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Abstract

Let d and n be integers satisfying C ≤ d ≤ exp(c
√

lnn) for some universal constants c, C > 0, and
let z ∈ C. Denote by M the adjacency matrix of a random d-regular directed graph on n vertices.
In this paper, we study the structure of the kernel of submatrices of M − z Id, formed by removing
a subset of rows. We show that with large probability the kernel consists of two non-intersecting
types of vectors, which we call very steep and gradual with many levels. As a corollary, we show, in
particular, that every eigenvector of M , except for constant multiples of (1, 1, . . . , 1), possesses a weak
delocalization property: its level sets have cardinality less than Cn ln2 d/ lnn. For a large constant
d this provides a principally new structural information on eigenvectors, implying that the number
of their level sets grows to infinity with n. As a key technical ingredient of our proofs we introduce
a decomposition of Cn into vectors of different degrees of “structuredness,” which is an alternative
to the decomposition based on the least common denominator in the regime when the underlying
random matrix is very sparse.
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1 Introduction

Fix a large integer n and an integer d in the range {3, 4, . . . , n − 3}. Denote by Mn,d the collection
of all n × n matrices with entries taking values in {0, 1} such that in any row and any column
there are exactly d ones. Every matrix from this set can be viewed as the adjacency matrix of a
d-regular directed graph on n-vertices, where we allow loops but no multiple edges. For a subset
K ⊂ [n] := {1, 2, . . . , n} and a matrix B, by BK we denote the submatrix of B formed by rows Ri(B),
i ∈ K. In this paper, we consider the structure of the kernel of random linear operators of the form
(M − zId)K , where M is a random element of Mn,d (with respect to the uniform measure) and z is
a fixed complex number.

Our motivation for this study is multifold. We obtain new results regarding delocalization proper-
ties of approximate eigenvectors for very sparse random matrices. Apart of being of an independent
interest, these results provide new insights into spectral properties of random graphs. Furthermore,
as is shown in [39], our results are key to understanding the intermediate singular values of the matrix
M − zId, which in turn are crucial for establishing the limiting spectral distribution of appropriately
rescaled adjacency matrices, when the dimension n tends to infinity.

Spectral properties of random graphs, in particular, graphs with predefined degree sequences, have
been an object of active research. In the case of d-regular undirected graphs, the magnitude of the
second largest eigenvalue as well as the limiting spectral distribution of the adjacency matrix have
been considered in various regimes and for different models of randomness (uniform, permutation, and
configuration models). In particular, the study of the second largest eigenvalue has been motivated by
the well known relation between the magnitude of the spectral gap and the graph expansion properties
[1, 19, 32]. We refer, in particular, to [13, 25, 24, 21, 46, 10, 17, 57] and references therein as well as to
the survey [32] for more information on spectral expanders. The limiting spectral distribution of an
(appropriately rescaled) adjacency matrix of an undirected d-regular graph follows the Kesten–McKay
law [34, 43] which, for degree d converging to infinity with n, coincides with the classical semi-circle
law [58]. We refer, in particular, to [20, 9, 8] for recent results in this direction.

In the case of directed d-regular graphs, establishing the limiting spectral distribution for constant
d presents a major challenge not resolved as of this writing. It is conjectured that the limiting spectral
distribution of the appropriately rescaled adjacency matrix follows the oriented Kesten–McKay law
(see, for example, [11, p. 52]). For min(d, n− d)→∞, the limiting distribution has been conjectured
to follow the circular law, thus matching (up to rescaling) the standard i.i.d. non-Hermitian models.
Very recently, this conjecture has been partially resolved in the uniform and permutation models of
randomness under the assumption that the degree d grows with n at least poly-logarithmically [16, 5].
However, the case of very slowly growing d has remained open. This (very sparse) regime is in certain
respects fundamentally different as it requires special handling of not only the smallest but also the
intermediate singular values of the shifted adjacency matrix M − zId.

In [38], building upon arguments in [14, 15, 37, 36], we have established lower bounds for the
smallest singular value of the matrix M − zId which work for all d larger than a large absolute
constant (with probability estimates depending on d). In this paper, we consider a more technical
(and more difficult) aspect of the study by establishing a structural theorem for the kernel of random
operators (M − zId)K .

This paper is an autonomous part in the series of works in which we resolve the conjecture for the
limiting spectral distribution for any function d = d(n) growing to infinity with the dimension n. In
[39], we use the main result of this paper together with additional probabilistic arguments to derive
bounds for intermediate singular values of M − zId and, applying the standard argument of Girko
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[26], to establish the circular law for the spectrum in the regime d→∞, resolving the corresponding
conjecture (see [16, p. 5]). In order to avoid repetitions, we leave further discussion of Girko’s approach
and, more generally, the historical overview of the circular law to [39]. As mentioned before, while
being very useful in proving the limiting law, the structural theorem is of interest on its own and in
the case K = [n] can be viewed as a delocalization statement about approximate eigenvectors of very
sparse random matrices.

We start with formulating a “soft” version of the main result. In what follows, given a vector
x ∈ Cn, by x∗ = (x∗i )i we denote the non-increasing rearrangement of (|xi|)i. We also recall that for
an n× n matrix B and a subset K ⊂ [n], BK denotes the |K| × n matrix with rows Ri(B), i ∈ K.

