k2, n] for some k1 < k2 (this is the reason why the above formulas for
I`(M), Ir(M) are asymmetric).

Lemma 2.7. Let p ≥ 2, m ≥ 1 be integers satisfying pm ≤ c2.4εn/d and let J `, Jr ⊂ [n]
be such that J ` ∩ Jr = ∅, |J `| = m, |Jr| = (p− 1)m. Let M ∈ Ωpm,ε. Then

|SJ` \ SJr | ≥ (1− εp)d|J `| and |I`| ≥ (1− 2εp)d|J `|,
where SJ` , SJr are defined by (2). In particular, if |Jr| = |J `| = m then

(1− 4ε)dm ≤ min(|I`|, |Ir|) ≤ max(|I`|, |Ir|) ≤ dm.

Proof. Since M ∈ Ωpm,ε, we observe that |SJ` ∪ SJr | ≥ (1− ε)pd|J `|. Hence,

|SJ` \ SJr | = |SJ` ∪ SJr | − |SJr | ≥ (1− ε)pd|J `| − (p− 1)d|J `| = (1− εp)d|J `|,
which proves the first estimate. To prove the second one, set

k := |{i ∈ SJ` \ SJr : |suppRi ∩ J `| = 1}|.
Then the number of ones in the submatrix

{µij : i ∈ SJ` \ SJr , j ∈ J `}
is at least

k + 2(|SJ` \ SJr | − k) ≥ 2(1− εp)d|J `| − k.
On the other hand, it cannot exceed |J `|d. Therefore

k ≥ 2(1− εp)d|J `| − d|J `| = (1− 2εp)d|J `|.
This completes the first part of the lemma. The second one follows by applying these
estimates with p = 2, using that the roles of I` and Ir are interchangable and that each
row contains exactly d ones.

We would like to mention that the use of events like Ωk,ε, Ω1(ε), Ω0(α, β) for the
invertibility problems for d-regular matrices goes back to [9, 10], which contained weaker
versions of our Theorem 2.4 and Propositions 2.5 and 2.6.
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3 Almost constant vectors

In this section we treat almost constant vectors, which we split into almost constant
gradual vectors (i.e., vectors with many coordinates almost equal to each other and with-
out jumps) and almost constant steep vectors (i.e., almost constant vectors with jumps).
First, in Theorem 3.1, we prove a bound for almost constant gradual vectors. This case is
less involved and was discussed in the introduction. Then we turn to steep vectors. Recall
that steep vectors possess a significant jump, where by a jump we mean x∗k � x∗m for some
k � m. We split a vector in pieces and check if a jump occurs inside those pieces. We
distinguish three types of steep vectors, T0, T1, T2, according to the place where the first
jump occurs – we introduce parameters 1 ≤ n1 < n2 < n3 < n and T0 (which is empty if
n1 = 1) corresponds to the case 1 ≤ k < m ≤ n1, T1 corresponds to n1 ≤ k < m ≤ n2,
and T2 corresponds to the case n2 ≤ k < m ≤ n3 (see precise definitions below).

When the first jump occurs at the beginning of the sequence (x∗i ), that is for vectors in
T0, we force the bound by a large jump only, so the proof in this case is more deterministic
and does not require an approximation – for every “good” matrix we have a good uniform
bound on vectors having a large jump. More precisely, for such vectors we use properties
of d-regular graphs and their adjacency matrices, which we obtained in [24]. Using these
properties, we prove that with high probability a random d-regular matrix has many rows
with only one 1 in columns corresponding to the first k coordinates and no other ones
till the m-th column (see Lemma 2.7). Thus, the inner product of such a row with x can
be bounded as difference of the absolute value of one “large” coordinate and the sum of
absolute values of d− 1 “small” coordinates. Therefore, if we have a jump of order, say,
4d, this inner product is separated from zero. This works when m/k . 1/ε0 =

√
d/ log d.

The use of Lemma 2.7 leads to the restriction n1 ≤ ε0n/d ≈ n/d3/2 (in fact, to have better
bounds, we choose n1 even smaller – of order n/d2). This scheme works for all vectors in
T0 – we don’t need to assume that vectors are almost constant.

If the first jump occurs later, i.e. for vectors in T1 and T2, the main idea is to use the
union bound, that is, to estimate the probability for an individual vector with a jump, to
construct a good ε-net for such vectors, and to approximate each such vector by a vector
from the ε-net. The fact that the operator norm of our matrices is d and our choice of
n1 lead to the choice of ε = 1/d3/2 for ε-nets (we need to have a negative power of d).
In this scheme the most important is to have the “right” balance between the size of
the net and the individual probability bound. For individual probability bounds we use
anti-concentration type technique together with switching argument, standard in dealing
with d-regular graphs. Jumps are needed to apply anti-concentration and to show that,
for a fixed vector x and a fixed index i, matrices having small inner product of i-th row
with x belong to a certain class, to which we can apply the switching argument. For this
argument a constant jump, that is x∗k > 4x∗m, would be enough. Note that the smaller the
jump and the larger the ratio m/k the better for us, since we need to have a control of the
ratio x∗1/x

∗
m, which is responsible for both, for the final bound on the singular value and

for the size of the net. Note also that contrary to results for matrices with i.i.d. entries
we have to employ anti-concentration inequalities already for these vectors of relatively
small complexity. Nets will be constructed in `∞ metric fixing x∗k = 1 (with k = n1 or
n2) in order to control values of each coordinate indexed between k and m. To have a

11



reasonable size of the net, we also work with pieces of a vector and approximate each piece
separately. This delicate construction allows us to significantly decrease the size of the net
(in comparison with the standard constructions). Unfortunately, the size of the net is still
quite large and requires additional restrictions. First, it works only when m/k . d/ log d,
that is we must have both n3/n2 and n2/n1 to be at most d/ log d. Moreover, since in the
individual bounds Lemma 2.7 is again involved (with a different choice of parameters),
we have an additional restriction n2 . n/d. This explains our choice of n2 ≈ n/d and
hence n1 ≈ n(log d)/d2 and n3 ≈ n/ log d. Second, in the case n1 . k < m . n2, to kill
a large part of coordinates (in order to decrease the size of the net) we need a jump of
order 1/ε = d3/2. This will lead to the definition of T1. Note that again our proof works
for vectors from T1 without an additional assumption that vectors are almost constant.

For the part of coordinates with k ≈ n/d and m ≈ n/ log d, corresponding to the
definition of T2, due to the method used in the proof of Theorem 3.1, we cannot use a
large jump and has to deal with a constant jump. With such a small jump, without
additional restrictions, the size of the net would be too large to be “killed” by individual
probabilities bounds. To overcome this issue, we intersect steep vectors from T3 with
almost constant vectors. This significantely reduces the “dimension” of vectors (making
them essentially one-dimensional on the set of coordinates corresponding to the “almost
constant part”) and allows good bounds on the size of the net even with a constant jump.

3.1 Almost constant, steep, and gradual vectors: definitions and
main results

To define almost constant and steep vectors we will use the following parameters. In order
to use Theorem 2.4, we fix ε0 and a related parameter p as follows:

ε0 =
√

(log d)/d, p = b1/(5ε0)c =
⌊
1
5

√
d/ log d

⌋
(the choice of p comes from ε0p < 1 needed in Lemma 3.7 in order to apply Lemma 2.7).
We also fix three absolute positive sufficiently small constants a1, a2, and a3, satisfying

a3 ≤ a2/28 ≤ a1/282, (3)

(we don’t try to estimate the actual values of ai’s, the conditions on how small they are
will be appearing in the corresponding proofs). Set

n0 := da1n log d/d2e, n2 := ba2n/dc, and n3 := ba3n/ log dc.

If n0 = 1, set n1 = 1. Otherwise, fix an integer r ≥ 0 such that pr < n0 ≤ pr+1 and set

n1 =

{
n0, if n0 ≤ p,
pr+1, otherwise.

Note that

n2

n1

≤ a2d

a1 log d
,

n

n2

≤ 2d

a2
,

n

n3

≤ 2 log d

a3
,

n3

n1

≤ a3d
2

a1 log2 d
, (4)
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and, in the case n0 > 1,
n1 ≤ pn0 ≤ a1ε0n/5d. (5)

We are ready now to describe our classes. First, given ρ > 0, we introduce a class of
almost constant vectors by

B(ρ) := {x ∈ Cn : ∃λ ∈ C such that |{i ≤ n : |xi − λ| ≤ ρ ‖x‖2}| > n− n3}.

The definition of the class of steep vectors is more involved and consists of few steps
at which we define sets T0, T1, and T2. We start with T0. If n0 = n1 = 1 we set T0 = ∅. If
n0 > 1, we denote

T0,0 := {x ∈ Cn : x∗1 > 4dx∗m},

where m = min(n0, p). In the case 1 < n0 = n1 ≤ p we set T0 = T0,0. Otherwise, if n0 > p
we set for 1 ≤ i ≤ r

T0,i := {x ∈ Cn : x 6∈
i−1⋃
j=0

T0,j and x∗pi > 4dx∗pi+1} and T0 =
r⋃
i=0

T0,i.

Finally, we define two more sets of steep vectors, as

T1 := {x ∈ Cn : x 6∈ T0 and x∗n1
> d3/2 x∗n2

}

and
T2 := {x ∈ Cn : x 6∈ T0 ∪ T1 and x∗n2

> 4x∗n3
}.

The vectors from T1 ∪ T2 ∪ T3 we call steep and all other vectors we call gradual.

We introduce the following functions hi, 0 ≤ i ≤ r + 1,

hr+1 :=


√

3p n2+αd
1 if n0 > p,

2d3/2/
√

log d if 1 < n0 ≤ p,√
n if n0 = 1,

hi :=

{ √
n if i = 0,√
n+
√

2p pi(2+αd) if 1 ≤ i ≤ r,

where αd = log 4d/ log p − 2 (note 2 log log d/ log d ≤ αd ≤ 4 log log d/ log d for large d).
We also denote

bT :=

{
4d3/2hr+1 if n0 > 1,
d
√
n if n0 = 1.

In this section we prove two following theorems. The first one treats almost constant
gradual vectors, the second one treats almost constant sleep vectors (in fact, a slightly
larger class).

Theorem 3.1. Let d ≤ n be large enough integers. Let 0 < ρ ≤ 1/(5 bT ) and let
x ∈ B(ρ) \ (T0 ∪ T1 ∪ T2). Then for every M ∈ Mn,d and for every z ∈ C with |z| ≤ d/6
one has

‖(M − zId)x‖2 ≥
d
√

3n

5 bT
‖x‖2.
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Theorem 3.2. There are absolute constants C > 1 > c, c1 > 0 such that the following
holds. Let C < d < c1n and 0 < ρ ≤ 1/(d3/2 bT ). Let z ∈ C be such that |z| ≤ d. Denote

T = T0 ∪ T1 ∪ (T2 ∩ B(ρ))

and

Esteep :=
{
M ∈Mn,d : ∃ x ∈ T such that ‖(M − zId)x‖2 <

√
n2d

25bT
‖x‖2

}
.

