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Abstract

Let d be a (large) integer. Given n ≥ 2d, let An be the adjacency matrix of a
random directed d-regular graph on n vertices, with the uniform distribution. We
show that the rank of An is at least n− 1 with probability going to one as n grows
to infinity. The proof combines the well known method of simple switchings and a
recent result of the authors on delocalization of eigenvectors of An.
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1 Introduction

Singularity of random discrete square matrices is a subject with a long history and
many results and applications. In particular, quantitative estimates on the smallest
singular number are important for understanding complexity of some algorithms.
Well invertible sparse matrices are of general interest in computer science, and
it is known that sparse matrices are computationally more efficient (require less
operations for matrix-vector multiplication). In this paper we deal with sparse
random square matrices from a certain model.

In a standard setting, when the entries of the n×n matrix are i.i.d. Bernoulli ±1
random variables, the invertibility problem has been addressed by Komlós in [11, 12],
and later considered in several papers [10, 21, 4]. A long-standing conjecture asserts
that the probability that the Bernoulli matrix is singular is

(
1/2+o(1)

)n
. Currently,

the best upper bound on this probability is
(
1/
√

2 + o(1)
)n

obtained by Bourgain,
Vu, and Wood [4]. We would also like to mention related works on singularity of
symmetric Bernoulli matrices [7, 19, 22] and Nguyen’s work [20], where random 0/1
matrices with independent rows and row-sums constraints were considered.

A corresponding question can be formulated for adjacency matrices of random
graphs. For instance, consider the adjacency matrix of an undirected Erdős–Renyi
random graph G(n, p) which is a symmetric random n×n matrix whose off-diagonal
entries are i.i.d. 0/1 random variables with the parameter p. The case p = 1/2 is
closely related to the random model from the previous paragraph. In [8] Costello
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and Vu proved that, given c > 1, with large probability the rank of the adjacency
matrix of G(n, p) is equal to the number of non-isolated vertices whenever c lnn/n ≤
p ≤ 1/2. It is known that p = lnn/n is the threshold of connectivity, so that when
c > 1 and c lnn/n ≤ p ≤ 1/2, the graph G(n, p) typically contains no isolated
vertices and is therefore of full rank with probability going to one as n tends to
infinity (see [1] for quantitative bounds in the non-symmetric setting). It was also
shown that if p → 0 and np → ∞, then

(
rkG(n, p)

)
/n → 1 as n goes to infinity,

where rk (A) stands for the rank of the matrix A. The case p = y/n for a fixed y
was studied in [3] where asymptotics for

(
rkG(n, p)

)
/n were established.

In the absence of independence between the matrix entries, the problem of sin-
gularity involves additional difficulties. Such a problem was considered for the
(symmetric) adjacency matrix Mn of a random (with respect to the uniform prob-
ability) undirected d-regular graph on n vertices, i.e., a graph in which each vertex
has precisely d neighbours. The case d = 1 corresponds to a permutation matrix
which is non-singular, and for d = 2 the graph is a union of cycles and the matrix
is almost surely singular. Moreover, the invertibility of the adjacency matrix of the
complementary graph is equivalent to that of the original one (in fact, the ranks of
the adjacency matrices of a d-regular graph and of its complementary graph are the
same). This can be seen by first noticing that the eigenvalues of Jn −Mn, where
Jn is the n× n matrix of ones, are equal to the difference between those of Jn and
those of Mn (since the two commute) and that all eigenvalues of Mn are bounded
in absolute value by d, which is smaller than the only non-zero eigenvalue of Jn
(equals to n). In parallel to the Erdős–Renyi model, Costello and Vu raised the
following problem: “For what d is the adjacency matrix Mn of full rank almost
surely?” (see [8, Section 10]). They conjectured that for every 3 ≤ d ≤ n − 3, the
adjacency matrix Mn is non-singular with probability going to 1 as n tends to ∞.
This conjecture was mentioned again in the survey [23, Problem 8.4] and 2014 ICM
talks by Frieze [9, Problem 7] and by Vu [24, Conjecture 5.8].