Theorem 1.1 (Structural theorem). There are universal constants c, c′, C > 0 with the following
property. Let n ≥ C, C ≤ d ≤ exp(c

√
lnn), and let M be uniformly distributed on Mn,d. Let z ∈ C

be such that |z| ≤
√
d ln d. Fix d−1/2 ≤ a ≤ 1 and any subset K ⊂ [n] with 0 ≤ |Kc| ≤ n/d3. Set

ρ := max
(
n−c, exp

(
−
(
n/(1 + |Kc|)

) c ln ln d
ln d

))
, δ :=

C ln2 d

ln(1/ρ)
, q := max(a|Kc|, 1).

Then with probability at least 1− 1/n every unit complex vector x such that

‖(M − z Id)K x‖2 ≤ |Kc|3 n−6,

satisfies one of the following two conditions:

• (Gradual with many levels) One has x∗i ≤ (n/i)3x∗q for all i ≤ q,

x∗i ≤ d3(n/i)6x∗bc′nc for all q ≤ i ≤ bc′nc,

and ∣∣∣{i ≤ n : |xi − λ| ≤ ρx∗bc′nc
}∣∣∣ ≤ δn for all λ ∈ C.

• (Very steep) x∗i > 0.9(n/i)3x∗q for some i ≤ q.

We note that the probability bound in the theorem can be replaced with 1 − n−r for any fixed
r ≥ 1 by adjusting the absolute constants. The terms “steep” and “gradual” vectors will be discussed
in detail below. In full generality, the theorem will be given at the end of the paper, see Theorem 7.10.
The above statement asserts that, given a vector x ∈ Cn which is close to the kernel of (M − zId)K ,
either the coordinates of x∗ decrease fast for small indices (x is “very steep”) or, if this is not the
case, the vector x is spread (has many non-zero components) and, moreover, for any complex λ very
few coordinates of x are concentrated around λ. Note that when |Kc| = 1, i.e., when we consider
normal vectors to a linear subspace spanned by n − 1 matrix rows, the second assertion never holds
(since q = 1), and the theorem says that the normal vectors are all spread and have many levels.
Moreover, for K = {1, 2, . . . , n}, combining the theorem with a simple covering argument, we obtain
the following delocalization property.

Corollary 1.2 (Delocalization properties of eigenvectors). There are universal constants c, C > 0
such that the following holds. Let n, d and M be as in Theorem 1.1. Then with probability at least
1− 1/n any eigenvector x of M , which is not parallel to (1, 1, . . . , 1), satisfies x∗i ≤ d3(n/i)6x∗bcnc for

all 1 ≤ i ≤ bcnc, and, moreover,

∀λ ∈ C
∣∣∣{i ≤ n : |xi − λ| ≤ n−cx∗bcnc

}∣∣∣ ≤ Cn ln2 d/ lnn.

For completeness, we give a proof of Corollary 1.2 at the end of the paper. We would like to notice
that delocalization properties of eigenvectors for various models have been a focus of active research.
In the case of sparse matrices we refer to [12] for eigenvector statistics for Erdős–Rényi graphs and to
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[2, 3, 4, 18] for delocalization properties of eigenvectors (and almost eigenvectors) of undirected regular
graphs. In the non-Hermitian setting (relevant to our present work) we refer to [52, 53]. The term
delocalization usually refers to upper bounds on the `∞-norm of a random vector or, more generally,
upper bounds for the scalar product with a fixed unit vector. The delocalization statement provided
by Corollary 1.2, is closer to the concept of no-gaps delocalization, introduced in [53], which bounds
the `2-mass of the vector supported on every subset of coordinates of a given size. At the same time,
Corollary 1.2 not only provides lower bounds for the order statistics of eigenvectors but also measures
cardinalities of sets of almost equal coordinates, thus giving an additional structural information (very
important in our context). Corollary 1.2, to our best knowledge, is the first statement which provides
quantitative information on the delocalization for non-Hermitian random matrices with a constant
number of non-zero elements in rows/columns.

A fundamental feature of the main theorem is that it provides information on the kernel of the
matrix for large constant d, with the “unstructuredness” measured in terms of the dimension n. Here,
“unstructuredness” refers to the allowed number of approximately equal components of a vector. For
example, we show that for M{2,...,n} with large probability any vector in the kernel can have at most
O(n/ lnn) equal components. We expect that the theorem and the argument used in its proof will
turn to be useful in the study of the spectrum of random directed graphs of constant degree. In fact,
combined with some known arguments, our result implies that the random adjacency matrix M has
rank at least n− 1 with probability going to one with n (d being a large constant) [40].