Then
P(Esteep) ≤ n−cmin(logn,

√
d log d).

Remark 3.3. In Section 4 we will use these two theorems in the following way. Let
ρ = 1/(d3/2 bT ), |z| ≤ d/6,

B0(ρ) := B(ρ) ∩ {x ∈ Cn : ‖x‖2 = 1} ,

and
E :=

{
M ∈Mn,d : ∃ x ∈ B0(ρ) such that ‖(M − zId)x‖2 < ρ2/16

}
.

Then Theorems 3.1 and 3.2 imply that

P(E) ≤ n−cmin(logn,
√
d log d) ≤ 1/2n2.

Remark 3.4. Note that
d
√

3n

5 bT
≥

√
n2d

25d3/2hr+1

.

In the proof of Theorem 3.2 we show also that
√
n2d

25d3/2hr+1

≥ h(d, n),

where

h(d, n) =


cd−3/2 if n1 = 1 (that is, if a1n ≤ d2

log d
),

c
√
n d−3(log d)−1/2 if 1 < n1 ≤ p (that is, if d2

log d
< a1n ≤ d5/2

5 log3/2 d
),

cd5/4(log d)2n−3/2−αd if n1 > p (that is, if a1n >
d5/2

5 log3/2 d
).

In the proof of both theorems we will use the comparison of `2-norm of a given vector
with a fixed coordinate. The next lemma provides such a bound in terms of the functions
hi. Moreover, we also estimate the `∞-norm. Note that we clearly have ‖x‖2 ≤

√
nx∗1 for

every x ∈ Cn.

Lemma 3.5. Let d ≤ n be large enough and x ∈ Cn, x 6= 0. If x ∈ T0,i for some
0 ≤ i ≤ r, then

‖x‖2 ≤ hi x
∗
pi .

Moreover,

‖x‖2 ≤


hr+1 x

∗
n1

if x /∈ T0,
(bT /4)x∗n2

if x /∈ T0 ∪ T1,
bT x

∗
n3

if x /∈ T0 ∪ T1 ∪ T2.
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Proof. The case x ∈ T0,0 is trivial.
If 1 < n0 = n1 ≤ p then T0 = T0,0 and thus for x 6∈ T0 we observe

‖x‖22 =

n1−1∑
i=1

(x∗i )
2 +

n∑
i=n1

(x∗i )
2 ≤ 16d2n1(x

∗
n1

)2 + n(x∗n1
)2 ≤ (16d2p+ n)(x∗n1

)2.

The result follows since n0 ≤ p implies a1n ≤ d2p/ log d and because d is large enough.

We now assume that n0 > p. Let x ∈ T0,i for some 1 ≤ i ≤ r or let x 6∈ T0 in which
case we set i = r + 1. Then for every j < i, one has x 6∈ T0,j, hence, assuming without
loss of generality that x∗pi = 1, we get

x∗1 ≤ (4d)x∗p ≤ (4d)2x∗p2 ≤ . . . ≤ (4d)ix∗pi = (4d)i = pi log 4d/ log p.

This implies

‖x‖22 = ((x∗1)
2 + . . .+ (x∗p)

2) + ((x∗p+1)
2 + · · ·+ (x∗p2)

2) + . . .

≤ p(4d)2i + p2(4d)2(i−1) + . . .+ pi(4d)2 + n

=
p(4d)2((4d)2i − pi)

(4d)2 − p
+ n ≤ 2p(4d)2i + n = 2p p2i log 4d/ log p + n,

which implies the result for i ≤ r. In the case i = r + 1, that is, if x 6∈ T0, this gives
‖x‖22 ≤ 2p n4+2αd

1 + n. Note that we are in the case n0 > p, hence n1 ≥ p2. Using the
definition of n0, we observe that a1n ≥ d2p/ log d and therefore

n4
1 ≥ p6n1 ≥

d3

(6 log d)3
a1n log d

d2
≥ a1n d

log d

which implies for sufficiently large d that ‖x‖2 ≤
√

3p n2+αd
1 .

If x /∈ T0 ∪ T1 then clearly x∗n1
≤ d3/2xn2 , and, if additionally n0 = 1, then

‖x‖22 =

n2−1∑
i=1

(x∗i )
2 +

n∑
i=n2

(x∗i )
2 ≤ d3n2(x

∗
n2

)2 + n(x∗n2
)2 ≤ (a2d

2n+ n)(x∗n2
)2 ≤ d2n(x∗n2

)2/16,

provided a2 < 1/20 and d is large enough. The case x /∈ T0 ∪T1 ∪T2 follows as well, since
in this case x∗n3

≤ 4x∗n2
. This completes the proof.

3.2 Proof of Theorem 3.1

We will use the following simple claim.

Claim 3.6. Let J ⊂ [n], k = |J |, and A > 1. Let M ∈Mn,d. Then

|{i ≤ n : |suppRi(M) ∩ J | ≥ Akd/n}| ≤ n/A.

Proof. The number of ones in the submatrices indexed by [n]× J is kd. Thus

|{i ≤ n : |suppRi(M) ∩ J | ≥ Akd/n}| · Akd/n ≤ kd,

which implies the result.
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Proof of Theorem 3.1. Clearly, we may assume x 6= 0. Fix a permutation σ = σx of [n]
such that x∗i = |xσ(i)| for i ≤ n. Note that since x 6∈ T0 ∪ T1 ∪ T2 ∪ {0} we have x∗n3

6= 0.
Fix λ0 = λ0(x) ∈ C such that the cardinality of

J1 := {i ≤ n : |xi − λ0| ≤ ρ ‖x‖2}

is at least n− n3 + 1. Therefore there exist k, ` such that k ≤ n3 < ` and σ(k), σ(`) ∈ J1.
By Lemma 3.5,

‖x‖2 ≤ bT x
∗
n3

= bT |xσ(n3)|,
hence

|λ0|−x∗n3
/5 ≤ |λ0|−ρ ‖x‖2 ≤ |xσ(`)| = x∗` ≤ x∗n3

≤ x∗k = |xσ(k)| ≤ |λ0|+ρ ‖x‖2 ≤ |λ0|+x∗n3
/5,

where we also used that ρ ≤ 1/(5bT ). This implies

(5/6)|λ0| ≤ x∗n3
≤ (5/4) |λ0|

(in particular, |λ0| 6= 0) and, using again that ρ ≤ 1/(5bT ),

ρ ‖x‖2 ≤ x∗n3
/5 ≤ |λ0|/4.

Set

J2 = σ([n2]) \ J1, J3 = σ([n3]) \ (J1 ∪ J2), and J4 = [n] \ (J1 ∪ σ([n3])).

Then |J3|, |J4| ≤ n3, [n] = J1 ∪ J2 ∪ J3 ∪ J4, and

∀j ∈ J4 |xj| ≤ x∗n3
≤ 5|λ0|/4 and ∀j ∈ J3 |xj| ≤ x∗n2

≤ 4x∗n3
≤ 5|λ0|. (6)

Now, given a matrix M ∈Mn,d, consider

I2 = {i ≤ n : suppRi(M) ∩ J2 6= ∅} and I` = {i ≤ n : |suppRi(M) ∩ J`| ≥ 16n3d/n},

for ` = 3, 4. Since M ∈Mn,d and by Claim 3.6, we have for small enough a2,

|I2| ≤ d n2 ≤ n/16 and |I`| ≤ n/16 for ` = 3, 4.

Set I := [n] \ (I2 ∪ I3 ∪ I4 ∪ σ([n3])). Then

|I| ≥ n− 3n/16− n3 ≥ 3n/4 and ∀i ∈ I |xi| ≤ x∗n3
≤ (5/4)|λ0|.

Moreover, for every i ∈ I, denote J ′` = J ′`(i) = J` ∩ suppRi(M) for 1 ≤ ` ≤ 4, and note
that J ′2 = ∅ since i 6∈ I2. Using the triangle inequality, we observe for every i ∈ I,

| 〈Ri(M − zId), x̄〉 | ≥
∣∣∣∑
j∈J ′1

xj

∣∣∣−∑
j∈J ′3

|xj| −
∑
j∈J ′4

|xj| − |zxi|.

We estimate terms in the right hand side separately. By the definition of J1, we have∣∣∣∑
j∈J ′1

xj

∣∣∣ ≥ |λ0| |J ′1| −∑
j∈J ′1

∣∣∣xj − λ0∣∣∣ ≥ |J ′1| (|λ0| − ρ‖x‖2) ≥ (d− 32n3d/n) (|λ0| − ρ‖x‖2),
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where for the last inequality we used that J ′2 = ∅ and that for i 6∈ I3 ∪ I4 one has

|J ′1| = d− |J ′2| − |J ′3| − |J ′4| ≥ d− 32n3d/n.

Using (6), we obtain∑
j∈J ′3

|xj|+
∑
j∈J ′4

|xj| ≤ |J ′3|x∗n2
+ |J ′4|x∗n3

≤ 100|λ0|n3d/n.

Putting together the above estimates, we obtain for large enough d

| 〈Ri(M − zId), x̄〉 | ≥ (d− 32n3d/n)(|λ0| − ρ‖x‖2)− 100|λ0|n3d/n− (5/4)|λ0||z|
≥ |λ0|d/2,

where we used |λ0| − ρ‖x‖2 ≥ (3/4)|λ0|, n3/n ≤ c/ log d, and |z| ≤ d/6. This implies

‖(M − zId)x‖2 ≥
|λ0|d

2

√
3n

4
≥ d
√

3n

5
x∗n3
≥ d
√

3n

5bT
‖x‖2,

which completes the proof.

3.3 Lower bounds on ‖Mx‖2 for vectors from T0

Here we provide lower bounds on the ratio ‖Mx‖2/‖x‖2 for vectors x from T0. Recall
that given ε and k the set Ωk,ε was introduced before Theorem 2.4.

Lemma 3.7. Let C ≤ d ≤ n, where C is an absolute positive constant and x ∈ T0. Let
z ∈ C be such that |z| ≤ d. If 1 < n0 = n1 ≤ p and M ∈ Ωn0,ε0 then

‖(M − zId)x‖2 ≥
√
d/8n ‖x‖2.

If

n0 > p and M ∈
r+1⋂
j=1

Ωpj ,ε0

then

‖(M − zId)x‖2 ≥ min

{√
d/8n,

p
√
n1d

8hr+1

}
‖x‖2.

Proof. We prove the case n0 ≥ p, the other case is similar. Fix x ∈ T0 and fix 0 ≤ i ≤ r
such that x ∈ T0,i and denote m = pi. Fix a permutation σ = σx of [n] such that
x∗j = |xσ(j)| for i ≤ n. Then x∗m > 4dx∗pm. Let

J ` = σ([m]), Jr = σ([pm] \ [m]), and J3 := (J ` ∪ Jr)c.