In the present paper, we are interested in behaviour of adjacency matrices of
random directed d-regular graphs with the uniform model, that is, random graphs
uniformly distributed on the set of all directed d-regular graphs on n vertices. By
a directed d-regular graph on n vertices we mean a graph such that each vertex
has precisely d in-neighbours and d out-neighbours and where loops and 2-cycles
are allowed but multiple edges are prohibited. The adjacency matrix An of such
a graph is uniformly distributed on the set of all (not necessarily symmetric) 0/1
matrices with d ones in every row and every column. As in the symmetric case,
in the case d = 1 the matrix A1 is a permutation matrix which is non-singular,
and in the case d = 2 the matrix A2 is almost surely singular. It is natural to
ask the same question as in [8] for directed d-regular graphs (see, in particular,
[5, Conjecture 1.5]). Cook [5] proved that such a matrix is asymptotically almost
surely non-singular for ω(ln2 n) ≤ d ≤ n − ω(ln2 n), where f = f(n) = ω(an)
means f/an → ∞ as n → ∞. Further, in [13, 14], the authors of the present
paper showed that the singularity probability is bounded above by C ln3 d/

√
d for

C ≤ d ≤ n/ ln2 n, where C is a (large) absolute positive constant. This settles the
problem of singularity for d = d(n) growing to infinity with n at any rate. Moreover,
quantitative bounds on the smallest singular value for this model were derived in
[6] and [15]. Those estimates turn out to be essential in the study of the limiting
spectral distribution [6, 17].
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The challenging case when d is a constant remains unresolved and is the main
motivation for writing this note. The lack of results in this setting constitutes
a major obstacle in establishing the conjectured non-symmetric (oriented) Kesten–
McKay law as the limit of the spectral distribution for the directed random d-regular
graph (see, in particular, [2, Section 7]). This note illustrates a partial progress in
this direction. Our main result is the following theorem. Note that the probability
bound in it is non-trivial only if lnn > C ln2 d, however in the complementary case
we have rk (An) = n with high probability as was mentioned above.

Theorem 1.1. There exists a universal constant C > 0 such that for any integer
d ≥ C the following holds. Let n > d and let An be the adjacency matrix of the
random directed d-regular graph on n vertices, with uniform distribution allowing
loops but no multiple edges. Then

P{rkAn ≥ n− 1} ≥ 1− C ln2 d/ lnn.

This theorem is “one step away” from proving the conjectured invertibility for a
(large) constant d. We would like to emphasize that the main point of the theorem
is that even for a constant d the probability of a “good” event tends to 1 with n
(and not with d as in [13, 14]). To the best of our knowledge, it is the first result
of such a kind dealing with singularity of d-regular random matrices. The proof
of Theorem 1.1 uses the standard technique of simple switchings (in particular, it
was also used in [5] and [14]). We recall the procedure using the matrix language.
Denote by Mn,d the set of all adjacency matrices of directed d-regular graphs on
n vertices, i.e., all 0/1 matrices with d ones in every row and every column. Given
A = (ast)1≤s,t≤n ∈ Mn,d we say that a switching in (i, j, k, `) can be performed if
aik = aj` = 1 and ai` = ajk = 0. Further, given such a matrix A ∈ Mn,d, we
say that a matrix Ā = (āst)s,t ∈ Mn,d is obtained from A by a simple switching
(in (i, j, k, `)) if āik = āj` = 0, āi` = ājk = 1, and āst = ast otherwise. Note that
this operation does not destroy the d-regularity of the underlying graph. A well
known application of the simple switching is due to McKay [18] in the context of
undirected d-regular graphs. Starting from a matrix A ∈ Mn,d, one can reach any
other matrix inMn,d by iteratively applying simple switchings. In this connection,
a feasible strategy in estimating the cardinality of a subset B ⊂Mn,d is to pick an
element in B and bound the number of switchings which would result in another
element of B versus switchings leading outside of B. In a sense, one studies the
stability of B under this operation. We will make this standard approach more
precise in the preliminaries. Clearly, for a matrix A ∈Mn,d and any 1 ≤ i < j ≤ n,

rkA = dim
(
span {(Rs)s6=i,j , Ri +Rj , Ri}

)
,

where R1, R2, ..., Rn denote the rows of A. Since (Rs)s6=i,j and Ri +Rj are invariant
under any switching involving the i-th and j-th rows, then for any matrix Ā obtained
from A by such a switching, we have

|rkA− rk Ā| ≤ 1. (1)