Theorem 1.1 can be interpreted as follows: with probability very close to one we have

inf
x∈T
‖(M − zId)Kx‖2 > 0,

where the infimum is taken over the set T ⊂ Cn of all non-zero vectors, which are neither “very steep”
and not “gradual with many levels.” Estimates of this type fall into a large body of research dealing
with matrix singularity and structural properties of null vectors for various models of randomness. A
possible strategy in estimating the infimum inf

x∈S
‖Bx‖2 (for a random matrix B and a subset S, say,

the unit Euclidean sphere) consists in representing S as a union of subsets
⋃
α Sα grouping together

vectors with a similar structure, and then combining bounds for inf
x∈Sα

‖Bx‖2. In turn, each of the

infima is bounded using the structural information about vectors in Sα and may involve, depending on
the problem, a discretization of the subset (i.e., a version of a covering argument). A very incomplete
list of works involving this approach in the study of square non-Hermitian or “almost square” matrices
is [33, 54, 58] (singularity of random Bernoulli matrices), [41, 49, 50, 47] (matrices with i.i.d. entries
with a tail decay condition), [55, 56, 27, 6, 7] (sparse matrices with i.i.d. entries, see also [42] for
the non-i.i.d. case), [15, 37, 16, 5] (adjacency matrices of directed d-regular graphs). For a detailed
exposition of this method we refer to [51] and [59]. The decomposition into subsets differs significantly,
depending on the randomness model. In particular, estimating the singularity probability for Bernoulli
matrices in [33, 54, 58] involved defining the combinatorial dimension of certain discrete vectors.
Further, the idea from [41] of splitting the Euclidean sphere into sets of “close to sparse” and “far
from sparse” vectors was developed in [49, 50], where the notion of compressible and incompressible
vectors appeared. In [49, 50], building upon earlier works on the Littlewood–Offord theory (see, in
particular, [56]), the concept of the least common denominator (LCD) of a vector was introduced, and
the Euclidean sphere was partitioned into subsets according to the magnitude of the LCD. Further, in
works [16, 5, 38, 6, 7] dealing with adjacency matrices of sparse directed random graphs, the crucial
structural property of a vector was statistics of “jumps” in its non-increasing rearrangement, i.e., the
magnitude of ratios of the form x∗i /x

∗
Li, where i ≤ n and L > 0 is a scaling factor. In works [6, 7],

this analysis of jumps in the rearrangement was combined with the LCD-based approach of [49, 50].
Despite the progress in this research direction in the past years, an efficient estimate of the smallest

singular value and, more generally, of quantities of the form inf
x∈T
‖Bx‖2 for a very sparse random

matrix B (with a constant average number of non-zero elements in a row/column) seems to require
essentially new arguments. In this work, we propose such a new argument for 0/1 random matrices
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with prescribed row/column sums. We believe that our approach can be extended to more general
sparse models.

A crucial new ingredient of our paper is the concept of the `-decomposition of a vector which
is a partition of [n] into subsets encoding useful structural properties of a complex n-dimensional
vector x. We combine the `-decomposition with new tensorization arguments (which allow to pass
from individual small ball probability estimates for 〈Ri(M − z Id), x〉 to the matrix-vector product
(M−z Id)Kx) and a discretization (covering) procedure to get a characterization of gradual vectors in
the kernel. On the other hand, the steep vectors are treated by a combination of covering arguments
and a procedure utilizing expansion properties of the graph, thus augmenting the approach in [38].
In the remainder of the introduction, we will discuss in detail the three main features of the proof:
steep and gradual vectors, `-decomposition, and tensorization.

Steep, almost constant, and gradual vectors. The notions of steep, almost constant, and gradual
vectors appeared in [38] in the context of bounding the smallest singular value of the shifted adjacency
matrix. Naturally, these notions play an important role in the present paper as well. For technical
reasons, we slightly modified the definitions, compared to [38].

A full description of the class of steep vectors in Cn is provided in Subsection 4.1. Since the precise
formulas are long and involve many parameters, we omit them in the introduction. We just loosely
describe this class as the collection of vectors x ∈ Cn such that for some indices 1 ≤ i < j � n,
the ratio x∗i /x

∗
j is very large compared to the ratio j/i. The basic example of a steep vector is

(1, 1, . . . , 1, 0, 0, . . . , 0), with less than cn ones (for a small constant c > 0). At the same time, the
steep vectors are not necessarily close to sparse in the Euclidean metric – in particular, the steep
vectors cannot be identified with compressible vectors introduced in [41, 49, 50].

The second class of vectors which we call almost constant, is much easier to describe explicitly –
those are all the vectors x ∈ Cn such that

∃λ ∈ C |{i ≤ n : |xi − λ| ≤ θ x∗cn}| > n− cn,

where θ is a negative constant power of the degree d and c > 0 is a small universal constant. Vectors
which are neither steep nor almost constant are called gradual. Thus, a gradual vector has many pairs
of distinct coordinates and controlled ratios x∗i /x

∗
j for all indices 1 ≤ i < j � n.

In our study of the kernel of the random operator (M−z Id)K , we consider its intersection with the
classes of steep and almost constant vectors in Section 4 and with gradual vectors – in Sections 5–7.
Theorem 1.1 combines the information about the intersections.

For large enough Kc and small d, simultaneous existence of very steep and gradual (with many
levels) vectors in the kernel of the matrix MK is an objective fact. We can consider the following
informal argument. For an integer p ≥ 1, the kernel of M{p+1,...,n} contains kerM{2,...,n}, which, in
view of Theorem 1.1 and the above remark, typically consists of gradual vectors with many levels.
At the same time, the columns of M , Ci(M), are “locally” almost independent, in the sense that for
every small subset Q ⊂ [n], the joint distribution of Ci(M), i ∈ Q, is “close” to the joint distribution
of independent vectors uniform on the set {y ∈ {0, 1}n : |suppy| = d} (in order not to expand the
paper we prefer not to discuss quantitative aspects of this observation). Thus, for fixed integers p� d
and r � n, we have

P
{
∃i ≤ r : suppCi(M) ∩ {p+ 1, . . . , n} = ∅

}
≈ 1−

r∏
i=1

P
{

suppCi(M) ∩ {p+ 1, . . . , n} 6= ∅
}

= 1−
(

1−
(
p

d

)(
n

d

)−1)r
≈ 1− exp

(
− (p/n)dr

)
.