Then, for sufficiently small a1,

|J ` ∪ Jr| = pm ≤ pn0 ≤ c2.4ε0n/d and |Jr| = (p− 1)|J `| = (p− 1)m.
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Denote by I0 the set of rows having exactly one 1 in J ` and no 1’s in Jr. Lemma 2.7
implies that

|I0| ≥ (1− 2pε0)md ≥ 3md/5.

Let I = I0 \ (J ` ∪ Jr) (so that the submatrix indexed by I × (J ` ∪ Jr) does not intersect
the main diagonal). Then |I| ≥ 3md/5 − pm ≥ md/2 provided that d is large enough.
By definition, for every s ∈ I there exists j(s) ∈ J ` such that

suppRs ∩ J ` = {j(s)}, suppRs ∩ Jr = ∅, and max
i∈J3
|xi| ≤ x∗mp.

Using Lemma 3.5, the fact that s 6∈ J ` ∪ Jr (which implies x∗s ≤ x∗pm), and that j(s) ∈ J `
(which implies |xj(s)| ≥ x∗m > 4dx∗mp), we obtain

|〈Rs(M − zId), x̄〉| =
∣∣∣xj(s) +

∑
j∈J3∩suppRs

xj − zxs
∣∣∣

≥ |xj(s)| − (d− 1)x∗mp − |z|x∗mp ≥ x∗m/2 ≥ ‖x‖2/2hi.

Since the number of such rows is |I| ≥ md/2 = pid/2 we obtain

‖(M − zId)x‖2 ≥
√
pid ‖x‖2/(2

√
2hi).

If i = 0 then pi/2/hi = 1/
√
n. If i ≥ 1 and

√
n ≥

√
2p pi (2+αd), then hi ≤ 2

√
n and

pi/2/hi ≥ pi/2/(2
√
n) ≥ 1/

√
n provided d is large enough. If

√
n ≤

√
2p pi (2+αd) then

hi ≤ 2
√

2p pi (2+αd). Using this and that pi ≤ pr = n1/p, we get

pi/2

hi
≥ pi/2

2
√

2p pi (2+αd)
≥ pr/2

2
√

2p pr (2+αd)
≥ p

2
√

2

√
n1

n2+αd
1

,

which implies the result.

3.4 Nets for steep vectors from T1 ∪ T2

For the rest of steep vectors (i.e., for vectors from T1 ∪ T2) we will use the union bound
together with a covering argument. We first construct nets for “normalized” versions of
the sets Ti and then provide individual probability bounds for elements of the nets. The
natural normalization would be x∗n1

= 1, which we use for T1. However, for individual
probability bounds below and to have the same level of approximation, it is more conve-
nient to use a slightly different normalization for T2. Moreover, since T2 has a constant
jump, we can’t just ignore the tail of the sequence as we will do for vectors in T1. To
overcome this difficulty, and to have a better control on the size of a net, we intersect this
set with the set of almost constant vectors. We set

T ′1 = {x ∈ T1 : x∗n1
= 1} and T ′2 = T ′2 (ρ) = {x ∈ T2 : x∗n2

= 1} ∩ B(ρ),

where 0 < ρ ≤ 1/(d3/2 bT ).
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Lemma 3.8 (Cardinalities of nets). Let d ≤ n be large enough and 0 < ρ ≤ 1/(d3/2 bT ).
Then, for each i = 1, 2, there exists a d−3/2-net Ni in Cn for T ′i in `∞-metric with

|Ni| ≤ exp (dni/4) ,

and for every y ∈ Ni one has y∗j ≤ 1/4 + 1/d3/2 for all j ≥ ni+1.

Proof. The constructions for i = 1 and i = 2 are quite similar, and we carry out the
argument simultaneously for both cases, making adjustments where necessary. For every
x ∈ T ′i (i = 1, 2) fix a permutation σ = σx of [n] such that x∗j = |xσ(j)| for j ≤ n.

The main idea is to split a given vector from T ′i into three parts according to the
behaviour of its coordinates (essentially, parts corresponding to the largest coordinates,
middle sized coordinates, and the smallest coordinates with small adjustment in the case
i = 2) and approximate each part separately. Then we construct nets for vectors with
the same splitting and take the union over all nets. To be more precise, for each x ∈ T ′i
(i = 1, 2) we consider a partition of [n] into three sets B1(x), B2(x), B3(x) corresponding
to x, as follows. If n1 = 1 (i.e., if d2/ log d ≥ a1n) we set B1(x) = ∅. Otherwise, if n1 > 1,
we set B1(x) = σx([n1]). Further, we define sets B2(x), B3(x) (this definition will depend
on i). For i = 1 we set

B2(x) = σx([n2]) \B1(x) and B3(x) = σx([n] \ [n2]).

If i = 2 then since x ∈ B(ρ) there exists λ0(x) such that the cardinality of the set

B0(x) := {j ≤ n : |xj − λ0(x)| ≤ ρ‖x‖2}

is larger than n − n3. Note that by the assumption on ρ and by Lemma 3.5, for every
x ∈ T ′2 we have

ρ‖x‖2 ≤ x∗n2
/(4d3/2) = 1/(4d3/2).

Since n3 < n/2, there exists j0 ≥ n3 such that σx(j0) ∈ B0(x). Therefore,

|λ0(x)| ≤ x∗j0 + ρ‖x‖2 < x∗n2
/4 + 1/(4d3/2) ≤ 1/3.

Using again that x∗n2
= 1 we observe that σx(j) /∈ B0(x) for every j ≤ n2, in particular,

B1(x)∩B0(x) = ∅. Finally, in the case i = 2, we choose an arbitrary subset B3(x) ⊂ B0(x)
of cardinality n− n3 and fix it, and we let B2(x) = [n] \ (B1(x) ∪B3(x)).

Note that if n1 > 1 then for every x ∈ T ′i in both cases i = 1 and i = 2 we have

|B1(x)| = n1, |B2(x)| = ni+1 − n1, and |B3(x)| = n− ni+1.

Thus, given a partition of [n] into three sets B1, B2, B3 with cardinalities |B1| = n1,
|B2| = ni+1 − n1, |B3| = n − ni+1, it is enough to construct a net for vectors x ∈ T ′i
with B1(x) = B1, B2(x) = B2, B3(x) = B3 and then take the union of nets over all such
partitions {B1, B2, B3} of [n]. In what follows, we skip the case n1 = 1 (and B1 = ∅) as
the simplest one, and assume that n1 > 1.

Now we describe our construction. Note that for x ∈ T ′i (i = 1, 2) we have x∗n1
≤

d(3/2)(i−1) and, since x ∈ (T0)c, we also have

x∗1 ≤ (4d)x∗p ≤ (4d)2x∗p2 ≤ . . . ≤ (4d)r+1x∗pr+1 = (4d)r+1x∗n1
≤ d(3/2)(i−1) (4d)r+1 (7)
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(with corresponding adjustment for the case n1 < p). Recall that we deal with the case
n1 > 1 (otherwise, B1(x) = ∅ and we skip the first part). Fix I0 ⊂ [n] with |I0| = n1

(which will play the role of B1). We construct a d−3/2-net NI0 in the set

TI0 :=
{
x ∈ (T0)c : σx([n1]) = B1(x) = I0, x

∗
n1
≤ d(3/2)(i−1), x∗n1+1 = 0

}
.

Clearly, the nets NI0 for various I0’s can be related by appropriate permutations, so
without loss of generality we can assume that I0 = [n1]. First, we construct a partition
of I0. If n1 = n0 ≤ p, let I1 = [n1]. Otherwise, recall that n1 = pr+1 and let

I1 = [p], I2 = [p2] \ [p], I3 = [p3] \ [p2], . . . , Ir+1 = [pr+1] \ [pr].

Then the sets I1, . . . , Ir+1 form a partition of I0 = [n1]. Now, consider the set

T ∗ :=
{
x ∈ T[n1] : σx(Ij) = Ij, j = 1, 2, . . . , r + 1

}
and construct a d−3/2-net N ∗ in T ∗ in the following way. Below we provide the proof for
the case n1 > p (i.e., when we have at least two sets in the partition), the other case is
simpler. By (7), for every x ∈ T ∗, one has ‖PIjx‖∞ ≤ b := d(3/2)(i−1) (4d)r+2−j for every
j ≤ r + 1 (where PI denotes the coordinate projection onto CI). Set

N ∗ := N1 ⊕N2 ⊕ · · · ⊕ Nr+1,

where Nj is a d−3/2-net (in the `∞-metric) of cardinality at most

(3bd3/2)2|Ij | ≤ (4d)2(r+5−j)pj

in the coordinate projection of the complex cube PIj(bB
n
∞). Since d is large enough and

n1 = pr+1, we observe

r+1∑
j=1

2(r + 5− j)pj = 2pr+1

r∑
m=0

(m+ 4)p−m ≤ 10pr+1 = 10n1,

which implies

|N ∗| ≤
r+1∏
j=1

|Nj| ≤ exp(10n1 log(4d)).

To pass from the net for T ∗ to the net for T[n1], let N[n1] be the union of nets constructed
as N ∗ but for arbitrary partition I ′1, ..., I ′r+1 of [n1] with |I ′j| = |Ij|. Using that p =

b(1/5)
√
d/ log dc, we observe that

r∑
j=1

pj log(ep) ≤ pr+1

p− 1
log(ep) ≤ n1 log2 d/

√
d.

Therefore, for large enough d,

|N[n1]| ≤ |N ∗|
r∏
j=1

(
pj+1

pj

)
≤ |N ∗|

r∏
j=1

(ep)p
j

≤ exp(11n1 log d).
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Now we construct a net for the second part of the vector. Fix J0 ⊂ [n] with |J0| =
ni+1 − n1 (which will play the role of B2). We construct a d−3/2-net in the set

TJ0 := {PB2(x)x : x ∈ T ′i , B2(x) = J0, x
∗
ni+1

= 0}.

Since x∗n1
≤ d(3/2)(i−1) for x ∈ T ′i , it is enough to take d−3/2-net KJ0 of cardinality at most

(3d3/2d(3/2)(i−1))2|J0| ≤ (3d)3ini+1

in the coordinate projection of the complex cube PJ0(d
(3/2)(i−1)Bn

∞).
It remains to construct a net for the third part of the vector, corresponding to coor-

dinates in B3. Fix B of cardinality n− ni+1 and consider the set

TB := {PB3(x)x : x ∈ T ′i , B3(x) = B}.

If i = 1 then, by definitions, ‖y‖∞ < d−3/2 for every y ∈ TB, therefore our net, OB, will
consist of 0 only. In the case i = 2, for x ∈ T ′2 and j ∈ B, using Lemma 3.5 and the
condition on ρ, we have that

|xj − λ0(x)| ≤ ρ‖x‖2 ≤ (ρbT /4)x∗n2
≤ 1/(4d3/2) and |λ0(x)| ≤ 1/3.