In a sense, we will show that given a matrix from Mn,d of corank at least 2, most
of simple switchings tend to increase the rank. We will use that the kernel of A,
kerA, is contained in F⊥ij , where Fij := span {(R`)`6=i,j , Ri + Rj}. Note that Fij is
invariant under any simple switching on the i-th and j-th rows.
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In this paper, the simple switching procedure is combined with a recent delocal-
ization result for eigenvectors of An established by the authors in [16, Corollary 1.2].
Below we state a less general version of the delocalization result.

Theorem 1.2 ([16]). There exists a universal constant C > 0 such that for any
integer d ≥ C the following holds. Let n > d and let An be the adjacency matrix
of the directed random d-regular graph on n vertices. Then with probability at least
1− 2/n any vector x ∈

(
kerAn ∪ kerAT

n

)
\ {0} satisfies

∀λ ∈ R |{i ≤ n : xi = λ}| ≤ Cn ln2 d/ lnn.

In fact in [16] the assumption d ≤ exp(c
√

lnn) was also involved, however for
d ≥ exp(c

√
lnn) the bound on the cardinality trivially holds. A more general

quantitative version of Theorem 1.2, proved in [16], served as the key element in
establishing the circular law [17] for the limiting spectral distribution when the
degree d = d(n) ≤ ln96 n tends to infinity with n (for the regime d > ln96 n see [6]).
In this note, we take advantage of the fact that the results of [16] also work for any
large constant d.

2 Preliminaries

For an n×n matrix A, we denote by (Rs)s≤n and (Cols)s≤n its rows and columns re-
spectively. Given positive integer m, we denote by [m] the set {1, 2, ...,m}. Further,
for a vector x ∈ Rn, we denote its support by suppx = {i ≤ n : xi 6= 0}.

Given two sets B, B′ and a relation Q ⊂ B × B′, we set Q(B) =
⋃

b∈BQ(b) and
Q−1(B′) =

⋃
b′∈B′ Q

−1(b′), where

Q(b) = {b′ ∈ B′ : (b, b′) ∈ Q} and Q−1(b′) = {b ∈ B : (b, b′) ∈ Q},

for any b ∈ B and any b′ ∈ B′. In what follows, we consider the symmetric relation
Q0 on Mn,d ×Mn,d defined by

(A, Ā) ∈ Q0 if and only if Ā can be obtained from A by a simple switching. (2)

The following simple claim will be used to compare cardinalities of two sets given
a relation on their Cartesian product. We refer to [14, Claim 2.1] for a proof of a
similar claim.

Claim 2.1. Let Q be a finite relation on B×B′ such that for every b ∈ B and every
b′ ∈ B′ one has |Q(b)| ≥ sb and |Q−1(b′)| ≤ tb′ for some numbers sb, tb′ ≥ 0. Then∑

b∈B
sb ≤

∑
b′∈B′

tb′ .

Next, given A ∈Mn,d, we estimate the number of possible switchings on A, that
is, the cardinality of the set

FA = {(i, j, k, `) : a switching in (i, j, k, `) can be performed}.

Recall that we say that a simple switching can be performed in (i, j, k, `) if aik =
aj` = 1 and ai` = ajk = 0. Note that this automatically implies that i 6= j and
k 6= `. Note also that two formally distinct simple switchings (i, j, k, `) and (j, i, `, k)
result in the same transformation of a matrix.
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Lemma 2.2. Let 1 ≤ d ≤ n and A ∈Mn,d. Then

n(n− d)d2 − nd(d− 1)2 ≤ |FA| ≤ n(n− d)d2.