Accordingly, when r � (n/p)d, with large probability there exists a null-column in M{p+1,...,n}, so that
a typical realization of M{p+1,...,n} contains a coordinate vector in its kernel, which is “very steep.”

5



The analysis of the null steep and almost constant vectors, which occupies Section 4, is a devel-
opment of an argument from [38] with some important technical additions. It combines deterministic
estimates for Mx (assuming certain expansion properties of the underlying graph) with covering ar-
guments for non-constant vectors with large support. For almost constant vectors x, a satisfactory
bound for the Lévy concentration function of the product Mx is generally impossible. For example,
if x = (1, 1, . . . , 1) then Mx = (d, d, . . . , d) deterministically. A key step in bounding the Euclidean
norm of (M − z Id)x (or, more generally, (M − z Id)Kx) from below for almost constant vectors is a
non-probabilistic argument which utilizes d-regularity (see Lemma 4.10). A related method is used for
steep vectors if the jump occurs at the beginning of the non-increasing rearrangement (Lemma 4.4).
For the remaining vectors x, anti-concentration estimates for individual row-vector products are ten-
sorized to obtain individual estimates for Mx, which are combined with a covering argument, using
specially constructed nets (see Subsection 4.3).

The least common denominator (LCD), and the `-decomposition. The correspondence
between small ball probability and arithmetic properties of the vector of coefficients goes back to
Halász [29, 30], and was refined in the work [54] on the singularity probability, before being developed
for the least singular value problem in [48, 56]. Then in [49, 50], the LCD with parameters γ, α > 0
of a vector x ∈ Rn was defined as

LCD(x) := inf
{
θ > 0, dist(θx,Zn) < min(γθ‖x‖2, α)

}
.

It was used there with γ being a small positive constant and α being a small constant multiple of√
n. Thus, LCD encapsulates information on the distance of a rescaled vector to the integer lattice.

The fundamental correspondence between the magnitude of the LCD of a vector x and the small ball
probability for the random sum

∑n
i=1 xiξi (for independent sufficiently “spread” random variables ξi)

was the key ingredient employed in [49, 50]. Specifically, it was shown in [49] that a normal vector to
the hyperplane spanned by n−1 columns typically has LCD which is exponentially large in dimension.
This fact was then applied to estimate the small ball probability for the least singular value of the
random matrix. However, in the sparse regime this approach presents certain challenges. Note that the
definition of the LCD does not allow to distinguish a vector having a (small) proportion of coordinates
of the same value from a vector with almost all components distinct. For example, the vectors
x1 := (1/n, 2/n, 3/n, . . . , n/n) and x2 := (0, 0, . . . , 0, 0, 0.01 + 1/n, 0.01 + 2/n, . . . , 0.01 + 0.99n/n)
(with the first 0.01n components equal to zero) would have comparable LCDs, whereas behaviour of
the corresponding scalar products with a row of a random d-regular matrix is completely different.
Specifically, if ξ = (ξ1, ξ2, . . . , ξn) is the random 0/1 vector uniformly distributed on

{y ∈ {0, 1}n : |supp y| = d}

then for any number r ∈ R the scalar product 〈ξ, x1〉 is equal to r with probability O(1/n) while
〈ξ, x2〉 = 0 with probability at least 0.01d. Indeed, it is the absence (or presence) of large constant
blocks of coordinates which becomes crucial in the sparse regime.

The notion of the `-decomposition developed in this paper is in particular designed to deal with
the above issue. More importantly, the `-decomposition carries very detailed information about the
structure of a vector. This information turns out extremely useful in estimating cardinalities of
coverings as well as in bounding small ball probabilities.

The precise definition of the `-decomposition is rather involved and includes an iterative procedure
for constructing a partition of [n] associated to a vector. We skip the technical details in the intro-
duction (see Subsection 5.2 for the actual construction procedure) and describe the `-decomposition
of a vector y in the lattice 1

k

(
Z2
)n

(where k is a large integer) as a partition of [n] into non-empty

subsets (L(q))mq=1 (called `-parts) which satisfy, among some other conditions, the following: For any

q ≤ m and any numbers a, b ∈ 1
kZ

2, setting

Ja,q := {i ∈ L(q) : yi = a} and Jb,q := {i ∈ L(q) : yi = b},
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one has that either one of the sets is empty or |Ja,q| ≤ 4|Jb,q|. In other words, considering the levels
(blocks of coordinates having the same value) of the vector y restricted to L(q), all the blocks have
approximately the same cardinality. If the vector y is real and non-increasing, its restriction to L(q)

can be viewed as a ladder or staircase, where all the stairs are of about the same size, whereas the gaps
between the stairs are allowed to differ significantly. The number of “stairs” within the `-part is called
the height of the `-part. Note that the height is not determined by the magnitude of yi, i ∈ L(q), but
instead by the number of levels in L(q). The position of the `-parts and their heights provide essential
information on anti-concentration properties of the vector, specifically, on anti-concentration of the
scalar product with a row of our random matrix. The information contained in the `-decomposition
allows us to compute conditional small ball probability with imposed restrictions on the distribution
of the row. This becomes useful when studying anti-concentration for the matrix-vector product
MKy (see Section 6). Observe that the `-decomposition is defined for a discrete subset of Cn; in fact,
given a gradual vector x we construct its approximations by vectors in 1

k

(
Z2
)n

for various values of k
(k-approximations) and consider the `-decomposition of each of the approximations.