Take a 3/(4d3/2)-net O in the set {λ ∈ C : |λ| ≤ 1/3} of cardinality at most 2d3 and let

OB := {y ∈ CB : ∃λ ∈ O such that ∀j ∈ B one has yj = λ}.

Clearly, OB is a d−3/2-net for TB.
Finally consider the net

N :=
⋃
{y = y1 + y2 + y3 : y1 ∈ NI0 , y2 ∈ KJ0 , y3 ∈ OB},

where the union is taken over all partitions of [n] into I0, J0, B with |I0| = n1, |J0| =
ni+1 − n1, and |B| = n − ni. Clearly, N is a d−3/2-net for T ′i and, using (4) and (3), we
obtain for large enough d,

|N | ≤
(

n

ni+1

)(
ni+1

n1

)
|NI0| |KJ0| |OB| ≤

(
en

ni+1

)ni+1
(
eni+1

n1

)n1

(3d)11n1+3ini+1+3

≤ exp (7ni+1 log d) ≤ exp (7(ai+1/ai)dni) ≤ exp (dni/4) .

Without loss of generality (by removing unnecessary vectors from N ), we may assume
that every y ∈ N approximates some x ∈ T ′i . This implies that for every y ∈ N one has
y∗j ≤ 1/4 + 1/d3/2 for all j ≥ ni+1, completing the proof.

3.5 Individual probability bounds

To obtain the lower bounds on ‖(M + W )x‖2, where W is a fixed matrix, for vectors x
from our nets, we investigate the behavior of coordinates of (M + W )x, that is of the
inner products 〈Ri(M +W ), x̄〉. One of the tools that we use is Theorem 2.4 together
with Lemma 2.7 applied to the 2m columns of M corresponding to the m biggest and m
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smallest (in the absolute value) coordinates of x with properly chosen m. Then, using
jumps, we show that the inner product of some row Ri(M +W ) with the first part of the
vector and with the second part of the vector cannot be simultaneously large. This will
reduce the set of matrices under consideration to a much smaller set, where it is easier
to obtain a good probability bound. To make our scheme work we will use the following
subdivision of Mn,d.

Given J ⊂ [n] and M ∈Mn,d we denote

I(J,M) = {i ≤ n : |suppRi(M) ∩ J | = 1}

(cf., the definition of I`(M), Ir(M) before Lemma 2.7, clearly, if we split J into J ` and
Jr, then I(J,M) = I`(M) ∪ Ir(M)).

Fix J ⊂ [n]. Given a subset I of [n] and V = {vij} ∈ Mn,d, consider the class

F(I, V ) = {M ∈Mn,d : I(J,M) = I and ∀i ≤ n∀j ∈ J c µij = vij}

(depending on the choice of I such a class can be empty). In words, we first fix the
columns indexed by J c and then fix the set of indices I such that the rows indexed by
I have only one 1 in columns indexed by J . Clearly, Mn,d splits into disjoint union of
classes F(I, V ) over some subset of matrices V in Mn,d and all I ⊂ [n].

Lemma 3.9 (Individual probability). There exist absolute constants C > 1 > ε > 0 such
that the following holds. Let C < d < n, i = 1, 2, and W be a complex n × n matrix.
Assume x ∈ Cn satisfies

x∗ni
≥ 1/2 + x∗j for every j ≥ ni+1.

Denote E(x) :=
{
M ∈Mn,d : ‖(M +W )x‖2 ≤

√
nid/24

}
. Then

P(E ∩ Ω2ni,ε) ≤ exp(−nid/2).

Proof. Fix x satisfying the condition of the lemma. Let σ be a permutation of [n] such
that x∗j = |xσ(j)| for all j ≤ n. Denote m = ni. Let

J ` = σ([ni]) and Jr = σ([n− ni + 1, n]).

Denote J = J ` ∪ Jr. Fix ε > 0 small enough. We assume that a2 < c2.4ε/2. Then
m = ni ≤ n2 ≤ c2.4εn/2d.

Let M ∈ Ω2m,ε. Let the sets I`(M) and Ir(M) be defined as before Lemma 2.7. Since
|J | = 2m ≤ c2.4εn/d, this lemma implies that |I`(M)|, |Ir(M)| ∈ [(1 − 4ε)md, md], in
particular I = I`(M) ∪ Ir(M) satisfy

|I| ∈ [2(1− 4ε)md, 2md]. (8)

Now we split Mn,d into disjoint union of classes F(I, V ) defined at the beginning of this
subsection and note that Ω2m,ε ∩ F(I, V ) 6= ∅ implies that I satisfies (8). Thus, to prove
our lemma it is enough to prove uniform upper bound for such classes, indeed,

P(E(x) ∩ Ω2m,ε) ≤ maxP(E(x) ∩ Ω2m,ε | F(I, V )) ≤ maxP(E(x)| F(I, V )),
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where the first maximum is taken over all classes F(I, V ) with Ω2m,ε ∩ F(I, V ) 6= ∅ and
the second maximum is taking over F(I, V ) with I’s satisfying (8).

Fix such a class F(I, V ) for some I ⊂ [n] with t1 := |I| ∈ [2(1 − 4ε)md, 2md] and
denote the uniform probability on it just by PF , that is

PF(·) = P(· | F(I, V )).

Without loss of generality we assume that I = [t1].
By definition, for matrices M ∈ E(x) we have

‖(M +W )x‖22 =
n∑
i=1

|〈Ri(M +W ), x̄〉|2 ≤ md/576.

Therefore there are at most t0 := md/36 rows Ri = Ri(M + W ) with |〈Ri, x̄〉| ≥ 1/4.
Hence,

|{i ∈ I : |〈Ri, x̄〉| < 1/4}| ≥ t1 − t0.
Denote t := dt1− t0e. The above bound implies that for every M ∈ E(x) there is a set of
indices B(M) ⊂ I such that |B(M)| = t and for every i ∈ B(M) one has |〈Ri, x̄〉| < 1/4.
Thus, denoting

Ωi := {M ∈ F(I, V ) : |〈Ri, x̄〉| < 1/4},
we obtain

PF(E(x)) ≤
∑
B⊂I
|B|=t

PF
(⋂
i∈B

Ωi

)
≤
(
t1
t

)
max
B⊂I
|B|=t

PF
(⋂
i∈B

Ωi

)
≤
(
et1
t0

)t0
max
B⊂I
|B|=t

PF
(⋂
i∈B

Ωi

)
.

(9)

Next for every i ∈ I by F `I (i) and F rI (i) denote the sets

{M ∈ F(I, V ) : i ∈ I`(M)} = {M ∈ F(I, V ) : |suppRi(M)∩J `| = 1, suppRi(M)∩Jr = ∅}

and

{M ∈ F(I, V ) : i ∈ Ir(M)} = {M ∈ F(I, V ) : |suppRi(M)∩Jr| = 1, suppRi(M)∩J ` = ∅}.

Clearly, for every i, the sets F `I (i) and F rI (i) form a partition F(I, V ). We show that
for every i ∈ I either Ωi ⊂ F `I (i) or Ωi ⊂ F rI (i). Indeed, assume that M1 ∈ F `I (i) and
M2 ∈ F rI (i). By the definition of our sets and by the conditions on x, we have

J1 := suppRi(M1) \ J = suppRi(M2) \ J,

and there exist j` ∈ J `, jr ∈ Jr such that

〈Ri(M1), x̄〉 = xj` +
∑
j∈J1

xj and 〈Ri(M2), x̄〉 = xjr +
∑
j∈J1

xj.

Hence,

|〈Ri(M1 +W ), x̄〉|+ |〈Ri(M2 +W ), x̄〉| ≥ |〈Ri(M1 +W ), x̄〉 − 〈Ri(M2 +W ), x̄〉|
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= |xj` − xjr | ≥ x∗ni
− |xjr | ≥ 1/2.

Thus, it is impossible to simultaneously have both

|〈Ri(M1 +W ), x̄〉| < 1/4 and |〈Ri(M2 +W ), x̄〉| < 1/4

and therefore either Ωi ⊂ F `I (i) or Ωi ⊂ F rI (i). This implies for every B ⊂ I with |B| = t,

P
(⋂
i∈B

Ωi

)
≤ max

B0⊂B
PF
( ⋂
i∈B0

F `I (i)
⋂ ⋂

i∈B\B0

F rI (i)
)

= max
B0⊂[t]

PF
( ⋂
i∈B0

F `I (i)
⋂ ⋂

i∈[t]\B0

F rI (i)
)
,

where in the last equality we used permutation invariance.

Claim 3.10. If d is large enough and ε is small enough then for every B0 ⊂ [t] one has

PF
( ⋂
i∈B0

F `I (i)
⋂ ⋂

i∈[t]\B0

F rI (i)
)
≤ e−t/3.

Recall that t1 ∈ [2(1− 4ε)md, 2md], t0 = md/36, and t = dt1 − t0e, so that

t/3− t0 log(et1/t0) ≥ md ((2− 8ε− 1/36)/3− (1/36) log(72e))) ≥ md/2,

provided that ε is small enough. Therefore Claim 3.10 and (9) imply the desired result.

Proof of Claim 3.10. Fix B0 ⊂ [t]. Denote `0 := |B0| and without loss of generality
assume that `0 ≥ t/2. Let q = b`0/2c. To compare the cardinalities of

A :=
⋂
i∈B0

F `I (i)
⋂ ⋂

i∈[t]\B0

F rI (i)

and F(I, V ) we construct a relation R between them as follows. Let M ∈ A. We say that
(M,M ′) ∈ R if M ′ ∈ F(I, V ) can be obtained from M in the following way. Choose a
subset B1 ⊂ B0 of cardinality q. There are(

`0
q

)
≥ 2`0

2
√
`0

such choices. Let i1 < i2 < . . . < iq be the elements of B1. Recall that M ∈ F `I (is) for
every s ≤ q. Let j1, . . . , jq be elements of J ` such that M has ones on positions (is, js) for
s ≤ q. Choose a subset B2 ⊂ Ir(M) of cardinality q. There are(

|Ir(M)|
q

)
≥
(
d(1− 4ε)mde

q

)
such choices. Let v1 < v2 < . . . < vq be elements of B2. Let w1, . . . , wq be elements of Jr

such that M has ones on positions (vs, ws) for s ≤ q. Let M ′ ∈ F(I, V ) be obtained from
M by substituting ones with zeros on places (is, js) and (vs, ws) and substituting zeros
with ones on places (is, ws) and (vs, js) for all s ≤ q. By construction we have

|R(A)| ≥ 2`0

2
√
`0

(
d(1− 4ε)mde

q

)
.
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Now we estimate the cardinalities of preimages. Let M ′ ∈ R(A). Then the set B3 =
B0 ∩ Ir(M ′) must have cardinality q. Write B3 = {i1, i2, . . . iq} with i1 < i2 < . . . < iq.
Let w1, . . . , wq be elements of Jr such that M ′ has ones on positions (is, ws) for s ≤ q. If
(M,M ′) ∈ R, M has to have zeros on those positions. We now compute how many such
matrices M ∈ F(I, V ) can be constructed, that is, how many possibilities to have ones in
rows is, s ≤ q, exist. Since M ′ ∈ R(A), we have

|I`(M ′) \B0| = |I`(M ′)| − (|B0| − q) ≤ md.