Proof. To find a possible switching, we first fix an entry aik equal to 1. By d-
regularity of A, there are exactly nd choices of the pair (i, k). To be able to perform
a simple switching in (i, j, k, `), the pair of indices (j, `) must satisfy

aj` = 1 and (j, `) /∈ T :=
(

[n]× suppRi

)⋃(
supp Colk × [n]

)
.

By d-regularity we observe that the number p of pairs (s, t) ∈ T with ast = 1 satisfies
d2 ≤ p ≤ d2 + (d− 1)2. Since there are nd choices for (j, `) with aj` = 1, we observe
that the number q of pairs (s, t) /∈ T with ast = 1 satisfies

(n− d)d− (d− 1)2 ≤ q ≤ (n− d)d.

Since |FA| = ndq, we obtain the desired result.

Remark 2.3. Note that for d = 1, i.e., in the case of a permutation matrix, the
upper and lower bounds in the above lemma coincide and both equal n(n− 1). More
generally, assume n = md for an integer m and consider the block-diagonal matrix A
with m d×d blocks, each block consisting of ones. Then a switching in (i, j, k, `) can
be performed if and only if i, j correspond to different blocks (there are m(m−1)d2 =
n(n− d) such pairs) and k ∈ suppRi, ` ∈ suppRj (there are d2 such choices). Thus
for such a matrix A we have

|FA| = n(n− d)d2,

which corresponds to the upper bound in Lemma 2.2.

Denote by E1.2 the event in Theorem 1.2. As usual, we don’t distinguish between
events for the uniformly distributed random matrix on Mn,d and corresponding
subsets of Mn,d. In particular, denoting βn := Cn ln2 d/ lnn,

E1.2 := {A ∈Mn,d : ∀x ∈
(
kerA ∪ kerAT

)
\{0} ∀λ ∈ R |{i ≤ n : xi = λ}| ≤ βn

}
,

where βn := min(n,Cn ln2 d/ lnn) and C is the constant from Theorem 1.2. Fur-
ther, for every r ≤ n set

Er = {A ∈Mn,d : rkA ≤ r} and Er = {A ∈Mn,d : rkA = r}.

Given A ∈Mn,d and i 6= j, we set

Fij = Fij(A) := span {(Rs)s 6=i,j , Ri +Rj}.

Clearly, ker(A) ⊂ F⊥ij . We will be interested in those pairs (i, j) for which this
inclusion turns to equality. Given A ∈Mn,d, define

KA =
{

(i, j) ∈ [n]2 : i 6= j and kerA = F⊥ij (A)
}
.

Lemma 2.4. Let d < n and A ∈ En−1 ∩ E1.2. Assume βn := Cn ln2 d/ lnn ≤ n.
Then |KA| ≥ (n− βn)2.
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Proof. Since A is singular there exists y ∈ Rn \ {0} such that

n∑
s=1

ysRs = 0.

Since y ∈ kerAT and A ∈ E1.2, the set I := {i : yi 6= 0} is of cardinality at least
n − βn. Note that if i ∈ I then Ri ∈ span {Rs, s 6= i}, therefore removing the i-th
row keeps the rank unchanged, that is, we have rkA = rkAi, where Ai denotes the
n× n matrix obtained by substituting the i-th row of A with the zero row.

Fix i ∈ I. If A ∈ En−2 then rkAi = rkA ≤ n− 2. Thus, the non-zero rows of Ai

are linearly dependent, therefore there exists z ∈ Rn \ {0} such that

zi = 0 and
∑
s 6=i

zsRs = 0.

Clearly, z ∈ kerAT and by the condition A ∈ E1.2, the set

J = J(i) := {j ≤ n : zj 6= 0}

is of cardinality at least n − βn. Note that if j ∈ J , then Rj ∈ span {Rs, s 6= i, j}
and thus, Ri + Rj ∈ span {Rs, s 6= i, j}. This means that (i, j) ∈ KA. Thus for
A ∈ En−2 one has

|KA| ≥ |I| min
i∈I
|J(i)| ≥ (n− βn)2.