At a high level, the way we apply the `-decomposition to the original problem is similar to the way
the least common denominator was used in [49]. In [49], the set of unit incompressible vectors was
split into subsets according to the magnitude of the LCD. Then, with the help of a covering argument
combined with small ball probability estimates, the subsets of vectors with small (subexponential in
dimension) LCD were excluded from the set of potentially null vectors of the matrix, leaving only
those with very large LCD.

In our setting, we partition the collection of gradual vectors according to properties of the `-
decompositions of their lattice approximations. Using a combination of small ball probability es-
timates and coverings, we exclude those gradual vectors with “not that many” levels, leaving only
those satisfying the first condition in Theorem 1.1. The partitioning scheme is rather complicated
because of the “multidimensional” nature of the `-decomposition, i.e., due to the necessity to take into
consideration a set of parameters rather than a single number. The crucial notions used in the parti-
tioning are those of regular and spread `-parts. Given a vector y ∈ 1

k

(
Z2
)n

with the `-decomposition

(L(q))mq=1, we say that the `-part L(q) is spread if it contains at least two distinct levels and for every

pair of coordinates yi, yj (i, j ∈ L(q), yi 6= yj), we have |yi − yj | ≥ d/k. In the case of a vector with
ordered real components, we may say that the gaps between the “stairs” within the spread `-parts are
d times larger than their absolute minimum 1/k. The `-parts which are not spread are called regular.
Naturally, the matrix-vector products MKy, with y having spread `-parts of large cardinality, enjoy
relatively better anti-concentration properties. At a more detailed level, the following procedure is
applied:

• We isolate the set of gradual vectors, whose k-approximation (for some k within a specific range)
has large spread `-parts. The sets of vectors are denoted by Ku in the text (see Subsection 5.3),
where u ≥ 5 is related to k by k = du.

• For every vector from
⋃
Ku, its k-approximation y has the structure which guarantees strong

bounds for the small ball probability

P{‖(M − z Id)K y‖2 ≤ t}.

These bounds, combined with a covering procedure for the vectors in Ku, implies that with
probability close to one no vector in

⋃
Ku is approximately a null vector.

• Thus, it remains to deal with vectors in the complement S \
⋃
Ku, where S denotes the set

of gradual vectors in Cn (we emphasize again that the union is taken over u within a specific
range determined by n, d, and the cardinality of the set K). We show (see Subsection 5.3) that
the complement S \

⋃
Ku consists of gradual vectors, whose k-approximation (for a specially

chosen k) has `-parts of very large heights (see the definition of sets Pv and Propositon 5.6).
At an elementary level, the coordinates of those k-approximations y take many distinct values.
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Naturally, this property provides a fine small ball probability estimate for (M−z Id)K y, however,
for a different reason than in the case of large spread `-parts.

• As the final step, we make the following observation: the set of gradual vectors from Pv, which
have relatively large constant blocks of coordinates, has much smaller complexity than the entire
Pv. In a sense, it is possible to construct a net on the set of such vectors with cardinality balanced
by individual small ball probabilities, thus excluding the set from the collection of potentially null
vectors. The remaining set – gradual vectors without large constant blocks – are the “gradual
vectors with many levels” from the first assertion of Theorem 1.1.

The procedure described above occupies Section 5 and a considerable part of Section 7. Passing
from small ball probability bounds for scalar products with individual matrix rows to the entire matrix-
vector product is a crucial step, with technical complexities arising because of the lack of independence
between the rows. This tensorization part of the argument spans Section 6 and partially continues
into Section 7. We would like to describe it in more detail.

Tensorization. Our goal is to represent the small ball probability

P{‖(M − z Id)Ky‖2 ≤ t}

for a given k-vector y (i.e., y ∈ 1
k

(
Z2
)n

) and t > 0 in terms of the structure of y, i.e, in terms of the
`-decomposition with respect to y. A bound is obtained via a series of reduction steps. At each step,
we replace our random model or quantities with objects that are simpler to analyze.

As the first step, given a vector y with its `-decomposition (L(q))mq=1, we condition on realizations
of
∑

j∈L(q) Cj(M), q ≤ m (recall that Ci(M) denote the i-th column of M). Specifically, we define a
collection of n×m matrices Q with integer valued entries and study the small ball probability within
the event

EQ =
{ ∑
j∈L(q)

Cj(M) = Cq(Q), q ≤ m
}

for some fixed matrix Q. In particular, this forces the distributions of the columns of M from different
`-parts to be independent. Moreover, using the expansion properties of the underlying graph, we
impose additional assumptions on Q thus getting statistics of the number of non-zero entries of the
matrix M “restricted” to each `-part. The conditioning on EQ is described at the beginning of
Section 6, however, additional structural assumptions on matrices Q are introduced later in Section 7.