Choose B4 ⊂ I`(M ′) \ B0 of cardinality q. Write B4 = {v1, v2, . . . , vq} with v1 < v2 <
. . . < vq. Let j1, . . . , jq be elements of Jr such that M ′ has ones on positions (vs, js) for
s ≤ q. Then M is obtained from M ′ by substituting zeros with ones on places (is, js) and
(vs, ws) and substituting ones with zeros on places (is, ws) and (vs, js) for all s ≤ q. Thus,
|R−1| is bounded above by the number of choices for the set B4, that is |R−1(A)| ≤

(
md
q

)
.

Using that for every integers N and s with N − s > q one has(
N
q

)(
N−s
q

) =
N...(N − s+ 1)

(N − s)...(N − s− q + 1)
≤
(

N − s+ 1

N − s− q + 1

)s
≤ exp

(
sq

N − s− q + 1

)
,

that q = b`0/2c ≤ t/2, t ≤ t1 − t0 ≤ (2− 1/36)md, and Claim 2.3 we observe that

|A|
|F(I, V )|

≤ 2
√
`0

2`0
exp

(
q 4εmd

(1− 4ε)md− q + 1

)
≤
√

2t

2t/2
exp

(
2εtmd

(1− 4ε)md− t/2

)

≤
√

2t

2t/2
exp

(
144εt

1− 288ε

)
≤ e−t/3,

provided that ε is small enough and d (hence t) is large enough.

3.6 Proof of Theorem 3.2

We are ready to complete the proof.

Proof of Theorem 3.2. Recall that d is large enough, ε0 =
√

(log d)/d, p = b1/5ε0c, and
let ε be a small positive constant from Lemma 3.9. In most formulas below we assume
that n0 > 1, otherwise T0 = ∅ and the proof is easier. We make corresponding remarks
in the text. Below we deal with matrices from

Ω0 =
r+1⋂
j=2

Ωpj ,ε0 ∩ Ωk1,ε0 ∩
2⋂
i=1

Ω2ni,ε,

where k1 = min{n0, p} and where we do not have the first intersection if n1 = n0 ≤ p and
we do not have the second term if n1 = n0 = 1.

If x ∈ T0 and M ∈ Ω0 then Lemma 3.7 implies that

‖(M − zId)x‖2 ≥ min

{√
d/8n,

p
√
n1d

8hr+1

}
‖x‖2.
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We turn now to the case x ∈ Ti for i = 1, 2. Let

Ei :=
{
M ∈Mn,d : ∃ x ∈ Ti such that ‖(M − zId)x‖2 ≤

√
nid

25 bi
‖x‖2

}
,

where b1 = hr+1 and b2 = d3/2hr+1 in the case n0 > 1 and b2 = d
√
n in the case n0 = 1. By

Lemma 3.5 for x ∈ Ti one has ‖x‖2 ≤ bix
∗
ni

. Thus, for M ∈ Ei there exists x = x(M) ∈ Ti
with

‖(M − zId)x‖2 ≤
√
nid

25
x∗ni

.

Normalizing x ∈ Ti, so that x∗ni
= 1 (that is, x ∈ T ′i ), we observe that there exists y = y(x)

from the net constructed in Lemma 3.8 with y∗ni
≥ 1 − d−3/2 > 3/4, and y∗j ≤ 1/4 for

j > ni+1 and such that

‖x− y‖2 ≤
√
n ‖x− y‖∞ ≤ d−3/2

√
n ≤ 1

600

√
ni/d.

Therefore, using that ‖M‖ = d and |z| ≤ d, we have

‖(M − zId)y‖2 ≤ ‖(M − zId)x‖2 + (‖M‖+ |z|)‖x− y‖2 ≤
√
nid/24.

Now we use the union bound over vectors in the net together with individual probability
bounds. Lemmas 3.9 and 3.8 imply for i = 1, 2,

P (Ei ∩ Ω0) ≤ exp (−nid/4) .

Combining all cases we obtain that for x ∈ T one has ‖(M − zId)x‖2 ≤ A‖x‖, where

A := min

( √
d

2
√

2n
,

√
n1d

25b1
,

√
n2d

25b2

)
,

with probability at most p0 := P (Ωc
0) + exp (−n1d/4) + exp (−n2d/4).

We first estimate A. If n0 = n1 = 1 then T0 = ∅, d2 > n, and hr+1 =
√
n. Therefore

√
n1d

25b1
=

√
d

25
√
n

and

√
n2d

25b2
≥
√
a2

30d
,

which implies that A ≥ c/d in this case. If n1 > 1 then n1d ≥ a1n log d/d ≥ a2n/d ≈ n2.
Therefore, in the case 1 < n0 = n1 ≤ p, one has

A ≥
√
a2n/(26d3/2hr+1) ≥

√
a2n/(40d3

√
log d),

while in the case n0 > p, using that by (5), n1 ≤ a1
√

log d n/5d3/2,

A ≥
√
a2n

26d3/2hr+1

≥
√
a2n

26
√

3p d3/2n2+αd
1

≥
√
a2n d

3+3αd/2

3
√
p d3/2a31n

2+αd
≥
√
a2 d

5/4 log2 d

3a31n
3/2+αd

.
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We now estimate the probability p0 using Theorem 2.4. Recall that c1, c2, ... always
denote (sufficiently small) positive absolute constants. First note that Theorem 2.4 implies

p1 :=
2∑
i=1

(
P
(
Ωc

2ni,ε

)
+ exp (−nid/4)

)

≤
2∑
i=1

(
exp

(
−ε

2dni
4

log

(
ec2.4εn

2dni

))
+ exp

(
−nid

4

))
≤ exp (−c1n1d) .

In the case n1 = n0 = 1 we have a1n ≤ d2/ log d and hence p1 ≤ exp (−c2
√
n). In the case

n1 > 1 we have a1n log d ≥ d2, hence

n1d ≥ n0d ≥ (a1n log d)/d ≥
√
a1n log d,

thus again p1 ≤ exp (−c2
√
n).

In the case 1 < n0 = n1 ≤ p we have k1 = n1, a1n log d ≥ d2, and a1n log3/2 d ≤ d2.5.
Therefore, by Theorem 2.4,

p2 := P
(
Ωc
k1,ε0

)
≤ exp

(
−n1 log d

8
log

(
ec2.4n log d

d3/2n1

))
≤ exp

(
−c3 log2 n

)
.

Recall that in the definition of Ω0 we do not have the first intersection if n1 = n0 ≤ p and
we do not have the second term if n1 = n0 = 1. This implies that in the case n1 ≤ p we
have p0 ≤ p1 + p2 ≤ exp

(
−c4 log2 n

)
.

Finally, in the case n1 > p, we have k1 = p, r ≥ 1, and, c4n ≥ d5/2/ log3/2 d. Therefore,
by Theorem 2.4,

p3 :=
r+1∑
i=2

P
(
Ωc
pj ,ε0

)
+ P

(
Ωc
k1,ε0

)
≤

r+1∑
i=1

exp

(
−p

i log d

8
log

(
ec2.4ε0n

dpi

))

≤ exp

(
−p log d

9
log

(
ec2.4ε0n

dp

))
≤ exp

(
−c5

√
d log d log n

)
.

Since p0 ≤ p1 + p2 + p3, the desired estimate follows.

4 Bounds for essentially non-constant vectors and

completing the proof of the main theorem

In this section, we complete our proof of the lower bound for the smallest singular value
of a random matrix uniformly distributed in Mn,d, shifted by z Id for a fixed z ∈ C. To
better separate various techniques used in this paper, we prefer to give an “autonomous”
proof of the result, conditioned on a rather general assumption about the structure of
the kernel of our random matrix. This assumption, for a specific choice of parameters,
is actually proved in Section 3 (see Remark 3.3), so the argument presented here implies
the main result of the paper regarding the magnitude of sn. We provide the details in
Section 4.4.
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We start by introducing notations. Fix an n× n (complex) matrix W . Further, take
positive parameters κ, ρ ∈ (0, 1), and δ ∈ (0, 1) (the parameters may and in fact will
depend on n and d, moreover, we take δ very close to zero). Define the subset S(ρ, δ) of
the unit sphere in Cn by

S(ρ, δ) :=
{
x ∈ Cn : ‖x‖2 = 1 and ∀λ ∈ C |{i ≤ n : |xi − λ| > ρ}| > δn

}
.

Note that for δ = n3/n ≈ a3/ log d one has

S(ρ, δ) = (Cn \ B(ρ)) ∩ {x ∈ Cn : ‖x‖2 = 1} .

Further, define two events

E4 = E4(W,κ, ρ, δ) :=
{
M ∈Mn,d : ∀ x ∈ Cn with ‖x‖2 = 1 and

min(‖(M +W )x‖2, ‖x̄(M +W )‖2) ≤ κ one has x ∈ S(ρ, δ)
}
,

and
E4.1 = E4.1(W,κ) :=

{
M ∈Mn,d : sn(M +W ) ≤ κ

}
.

The parameters W, ρ, δ, κ are usually clear from the context, and we will simply write E4
and E4.1 to denote the respective events.

Theorem 4.1. There exist positive absolute constants c, C0, and C with the following
property. Let δ ∈ (0, 1), ρ ∈ (0, 1), κ := ρ2/16, and

C ≤ d ≤ cδ

log(e/δ)
n.

Further, assume that W is a complex matrix such that the event E4 = E4(W,κ, ρ, δ) has
probability at least 1− 1/n2. Then

P(E4.1) ≤
C0

√
log(e/δ)

δ3/2
1√
d
.

One can describe the structure of the above theorem as follows: provided that for a
random matrix M uniformly distributed in Mn,d, vectors “close” to the kernel of M are
unstructured (i.e., not almost constant), the smallest singular value of M is at least κ with
large probability (later we choose κ to be a (negative) constant power of n). Theorem 4.1
should be compared with the recent results of [11, 4] discussed in the introduction. The
high-level structure of the theorem is in many respects similar to [11, Lemmas 6.2, 6.3],
where invertibility properties of the random matrix are also derived conditioned on a
“good” event which encapsulates properties of “almost null” vectors of the matrix. In
[11], the linear spans of the matrix rows of M are studied with the help of an auxiliary
collection of random vectors (denoted as u(i1,i2)), which are defined on a certain “good”
event, are measurable with respect to the sigma-algebra generated by the submatrix M i1i2

and possess several specific structural properties (see [11, Definition 6.1]). Estimates of
the smallest singular value are then reduced to bounding the inner product of u(i1,i2)

with the difference of i1-st and i2-nd rows, for all pairs of indices i1, i2 [11, Lemma 6.2].
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Existence of such random vectors u(i1,i2) is verified in [11] by considering the singular
vectors of matrices M corresponding to their smallest singular value. This creates an
additional level of abstraction, which we avoid in this paper by studying the singular
vectors directly. More specifically, given a class of matrices in Mn,d sharing the same
(n− 2)× n submatrix, we first choose a singular vector corresponding to a matrix with a
small sn, then we use it for all matrices in the class to study invertibility (see Lemma 4.7).