Now suppose that A ∈ En−1 and fix i ∈ I. Since Ri ∈ span {Rs, s 6= i}, there
exist scalars (xs)s 6=i such that

Ri =
∑
s 6=i

xsRs.

Therefore setting xi = −1, we have x = (xs)s≤n ∈ kerAT and since A ∈ E1.2, the
set L = L(i) := {j ≤ n : xj 6= −1} is of cardinality at least n − βn. Note that if
j ∈ L, then

Ri +Rj = (xj + 1)Rj +
∑
s 6=i,j

xsRs 6∈ span {Rs, s 6= i, j}

(otherwise, we would have Rj ∈ span {Rs, s 6= i, j}, which is impossible since rkA =
n− 1). Using again that rkA = n− 1, we obtain that dimFij = n− 1, that is,

dimF⊥ij = 1 = dim kerA.

Therefore the inclusion kerA ⊂ F⊥ij implies that (i, j) ∈ KA and the lower bound
on the cardinality of KA follows.

Note that for every A ∈ Mn,d the subspace F⊥ij (A) is invariant under simple
switchings involving the i-th and j-th rows. Moreover, for every pair (i, j) ∈ KA

one has kerA = F⊥ij (A). Therefore, since our aim is to show that most switchings
tend to increase the rank, we need to eliminate those which keep this equality valid,
that is, those which keep kerA unchanged. This motivates the following definition.
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Definition 2.5. Let d < n, A ∈ Mn,d, and (i, j, k, `) ∈ FA. Let x ∈ Rn. We say
that a switching in (i, j, k, `) is x-bad if xk = x`. In other words, a switching in
(i, j, k, `) is x-bad if Ax = Āx (where by Ā we denote the new matrix obtained from
A by the switching).

In the next lemma we estimate the number of x-bad switchings.

Lemma 2.6. Let d < n, βn = Cn ln2 d/ lnn, A ∈ En−1 ∩ E1.2 and x ∈ kerA \ {0}.
Then ∣∣{(i, j, k, `) ∈ FA : switching in (i, j, k, `) is x-bad

}∣∣ ≤ nβnd2.

Proof. Let {λp : p ≤ m} be the set of disctinct values taken by coordinates of x.
For every p ≤ m set

Lp = {s ≤ n : xs = λp}.

Since A ∈ E1.2, we have |Lp| ≤ βn for all p ≤ m. Since for an x-bad switching in
(i, j, k, `) we have xk = x`, k and ` should belong to the same Lp. By d-regularity,
for every p ≤ m the number of switchings in (i, j, k, `) with k, ` ∈ Lp is at most
d2|Lp|2 (since we must have aik = aj` = 1). Thus, the number of x-bad switchings
is bounded above by

m∑
p=1

d2|Lp|2 ≤ d2 max
p≤m
|Lp|

m∑
p=1

|Lp| ≤ nβnd2.

3 Proof of Theorem 1.1

We start with the following lemma estimating the number of simple switchings
which increase the rank.

Lemma 3.1. Let n ≥ 2d be large enough integers and A ∈ En−1 ∩ E1.2. Assume
βn := Cn ln2 d/ lnn ≤ n/4. Then there are at least n(n − 3βn)d2 switchings in
(i, j, k, `) which increase the rank, i.e., for which

rk Ā = rkA+ 1,

where Ā denotes the matrix obtained by the switching.

Proof. Given two rows Ri and Rj , i 6= j, of A, by d-regularity, there are at most
d2 4-tuples (i, j, k, `) in which a switching can be performed. Thus, the number of
switchings in (i, j, k, `) with (i, j) ∈ [n] × [n] \ KA is at most |Kc

A|d2, where the
complement is taken in [n]2. Therefore, applying Lemmas 2.2 and 2.4 we obtain
that the number N of possible switchings in (i, j, k, `) with (i, j) ∈ KA is at least

N ≥ |FA|−|Kc
A|d2 ≥ n(n−2d)d2−

(
n2−(n−βn)2

)
d2 ≥ d2

(
n2−2dn−2βnn+β2

n

)
. (3)

For the rest of the proof, we fix a non-zero vector x ∈ kerA.
Fix for a moment (i, j) ∈ KA, and note that for any switching on the i-th and

j-th rows, we have
ker Ā ⊂ F⊥ij (Ā) = F⊥ij (A) = kerA.
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Observe that if a switching on i, j-th rows is not x-bad, then Āx 6= Ax = 0 and
therefore

ker Ā 6= kerA = F⊥ij (Ā).