The next – crucial – step consists in replacing the given random model with another one having
independent components. More precisely, we define a random n-dimensional vector Z with jointly
independent components such that, conditioned on a certain event, its distribution matches the con-
ditional distribution of My given EQ. In its essence, every component Zi is a sum of independent
random variables, where each variable indicates the level of y “hit” by a non-zero entry in the i-th
row of M . We connect the (conditional) distribution of Z with the distribution of My by introducing
an intermediate random model involving bipartite multigraphs. We start by showing that the distri-
bution of the adjacency matrix of that multigraph, conditioned on the event that the graph is simple,
coincides with the distribution of M . Results of this type are known in the random graph literature.
In our setting we apply a result from [44] to get the correspondence. In its turn, the distribution of
the adjacency matrix of the multigraph is directly related to the distribution of Z conditioned on a
certain event that can be viewed as a sort of “d-regularity” property.

Anti-concentration estimates for My thus can be obtained by multiplying bounds for individual
components Zi. Those, in turn, can be written in terms of the `-decomposition of y and the structure
of the i-th row of the matrix Q. The functions which encapsulate this information are called the small
ball probability estimators. As the main result of Section 6, we estimate P{‖(M − z Id)Ky‖2 ≤ t} in
terms of the product

∏n
i=1 SBi, where SBi is the small ball probability estimator for the i-th row/i-th

component (see Theorem 6.1). Computing the product
∏n
i=1 SBi is not straightforward as it involves

analysis of both the `-decomposition of y and the matrix Q. In the first part of Section 7, we introduce
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other estimators related to SBi, which are easier to study. Once we obtain an explicit upper bound
for the small ball probability, we combine it with covering arguments, which were briefly mentioned
above.

The arguments in the paper are largely self-contained, although we employ several external re-
sults. This includes (mostly standard) bounds on concentration and anti-concentration of the sum of
independent variables; certain expansion properties of the underlying random d-regular digraph; an
upper bound on the second largest singular value of the adjacency matrix; some estimates regarding
the configuration model for random graphs with predefined degree sequences.

2 Preliminaries

By universal or absolute constants we always mean numbers independent of all involved parameters,
in particular independent of d and n. Given positive integers ` < k we denote sets {1, 2, . . . , `} and
{`, ` + 1, . . . , k} by [`] and [`, k] correspondingly. Having two functions f and g we write f ≈ g if
there are two absolute positive constants c and C such that cf ≤ g ≤ Cf . Given z ∈ C, we denote by
Re z (resp., Im z) the real (resp., imaginary) part of z. We define a lexicographical order on C in the
following way. Given x, y ∈ C, we have x ≥ y if either Rex > Re y or Rex = Re y and Imx ≥ Im y.
The lexicographical ordering will be useful when defining maximum over a finite subset of the complex
plane.

By Id we denote the identity n × n matrix, we use 1 for a vector of ones. For I ⊂ [n], by PI we
denote the orthogonal projection on the coordinate subspace RI (or CI), and denote the complement
of I inside [n] by Ic (n is always clear from the context). Given a vector x = (xi)

n
i=1 ∈ Cn, we

denote x† = x̄ = (x̄i)
n
i=1, where z̄ is the complex conjugate of z ∈ C, and by (x∗i )

n
i=1 we denote the

non-increasing rearrangement of the sequence (|xi|)ni=1. We use 〈·, ·〉 for the standard inner product
on Cn, that is 〈x, y〉 =

∑n
i=1 xiȳi. Further, we write ‖x‖∞ = maxi |xi| for the `∞-norm of x. For a

list of notation related to matrices and graphs we refer to the beginning of Section 3.
Working with classes of vectors, we often consider the Minkowski sum for two subsets V and W

of Cn, which is defined as
V +W = {v + w : v ∈ V, w ∈W}.

To obtain probability bounds we often consider certain relations between sets and use the following
simple claims to estimate their probabilities. Let A, B be sets, and R ⊂ A× B be a relation. Given
a ∈ A and b ∈ B, the image of a and preimage of b are defined by

R(a) = {y ∈ B : (a, y) ∈ R} and R−1(b) = {x ∈ A : (x, b) ∈ R}.

We also set R(A) = ∪a∈AR(a). We use the following standard estimate (see e.g. Claim 2.1 in [37]).

Claim 2.1. Let s, t > 0. Let R be a relation between two finite sets A and B such that for every
a ∈ A and every b ∈ B one has |R(a)| ≥ s and |R−1(b)| ≤ t. Then s|A| ≤ t|B|.

2.1 Anti-concentration

For a random vectorX distributed over a real or complex inner product space E, its Lévy concentration
function Q(X, t) is defined as

Q(X, t) := sup
λ∈E

P
{
‖X − λ‖2 ≤ t

}
, t > 0.

In particular, if X is a complex random variable then

Q(X, t) = sup
λ∈C

P
{
|X − λ| ≤ t

}
.
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Dealing with the Lévy concentration function of a complex random variable, we often identify C with
R2, which allows us to apply Propositions 2.2 and 2.3 formulated below for E = R2.