Our intention was to extract a linear algebraic part of the argument which is indepen-
dent of the particular model of randomness and to present it in a self-contained way (see
Subsection 4.1 below). Estimates for the smallest singular value are connected to distance
estimates involving pairs of rows rather than the distance of a single row to the span of the
remaining rows (see [36, Lemma 3.5]). We expect that those linear-algebraic arguments
may be used in other random models of matrices with fixed row- or columns-sums. The
relations of Subsection 4.1 are not explicitly given in [11], although proofs of our lemmas
use arguments similar to those empoyed in [11, Lemma 6.2], as well as in [36].

4.1 Some relations for random square matrices

In this subsection we present two lemmas – one probabilistic and the other linear alge-
braic – which work for a wide class of square matrices. The next lemma is analogous
to [36, Lemma 3.5]. The proof follows the same lines, and we include it for the sake of
completeness.

Lemma 4.2. Fix parameters ρ, δ, δ0, ε > 0, and assume that 0 ≤ δ0 < δ ≤ 1 − 1/n.
Further, let

K0 ⊂ K := {(i, j) : 1 ≤ i 6= j ≤ n}

be such that |K0| ≥ (1−δ0)n(n−1). Let A be an n×n random matrix on some probability
space such that

∑n
i=1Ri(A) = v a.s. for a fixed vector v ∈ Cn. Then

P
{

inf
x∈S(ρ,δ)

‖x̄A‖2 ≤ ερ
}

≤ 1

n2(δ − δ0)
∑

(i,j)∈K0

P
{

dist
(
Ri(A), span

{
{Rk(A)}k 6=i,j, Ri(A) +Rj(A)

})
< ε
}
.

Proof. In this proof for i ≤ n we denote Ri(A) just by Ri. Without loss of generality we
assume that

∑n
i=1Ri = v everywhere on the probability space. For each pair (i, j) ∈ K,

set
dij = dij(A) := dist

(
Ri, span

{
{Rk}k 6=i,j, Ri +Rj

})
.

Note that dij = dist
(
Ri, span

{
{Rk}k 6=i,j, v

})
. Since x̄A =

∑n
k=1 x̄kRk, for every (i, j) ∈ K

we have

‖x̄A‖2 =
∥∥∥(x̄i − x̄j)Ri + x̄jv +

∑
k 6=i,j

(x̄k − x̄j)Rk

∥∥∥
2
≥ |x̄i − x̄j|dij.

The above relation is the principal point of the proof. Now, if “many” distances dij are
“large”, then, since the vector x is essentially non-constant, we can find a pair (i, j) such
that both |x̄i − x̄j| and dij are large, and we get a lower bound ‖x̄A‖2 > ερ. Thus, we

29



can estimate the probability of the considered event in terms of probability that “not so
many” distances dij are large which is in turn done via Markov’s inequality. Below is a
rigorous argument.

Let K1 := {(i, j) ∈ K0 : dij ≥ ε}. Denote by E the event that |K1| > (1 − δ)n2 − n.
Note that if M ∈ Ec, we have

|{(i, j) ∈ K0 : dij < ε}| ≥ |K0| − (1− δ)n2 + n ≥ (δ − δ0)n2 + δ0n ≥ (δ − δ0)n2.

Therefore, using Markov’s inequality,

P(Ec) ≤ E(|{(i, j) ∈ K0 : dij < ε}|)
n2(δ − δ0)

=
1

n2(δ − δ0)
∑

(i,j)∈K0

P{dij < ε}.

Now, we condition on the event E . Fix a vector x ∈ S(ρ, δ). By the definition the set

K2 = K2(x) := {(i, j) ∈ [n]× [n] : |x̄i − x̄j| > ρ}

contains at least δn2 elements. Clearly, K2 ⊂ K. Thus we have K1 ∪K2 ⊂ K and

|K1|+ |K2| > δn2 − n+ n2(1− δ) = n(n− 1) = |K|.

Hence K1 ∩K2 6= ∅. Choose (i0, j0) ∈ K1 ∩K2. Then

‖x̄A‖2 ≥ |x̄i0 − x̄j0|di0j0 > ρ ε.

Summarizing, we have shown that

P
{

inf
x∈S(ρ,δ)

‖x̄A‖2 ≤ ερ
}
≤ P(Ec) ≤ 1

n2(δ − δ0)
∑

(i,j)∈K0

P{dij < ε}.

The above lemma will be used to reduce the question of bounding the smallest singular
value to estimating distances between rows or columns of our random matrix and certain
linear subspaces of Cn. In order to estimate the distance between the first row R1 and
span {R1 + R2, R3, R4, . . . , Rn} of a random matrix, we will need the following lemma.
Its proof uses similar linear algebraic arguments as an earlier work [11] (see Lemma 6.2
there). However Lemma 4.3 significantly differs from [11, Lemma 6.2 there] and works for
a general square matrix. We apply it later with v being the vector at which sn(A) attains
(see the definition of f(A) below).

Lemma 4.3. Let A be an n × n complex matrix (either deterministic or random) and
denote Ri := Ri(A), i ≤ n. Further, let A1,2 be the (n−2)×n matrix obtained by removing
the first two rows of A, and let Y ⊂ Cn be the linear span of R1 + R2, R3, R4, . . ., Rn.
Then for every unit complex vector v ∈ Cn we have

dist
(
R1, Y

)
≥ sn(A) |〈R̄1, v〉|
sn(A) + ‖A1,2v‖2 + |〈R̄1 + R̄2, v〉|

.
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In particular, if a unit complex vector v ∈ Cn satisfies

‖A1,2v‖2 ≤ sn(A) and |〈R̄1 + R̄2, v〉| ≤ 2sn(A)

then
dist
(
R1, Y

)
≥ |〈R̄1, v〉|/4.

Proof. Let x be a vector from Y , i.e. x = b(R1+R2)+
∑n

i=3 aiRi for some b, a3, a4, . . . , an ∈
C. Fix a unit vector v ∈ Cn. We clearly have

‖R1 − x‖2 ≥ |〈R1 − x, v̄〉| ≥ |〈R1, v̄〉| − |〈x, v̄〉|. (10)

Consider the vector y := (1− b,−b,−a3, . . . ,−an). Then, R1 − x = ATy, whence

‖R1 − x‖2 ≥ sn(AT )‖y‖2 = sn(A)‖y‖2.

Therefore, using the Cauchy–Schwarz inequality, we obtain

|〈x, v̄〉| ≤ |b||〈R1 +R2, v̄〉|+
( n∑
i=3

|ai|2
) 1

2
( n∑
i=3

|〈Ri, v̄〉|2
) 1

2

≤ ‖y‖2
(
|〈R1 +R2, v̄〉|+ ‖A1,2v‖2

)
≤ 1

sn(A)
‖R1 − x‖2

(
|〈R1 +R2, v̄〉|+ ‖A1,2v‖2

)
.

This, together with (10), implies that

‖R1 − x‖2 ≥
sn(A) |〈R1, v̄〉|

sn(A) + |〈R1 +R2, v̄〉|+ ‖A1,2v‖2
.

The lemma follows by taking the infimum over x ∈ Y .

We would like to note that for a unit vector v0, orthogonal to the span of R1 +R2, R3,
R4, . . ., Rn, we have A1,2v̄0 = 0 and 〈R1 +R2, v0〉 = 0, so the lemma applied to v̄0 gives a
trivial bound dist

(
R1, Y

)
≥ |〈R1, v0〉|. Thus Lemma 4.3 can be viewed as a “continuous”

version of this trivial estimate.

4.2 Proof of Theorem 4.1

For the rest of the section, we fix a function f on the set of n×n complex matrices, which
associates with every matrix A a complex vector f(A) such that ‖Af(A)‖2 = sn(A). Note
that in general the corresponding singular vector is not uniquely defined, so we fix some
vector f(A) satisfying the above condition. Since we work with shifted matrices, we also
adopt another notation: given a (fixed) complex matrix W , by fW we denote the function
on the set of n× n matrices defined by fW (A) := f(A+W ).

Fix parameters κ, ρ > 0, δ ∈ (1/
√
d, 1) and a complex matrix W (note that for

δ ≤ 1/
√
d the bound for probability in Theorem 4.1 becomes greater than one, hence the

theorem holds automatically). For the rest of the section, we assume that the parameters
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are given, and will specify each time what restrictions on the numbers κ, ρ, δ, d and the
matrix W we impose. Further, define

ε1 = ε1(δ) := δ/(C1 log(2e/δ),

where C1 is a sufficiently large absolute constant (it is enough to take the constant from
Proposition 2.6 multiplied by 9). Set α := δ/(9ε1d) and β := δ/2. Note that with such a
choice of α, β we have α ≥ (C log(e/β))/d and, using that δ > 1/

√
d and that d is large

enough, we also have α ≤ min(β, 1/4). In other words the conditions of Proposition 2.6 are
satisfied. Let Ω0 = Ω0(α, β) and Ω1(ε1) be the events defined in and after Proposition 2.5.
Define the event

E0 = E0(W,κ, ρ, δ) := Ωc
0 ∩ Ω1(ε1) ∩ E4.

In words, E0 corresponds to the set of matrices in Mn,d without large zero submatrices,
with almost no overlap between supports of any two rows or columns, and with the
structural assumption on vectors “close” to the kernel of the respective shifted matrix.
Note that under assumptions of Theorem 4.1, by Propositions 2.5 and 2.6 we have

P(Ec0) ≤ 2n−2 (11)

(the assumption on d in Theorem 4.1 comes from d ≤ ε1n/6 needed in Propositions 2.5).

The next lemma shows, roughly speaking, that there are relatively few matrices M ∈
Mn,d such that the corresponding singular vector fW (M) is “almost constant” when
restricted to supports of a large number of rows of M . It is similar to Lemmas 4.15 and
4.16 in [24] and to Lemma 6.2 in [11].

Lemma 4.4. Assume that d is large enough. For every pair of indices ` 6= i define the
event

E `,i4.4 :=
{
M ∈ E4.1 ∩ E0 : ∃λ ∈ C such that∣∣{j ∈ supp(R`(M) +Ri(M)) : |(fW (M))j − λ| ≤ ρ/4}

∣∣ > 2(1− 2ε1)d
}
.