This means that rk Ā > rkA and by (1) implies that rk Ā = rkA + 1. Thus,
any possible switching in (i, j, k, `), which is not x-bad and such that (i, j) ∈ KA

increases the rank of the matrix by one.
Applying Lemma 2.6 and inequality (3), we obtain that the number N0 of switch-

ings described above is at least

N0 ≥ N − nβnd2 ≥ d2
(
n2 − 2dn− 3βnn+ β2

n

)
.

Since β2
n ≥ 2nd for large enough n, this completes the proof.

Proof of Theorem 1.1. We may assume that d ≤ exp(c
√

lnn) for a small enough
absolute constant c > 0 (otherwise the probability bound in Theorem 1.1 trivially
holds). In this case n ≥ 4βn. Fix r ∈ {1, . . . , n− 2} and consider the relation

Qr ⊆ (Er ∩ E1.2)× Er+1,

defined by (A, Ā) ∈ Qr if and only if A ∈ Er ∩ E1.2, Ā ∈ Er+1, and (A, Ā) ∈ Q0,
where the symmetric relation Q0 is given by (2).

Using that any two switchings (i, j, k, `) and (j, i, `, k) produce the same trans-
formed matrix, and applying Lemma 3.1 we observe that for every A ∈ Er ∩ E1.2,

|Qr(A)| ≥ n(n− 3βn)d2/2.

Now let Ā ∈ Qr(Er ∩ E1.2). If Ā ∈ E1.2, then by Lemmas 3.1 and 2.2,

|Q−1
r (Ā)| ≤

(
|FĀ| − n(n− 3βn)d2

)
/2 ≤ 3nβnd

2/2.

Otherwise, if Ā ∈ Ec1.2 then

|Q−1
r (Ā)| ≤ |FĀ|/2 ≤ n(n− d)d2/2.

Then Claim 2.1 implies

n(n− 3βn)d2

2
|Er ∩ E1.2| ≤

3nβnd
2

2
|Er+1 ∩ E1.2|+

n(n− d)d2

2
|Er+1 ∩ Ec1.2|.

Summing over all r = 1, . . . , n− 2 gives

|En−2∩E1.2| ≤
3βn

n− 3βn
|En−1∩E1.2|+

n

n− 3βn
|En−1∩Ec1.2| =

3βn
n− 3βn

|En−1|+ |Ec1.2|.

Using that n ≥ 4βn and βn = Cn ln2 d/ lnn, we obtain

|En−2| ≤ |En−2 ∩ E1.2|+ |Ec1.2| ≤
12βn
n
|En−1|+ 2|Ec1.2| ≤

12C ln2 d

lnn
|En−1|+ 2|Ec1.2|.

Theorem 1.2 implies the desired result.
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Remark 3.2. For A ∈ En−1∩E1.2, Lemma 3.1 guarantees existence of many simple
switchings which produce full rank matrices from A. With the above notations, we
have

|Qn−1(A)| ≥ n(n− 3βn)d2/2.

In order to prove along the same lines that a “typical” matrix in Mn,d is non-
singular, one needs to consider the reverse operation as well, i.e., to show that for
any full rank matrix, there are very few switchings which transform it to a singular
one. The argument of this note is based on finding switchings using structural in-
formation about vectors in the kernel, specifically, delocalization properties in Theo-
rem 1.2. When the matrix is of full rank, we do not have any non-trivial null vectors
at hand, which does not allow to revert the above procedure and verify invertibility.
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