Upper bounds on the concentration function of a sum of independent random variables is a stan-
dard subject, with many results available in the literature. In our setting, we primarily deal with
complex-valued random variables, which in some situations require more delicate arguments. In this
subsection, we combine classical estimates of the concentration function with some (not complicated)
computations for vector-valued variables.

We will use (a particular version of) a theorem of Esseen [23] for sums of random vectors (Corollary
1 of Theorem 6.1 in [23] applied with ρi = t0, ρ = t).

Proposition 2.2 (Esseen). Let m ≥ 1 and ξ1, . . . , ξm be independent random vectors in R2. Then
for any t ≥ t0 > 0 one has

Q
( m∑
i=1

ξi, t
)
≤ C2.2(t/t0)2√

m−
∑m

i=1Q(ξi, t0)
,

where C2.2 > 0 is a universal constant. In particular, if α ≥ maxi≤mQ(ξi, t0) then

Q
( m∑
i=1

ξi, t0

)
≤ C2.2√

m(1− α)
.

We will also need a result of Miroshnikov [45], which extends estimates on the concentration
function due to Kesten [35] to the multi-dimensional setting. We state below the two dimensional
version of the Corollary following Theorem 1 in [45] (note that the letter E in that paper stands for
the two-dimensional cube B2

∞, while we deal with the unit disc B2
2 , so that B2

2 ⊂ E = B2
∞ ⊂

√
2B2

2).

Proposition 2.3 (Miroshnikov). Let m ≥ 1 and ξ1, . . . , ξm be independent random vectors in R2. Let
t0 > 0 be such that maxi≤mQ(ξi, t0) ≤ 1/2. Then for any t ≥ t0 one has

Q
( m∑
i=1

ξi, t
)
≤ C t

t0
√
m

max
i≤m
Q(ξi,

√
2 t),

where C is a positive universal constant.

In general, the factor 1/
√
m in the above estimates is the best possible and is attained for example

on ξi’s with Re ξi = Im ξi being Bernoulli random variables. But if for example for every i ≤ m,
Re ξi and Im ξi are independent Bernoulli random variables, or if ξi is uniformly distributed over
the unit square, then Theorem 2 from [35] implies respectively bounds C/m and Ct2/m for all
t ∈ (0, 1/2]. Some other cases when the factor 1/

√
m can be improved to 1/m were considered in [22]

(for distributions satisfying a certain symmetry condition) and in [23] (for, in a sense, well spread
distributions). We will need the following statement which is known to specialists. We provide its
proof for the sake of completeness at the end of this section.

Proposition 2.4. Let m ≥ 1 and ξ1, . . . , ξm be independent random vectors in R2 with densities
bounded by 1. Then the density of ξ1 + . . .+ ξm is bounded by C/m, where C is a universal constant.

Our next proposition is another case where the factor 1/
√
m can be improved.

Proposition 2.5. Let u, ε > 0, m ≥ 1, and let ξ1, ξ2, . . . , ξm be i.i.d. discrete complex random vari-
ables taking values on an ε-separated (in the Euclidean metric) subset of the complex plane satisfying
supa∈C P{ξj = a} ≤ u. Then for any t > 0 one has

Q
( m∑
j=1

ξj , t
)
≤ C max

(
ut2/(mε2), u

)
,

where C is a positive absolute constant.
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Proof. As above, in this proof it will be convenient to identify C with R2 and to present complex
random variables as two dimensional real random vectors. We also denote the Euclidean unit ball
(centered at 0) on R2 by B. Let ηj , j ≤ m, be i.i.d. random vectors in R2 uniformly distributed on
(ε/2)B and jointly independent with ξj ’s. Note that by standard concentration estimates (e.g., one
can apply Hoeffding’s inequality [31] for the first and second coordinates), we have for a large enough
absolute positive constant C,

q := P
{∣∣∣ m∑

j=1

ηj

∣∣∣ ≤ C√mε} ≥ 1/2.

Define smoothed i.i.d. random variables ξ′j , j ≤ m, by setting ξ′j := ξj + ηj . Since interiors of the
discs of radius ε/2 centered at atoms of ξj ’s are disjoint, we get that the densities of ξ′j , j ≤ m, are

uniformly bounded by 4u/(πε2). By independence of ηj and ξj we observe that for every t > 0,

Q
( m∑
j=1

ξj , t
)

= max
a∈C

1

q
P
{∣∣∣ m∑

j=1

ξj − a
∣∣∣ ≤ t and

∣∣∣ m∑
j=1

ηj

∣∣∣ ≤ C√mε}
≤ 2Q

( m∑
j=1

ξ′j , t+ C
√
mε
)

= 2Q
( m∑
j=1

ξ′′j , τ
)
,

where ξ′′j := (2/ε)ξ′j
√
u/π and τ = (2/ε)t

√
u/π + 2C

√
um/π. Note that the densities of ξ′′j , j ≤ m,

are uniformly bounded by 1. Thus Proposition 2.4 implies the desired result.

To prove Proposition 2.4 we need the following lemma (which, in a sense, similar to the proof of
Theorem 1 in [22]). In this lemma 〈·, ·〉 denotes the canonical inner product on R2.

Lemma 2.6. Let p be a probability density on R2 bounded by 1. Let f = p̂, that is

f(x) = p̂(x) =

∫
R2

exp(−2πi 〈x, y〉)p(y)dy.