Then for every (fixed) ` ≤ n one has∑
i: i 6=`

|E `,i4.4| ≤
δn

9ε1d
|Mn,d|.

Proof. Without loss of generality, we can assume that ` = 1. Let E denote the event{
M ∈ E4.1 ∩ E0 : ∃λ ∈ C with∣∣{j ∈ suppR1(M) : |(fW (M))j − λ| ≤ ρ/2}

∣∣ > (1− 4ε1)d
}
.

Note that E1,i4.4 ⊂ E for every i ≥ 2. Indeed if M ∈ E1,i4.4 for some i ≥ 2, then there exists
λ ∈ C such that∣∣{j ∈ supp(R1(M) +Ri(M)) : |(fW (M))j − λ| ≤ ρ/4}

∣∣ > 2(1− 2ε1)d.
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Therefore∣∣{j ∈ suppR1(M) : |(fW (M))j − λ| ≤ ρ/2}
∣∣ ≥ ∣∣{j ∈ suppR1(M) : |(fW (M))j − λ| ≤ ρ/4}

∣∣
≥
∣∣{j ∈ supp(R1(M) +Ri(M)) : |(fW (M))j − λ| ≤ ρ/4}

∣∣− ∣∣supp(Ri(M)
∣∣

≥ (1− 4ε1)d,

which means that M belongs to E . For every M ∈ E , fix a number λ0 = λ0(M) ∈ C such

that ∣∣{j ∈ suppR1(M) : |(fW (M))j − λ0| ≤ ρ/2
}∣∣ > (1− 4ε1)d. (12)

Now, take any M ∈ E and let

JM := {j ≤ n : |(fW (M))j − λ0| ≤ ρ}.

Since M ∈ E0 ⊂ E4 (i.e., all vectors “close” to the kernel of M + W are essentially
non-constant) and ‖(M +W )fW (M)‖2 ≤ κ, we have |JM | ≤ (1− δ)n. Let also

IM := {i ≤ n : |suppRi(M) ∩ JM | ≥ (1− 4ε1)d}.

We first show that |IM | ≤ δn/(9ε1d). Assume the opposite. Choose a set Ĩ ⊂ IM with

|Ĩ| = dδn/(9ε1d)e. Clearly,

∀(i, j) ∈ Ĩ ×
(
∪i∈Ĩ suppRi(M)

)c
one has µij = 0,

and∣∣( ∪i∈Ĩ suppRi(M)
)c∣∣ ≥ n− |JM | −

∣∣ ∪i∈Ĩ suppRi(M) \ JM
∣∣ ≥ δn− 4ε1d| Ĩ| ≥ δn/2.

This contradicts the assumption M ∈ Ωc
0 (no large zero-submatrices).

By the definition of IM , for every i ∈ IcM ,

|{j ∈ suppRi(M) : |(fW (M))j − λ0| > ρ}| ≥ 4ε1d.

This implies for every i ∈ IcM and for every λ satisfying |λ− λ0| ≤ 3ρ/4,

|{j ∈ supp(R1(M) +Ri(M)) : |(fW (M))j − λ| > ρ/4}| ≥ 4ε1d.

Using the triangle inequality together with (12), we also observe that for every λ satisfying
|λ− λ0| > 3ρ/4,

|{j ∈ supp(R1(M) +Ri(M)) : |(fW (M))j − λ| > ρ/4}|
≥ |{j ∈ supp(R1(M) +Ri(M)) : |(fW (M))j − λ0| ≤ ρ/2}|
≥ |{j ∈ suppR1(M) : |(fW (M))j − λ0| ≤ ρ/2}|
≥ (1− 4ε1)d ≥ 4ε1d.

Thus for every i ∈ IcM and every λ ∈ C we obtain∣∣{j ∈ supp(R1(M) +Ri(M)) : |(fW (M))j − λ| ≤ ρ/4
}∣∣ ≤ 2d− 4ε1d.
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This proves that for every M ∈ E and i ∈ IcM one has M ∈ E \ E1,i4.4. Therefore,

n∑
i=2

|E1,i4.4| =
n∑
i=2

∑
M∈E

χ{M∈E1,i4.4}
=
∑
M∈E

n∑
i=2

χ{M∈E1,i4.4}
≤
∑
M∈E

|IM | ≤
δn |E|
9ε1d

.

Remark 4.5. Note that by Proposition 2.5 for every i 6= ` and every matrix M ∈ E0
one has |suppRi(M) ∩ suppR`(M)| ≤ 2ε1d. Therefore, for every i 6= ` and every matrix
M ∈ (E4.1 ∩ E0) \ E `,i4.4, one has

∀λ ∈ C
∣∣{j ∈ suppR`(M)4 suppRi(M) : |(fW (M))j − λ| > ρ/4}

∣∣
> |suppRi(M)4 suppR`(M)| − 2d+ 4ε1d ≥ 2ε1d,

where 4 denotes the symmetric difference of sets.

The next observation is a direct consequence of Lemma 4.2 and Lemma 4.4.

Corollary 4.6. Assume that 0 < δ < 1, and that d satisfies the assumptions of Lemma 4.4.
Then there exists a pair (`, j) ∈ [n]× [n] with ` 6= j such that

|E `,j4.4| ≤
1

4ε1d
|Mn,d|. (13)

Moreover, setting RW
i = RW

i (M) := Ri(M + W ) for all i ≤ n and M ∈ Mn,d, we have
for any ε > 0,∣∣{M ∈ E4.1 ∩ E0 : inf

x∈S(ρ,δ)
‖x̄(M +W )‖2 ≤ ερ

}∣∣
≤ 2
∣∣{M ∈ E4.1 ∩ E0 : dist

(
RW
` , span

{
{RW

k }k 6=`,j, RW
` +RW

j

})
< ε
}∣∣/δ.

Proof. Denote K := {(`, j) : 1 ≤ ` 6= j ≤ n}. Set δ0 = δ/2. Lemma 4.4 implies that
for every fixed ` ≤ n there are at least (1 − δ0)(n − 1) choices of j 6= ` satisfying (13).
Therefore, the subset

K0 :=
{

(`, j) ∈ K : (`, j) satisfies (13)
}

has cardinality at least (1− δ0)n(n− 1). Choosing a pair (`, j) ∈ K0 with maximal∣∣{M ∈ E4.1 ∩ E0 : dist
(
RW
` , span

{
{RW

k }k 6=`,j, RW
` +RW

j

})
< ε
}∣∣

and applying Lemma 4.2 to the random matrix A = M + W , where M is uniformly
distributed in E4.1 ∩ E0, we obtain the desired result.

Corollary 4.6 reduces the question of bounding the infimum over “non-constant” vec-
tors to calculating the distance between a particular matrix row and corresponding linear
span, and additionally makes sure that the singular vector fW (M) is essentially non-
constant when restricted to the union of the supports of j-th and `-th rows. The latter
allows to apply Littlewood–Offord–type anti-concentration statements. Note that, instead
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of bounding the cardinality of the event E4.1 directly, we will bound the cardinality of the
intersection of E4.1 with a “good” event E0, and then use the fact that Ec0 is small (under
the assumptions of the theorem).

We are now ready to describe a partition of the event Ωc
0 ∩Ω1(ε1), which will be used

in the proof of Theorem 4.1. Fix d, parameters ρ, δ and complex matrix W . Let κ be
defined as in Theorem 4.1 and assume that all the conditions of the theorem (including
assumptions on the parameters) are satisfied. Let the pair (`, j) be given by Corollary 4.6.
From now on, to simplify notation, we will assume that (`, j) = (1, 2). We would like to
emphasize that the proof below can be carried for any admissible pair (`, j) by simply
adjusting indices.

Consider a set of (n− 2)× n matrices

H := {M1,2 : M ∈ Ωc
0 ∩ Ω1(ε1)}.

For every H ∈ H, let CH be the equivalence class of matrices sharing the same (n−2)×n
submatrix, that is

CH := {M ∈ Ωc
0 ∩ Ω1(ε1) : M1,2 = H}.

Note that for M1,M2 ∈ CH one has R1(M1) + R2(M1) = R1(M2) + R2(M2), that is the
intersection and the union of the supports of the first two rows is the same for all matrices
in the class:

S1 = S1(H) := suppR1(M1) ∩ suppR2(M1) = suppR1(M2) ∩ suppR2(M2)

and

S2 = S2(H) := suppR1(M1) ∪ suppR2(M1) = suppR1(M2) ∪ suppR2(M2).

In particular, |CH | =
(
2m
m

)
, where m = m(H) = |S2\S1| is the cardinality of the symmetric

difference of the supports of the first two rows for any matrix in CH . Observe that, because
our matrices belong to Ω1(ε1), we have m(H) ≥ 2(1−ε1)d. In every class CH , fix a subset

C̃H ⊂ CH of matrices satisfying

∀M̃ ∈ C̃H ∀M ∈ CH \ C̃H : sn(M̃ +W ) ≤ sn(M +W ) and
1

2
√
ε1d
≤ |C̃H |
|CH |

≤ 1√
ε1d

.

Thus, C̃H is the set of matrices M̃ delivering a “small” minimal singular value of M̃ +W ,
compared to other matrices in CH . Denote E4.4 := E1,24.4 and define

H1 := {H ∈ H : C̃H ∩ Ec4.1 6= ∅}, H2 := {H ∈ Hc
1 : C̃H ⊂ Ec4 ∪ E4.4}, H3 := Hc

1 \ H2.

Roughly speaking, the set H1 is the collection of all (n−2)×n submatrix such that a vast
majority of the corresponding shifted matrices have “large” smallest singular value. The
set H2 is the set of all submatrices not in H1 such that the corresponding shifted matrices
have “bad” characteristics in regard to their “almost null” vectors as well as the vectors
delivering the smallest singular value. Finally, H3 is all the remaining submatrices. It is
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the third category which is the most interesting for us and which will require Littlewood–
Offord type anti-concentration arguments.

Consider the partition

Ωc
0 ∩ Ω1(ε1) =

⋃
H∈H1

CH ∪
⋃

H∈H2

CH ∪
⋃

H∈H3

CH . (14)

We will analyze separately each of the sets
⋃
H∈Hi

CH , i ≤ 3. First we show that for
i = 1, 2 the respective unions have a small cardinality.

By the definition of E4.1, for every H ∈ H1 there exists a matrix M ∈ C̃H with
sn(M +W ) > κ. Hence, by the definition of C̃H ,

|{M ∈ CH : sn(M +W ) ≤ κ}| ≤ |C̃H | ≤
1√
ε1d
|CH |,

which implies ∣∣∣ ⋃
H∈H1

CH ∩ E4.1
∣∣∣ ≤ 1√

ε1d
|Mn,d|. (15)

Further, by the definitions of C̃H and H2, the assumptions of Theorem 4.1, and Corol-
lary 4.6, we have∣∣∣ ⋃

H∈H2

CH

∣∣∣ ≤ 2
√
ε1d

∑
H∈H2

|C̃H | ≤ 2
√
ε1d |Ec4 ∪ E4.4| ≤ 2

√
ε1d
(
n−2 +

1

4ε1d

)
|Mn,d|. (16)

Regarding the set H3, we prove the following lemma.

Lemma 4.7. Denoting RW
i = RW

i (M) := Ri(M+W ), for i ≤ n and M ∈Mn,d, we have∣∣∣{M ∈ ⋃
H∈H3

CH : dist
(
RW

1 , span
{
{RW

k }k>2, R
W
1 +RW

2

})
< ρ/16

}∣∣∣ ≤ C(ε1d)−1/2 |Mn,d|,

where C > 0 is a universal constant.

Proof. The set H3 can be equivalently written as

{H ∈ H : C̃H ⊂ E4.1 and C̃H ∩ E4 ∩ Ec4.4 6= ∅}.

Fix any H ∈ H3 and a matrix M̃ ∈ C̃H ∩ E4 ∩ Ec4.4. For every M ∈ CH \ C̃H we have

‖(M +W )1,2fW (M̃)‖2 = ‖(M̃ +W )1,2fW (M̃)‖2 ≤ sn(M̃ +W ) ≤ sn(M +W )

and

|〈(R̄1(M̃ +W )) + (R̄2(M̃ +W )), fW (M̃)〉|
≤ 2‖(M̃ +W )fW (M̃)‖2 = 2sn(M̃ +W ) ≤ 2sn(M +W ).

This and Lemma 4.3 applied to the matrix M +W imply that for at least

|CH | − |C̃H | ≥
(
1− 1/

√
ε1d
)
|CH |

matrices M ∈ CH , one has

dist
(
RW

1 (M), span
{
{RW

k (M)}k>2, R
W
1 (M) +RW

2 (M)
})
≥ |〈(R̄1(M +W )), fW (M̃)〉|/4.

The following claim, whose proof we postpone, completes the proof of the lemma.
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Claim 4.8. With the above notation, for every H ∈ H3 and M̃ ∈ C̃H ∩ E4 ∩ Ec4.4 we have

|{M ∈ CH : |〈(R̄1(M +W )), fW (M̃)〉| < ρ/4}| ≤ c(ε1d)−1/2 |CH |

for some universal constant c > 0.

Proof of Theorem 4.1. Recall that E0 = Ωc
0 ∩Ω1(ε1)∩ E4 and that κ = ρ2/16. By (11) we

have
|E4.1| ≤ |E4.1 ∩ E0|+ |Ec0 | ≤ |E4.1 ∩ E0|+ 2n−2|Mn,d|.

Next, using the definitions of the events E4.1, E4, and E0, we observe that

|E4.1 ∩ E0| =
∣∣{M ∈ E4.1 ∩ E0 : inf

‖x‖2=1
‖x̄(M +W )‖2 ≤ ρ2/16}

∣∣
=
∣∣{M ∈ E4.1 ∩ E0 : inf

x∈S(ρ,δ)
‖x̄(M +W )‖2 ≤ ρ2/16}

∣∣.
Recall that we agreed to assume that the pair of indices (1, 2) satisfies the conditions in
Corollary 4.6. In particular, this implies for RW

i := Ri(M +W ), i ≤ n,

|E4.1 ∩ E0| ≤ (2//δ)
∣∣{M ∈ E4.1 ∩ E0 : dist(RW

1 , span
{
{RW

k }k≥2, RW
1 +RW

2

}
) < ρ/16

}∣∣.
Finally estimates (14)–(16) and Lemma 4.7 imply that

|E4.1 ∩ E0| ≤
C ′ |Mn,d|
δ
√
ε1d

for a universal constant C ′ > 0. Since ε1 = δ/(C1 log(e/δ)), this implies the desired
result.

4.3 Proof of Claim 4.8

We will use the notations from Lemma 4.7 of the previous subsection. Recall that

M̃ ∈ C̃H ∩ E4 ∩ Ec4.4 ⊂ E0 ∩ E4.1 ∩ Ec4.4

and that

S1(H) = suppR1(M) ∩ suppR2(M), S2(H) = suppR1(M) ∪ suppR2(M)

do not depend on the choice of M ∈ CH . Denote

S3 := S2 \ S1 = suppR1(M)4 suppR2(M).

Take y := fW (M̃). Using Remark 4.5 and applying Lemma 2.2 to the vector {yj}j∈S3 we
find two disjoint sets A1, A2 ⊂ S3 with cardinalities |A1|, |A2| ≥ ` := dε1d/2e and such
that for all i ∈ A1 and j ∈ A2 one has |yi − yj| ≥ ρ/(4

√
2). For the rest of the proof,

we fix ` couples of distinct indices (i1, j1), (i2, j2), . . . , (i`, j`) ∈ A1 × A2. Next, we define
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auxiliary subsets of CH as follows: for any subset I ⊂ [`] and any S ⊂ S3 \
⋃
k∈I{ik, jk}

we set

cpl(I, S) :=
{
M ∈ CH : {k : |suppR1(M) ∩ {ik, jk}| = 1} = I and

suppR1(M) \
(
S1 ∪

⋃
k∈I

{ik, jk}
)

= S
}
.

Roughly speaking, each subclass cpl(I, S) is obtained by picking a subset of the couples
(ik, jk) on which the first row of a matrix is “allowed to vary” while fixing all other
coordinates of R1. Note that subclasses cpl(I, S) can be empty for some I, S and that
the collection {cpl(I, S)}I,S (taking all admissible I, S) forms a partition of the class CH .
Observe that ∣∣∣ ⋃

|I|≤`/4, S

cpl(I, S)
∣∣∣ ≤ 1

d2
|CH |, (17)

where the union is taken over all subsets I ⊂ [`] of cardinality at most `/4 and all
admissible sets S, and where d is large enough. Indeed, recall that the class CH can be
identified via a natural bijection with the collection of all m-element subsets of [2m], where
m := |S3|/2. With such an identification and by choosing an appropriate permutation
of [2m], the set of matrices on the left hand side of (17) corresponds to the collection of
m-element subsets B of [2m] such that |{k ≤ ` : |B ∩ {k, k + `}| = 1}| ≤ `/4, where

` ≥ ε1d/2 = δd/(2C1 log(2e/δ)) ≥
√
d/(e log(30d)).

Then a direct calculation shows that for large d the number of such subsets B is much
less than (ε1d)−2

(
2m
m

)
.

As the final step in the proof of the claim, we fix a non-empty subclass cpl(I, S) with
|I| > `/4 and observe that |cpl(I, S)| = 2|I|. In fact, each matrix M in cpl(I, S) can be
uniquely determined by picking either ik or jk for every k ∈ I and then defining the support
of the first row of M as the union of the chosen indices, the set S and the intersection
part S1. Moreover, for each M ∈ cpl(I, S) the inner product 〈(R̄1(M +W )), y〉 can be
written as

〈(R̄1(M +W )), y〉 = 〈R̄1(M), y〉+ 〈R̄1(W ), y〉 = U +
∑
k∈I

ξk(M)(ȳik − ȳjk),

where U is a complex number which is the same for all M ∈ cpl(I, S), and ξk(M), k ∈ I,
are 0/1-valued functions of M defined as ξk(M) := |suppR1(M) ∩ {ik}|. In other words,
ξk(M) is the indicator of the event that the support of the first row of M contains ik and
not jk. It is not difficult to see that the functions ξk(M), k ∈ I, considered as random
variables uniformly distributed on cpl(I, S), are jointly independent; and that for each
k ∈ I one has

|{M ∈ cpl(I, S) : ξk(M) = 1}| = |cpl(I, S)|/2 = 2|I|−1.

Further, by our choice of the pairs (ik, jk), we have |ȳik − ȳjk | = |yik − yjk | ≥ ρ/(4
√

2)
for all k ∈ I. Note that ηk = 2ξk(M) − 1, k ∈ I, are independent ±1 Bernoulli random
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variables and that for every v ∈ CI ,∑
k∈I

ξk(M)vk =
∑
k∈I

ηk(M)vk/2 +
∑
k∈I

vk/2.

Therefore, applying Proposition 2.1, we obtain∣∣{M ∈ cpl(I, S) : |〈(R̄1(M +W )), y〉| < ρ/4
}∣∣ ≤ c |cpl(I, S)|/

√
|I|

for some universal constant c > 0. Taking the union over all |I| > `/4, we get∣∣∣{M ∈ ⋃
|I|>`/4, S

cpl(I, S) : |〈(R̄1(M +W )), y〉| < ρ/4
}∣∣∣ ≤ 2c

∣∣CH∣∣/√`.
Together with (17), this proves the claim.

4.4 Proof of the main theorem

Here we explain how Theorems 3.1, 3.2, and 4.1 imply our main result, Theorem 1.1. Fix
ρ = 1/(d3/2bT ), κ = ρ2/16, and δ = n3/n ≥ a3/ log d. Then the condition on d means
d ≤ cn/((log d)(log log d)). Fix z ∈ C with |z| ≤ d/6 and W = −zId. Recall that

S(ρ, δ) = (Cn \ B(ρ)) ∩ {x ∈ Cn : ‖x‖2 = 1} .

As it was mentioned in Remark 3.3, Theorems 3.1 and 3.2 (applied twice for matrices
and for their conjugates) imply that P(E4) ≥ 1− 1/n2. Thus, applying Theorem 4.1, we
obtain

P(E4.1) ≤
C1 log3/2 d

√
log log d√

d
,

which implies the probability bound. Next,

κ = ρ2/16 = 1/(16d3bT
2),

where bT = 4d3/2hr+1 in the case n0 > 1 and bT = d
√
n if n0 = 1. This implies

sn ≥

 c/(pd6n4+2αd
1 ) if n0 > p,

(c log d)/(d9) if 1 < n0 ≤ p,
c/(d5n) if n0 = 1,

If 1 < n0 ≤ p, then d2 ≤ a1n log d and d2.5 ≥ a1n log1.5 d, therefore

d9/ log d ≤ C1n
4.5 log3.5 n.

If n0 > p, then, using the definition of αd, we observe sn ≥ d3/2 log4.5 d/C2n
4+2αd . This

implies the estimate in Theorem 1.1.

Remark 4.9. In fact we proved that there exists absolute positive constants c, C1, and
C2 such that

sn ≥


cd3/2 log4.5 d n−4−2αd if d < c1n

2/5 log3/5 n,

cn−4.5 log−3.5 n if c1n
2/5 log3/5 n ≤ d < c2

√
n log n,

c/(d5n) if c2
√
n log n ≤ d ≤ cn

(logn)(log logn)

with probability at least (C1 log3/2 d
√

log log d)/
√
d.
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