Then for every q ≥ 2 one has
∫
R2 |f(x)|qdx ≤ 47/q.

Proof. Denote p̃(x) = p(−x), P (x) := p ∗ p̃, where ∗ denotes the convolution, and F (x) = |f(x)|2.
Then,

F = f · f̄ = P̂ .

Observe that the function P satisfies P (x) ≤ 1, P (x) = P (−x) for every x ∈ R2, and
∫
R2 P (x)dx = 1.

Therefore, for every x ∈ R2,

F (x) =

∫
R2

cos(2π 〈x, y〉)P (y)dy =

∫
R2

(1− 2 sin2(π 〈x, y〉)P (y)dy = 1− 2

∫
R2

sin2(π 〈x, y〉)P (y)dy.

Consider the sets
Aδ := {x ∈ R2 : F (x) ≥ 1− δ2}

for δ ∈ (0, 1/2]. Note that for every integer k ≥ 1 one has k2 sin2 t ≥ sin2(kt). Given δ ∈ (0, 1/2], let
k = b1/(2δ)c. Then for every x ∈ Aδ we have

F (kx) ≥ 1− 2k2

∫
R2

sin2(π 〈x, y〉)P (y)dy = 1− k2(1− F (x)) ≥ 1− (kδ)2 ≥ 3/4,

that is on the set kAδ = {kx : x ∈ Aδ} we have F ≥ 3/4. On the other hand, by the Plancherel
theorem we have ∫

R2

F (x)dx =

∫
R2

|f(x)|2dx =

∫
R2

p2(x)dx ≤
∫
R2

p(x)dx = 1.
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This implies |kAδ| ≤ 4/3, hence |Aδ| ≤ 4/(3k2) ≤ 64δ2/3, in particular, |A1/2| ≤ 4/3. Finally we
estimate ∫

R2

|f(x)|qdx =

∫
R2

(F (x))q/2dx.

Then for q ≥ 2 we have

I1 :=

∫
Ac

1/2

(F (x))q/2dx ≤ (3/4)q/2−1

∫
R2

F (x)dx ≤ (3/4)q/2−1 ≤ 3/q,

and

I2 :=

∫
A1/2

(F (x))q/2dx =

∫ 1

0
(q/2)sq/2−1|{F ≥ max(s, 3/4)}|ds

=

∫ 3/4

0
|{F ≥ 3/4}|dsq/2 +

∫ 1

3/4
(q/2)sq/2−1|{F ≥ s}|ds

= (3/4)q/2|A1/2|+
∫ 1

3/4
(q/2)sq/2−1|A√1−s| ds ≤ 9/(16q) + (64/3)

∫ 1

3/4
(q/2)sq/2−1(1− s)ds

Using integration by parts, we have∫ 1

3/4
(q/2)sq/2−1(1− s) ds ≤

∫ 1

0
(1− s) dsq/2 =

∫ 1

0
sq/2 ds =

2

q + 2
.

Therefore,
I2 ≤ 9/(16q) + 128/(3q) ≤ 44/q.

Since
∫
R2 |f(x)|qdx = I1 + I2, this completes the proof.

Proof of Proposition 2.4. The case m = 1 is trivial, so we assume m ≥ 2. As in Lemma 2.6, set
fi = p̂i, and denote the density of ξ1, ξ2, . . . , ξm by p. Then, applying the Hölder inequality and
Lemma 2.6, we obtain

p(x) =

∣∣∣∣∣
∫
R2

m∏
i=1

fi(y) exp(2πi 〈x, y〉)dy

∣∣∣∣∣ ≤
∫
R2

m∏
i=1

∣∣fi(y)
∣∣dy ≤ m∏

i=1

(∫
R2

∣∣fi(y)
∣∣mdy)1/m

≤ C/m.

2.2 Concentration

The next lemma is the tensorization argument. It is a variant of Lemma 2.2 in [49] and its proof
follows the same lines. We include it for the sake of completeness.

Lemma 2.7. Let ξ1, . . . , ξn be independent complex random variables and ε0, p1, . . . , pn be non-
negative real numbers. Assume that for every i ≤ n and every ε ≥ ε0 one has

P{|ξi| ≤ ε} ≤ ε2pi.

Then for every ε ≥ ε0 one has

P
{ n∑
i=1

|ξi|2 ≤ ε2n
}
≤ (C2.7ε)

2n
n∏
i=1

pi,

where C2.7 > 0 is a universal constant.
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Proof. Let ε ≥ ε0. Using the hypothesis of the lemma and the distribution integral formula, we have

E exp(−|ξi|2/ε2) =

∫ 1

0
P{exp(−|ξi|2/ε2) > s} ds =

∫ ∞
0

2ue−u
2
P{|ξi| < uε} du

≤ piε2

∫ ∞
ε0/ε

2u3e−u
2
du+ piε

2
0

∫ ε0/ε

0
2ue−u

2
du ≤ Cpiε2.

By Markov’s inequality, we obtain

P
{ n∑
i=1

|ξi|2 ≤ ε2n
}

= P
{

exp
(
− 1

ε2

n∑
i=1

|ξi|2
)
≥ e−n

}
≤ enE exp

(
− 1

ε2

n∑
i=1

|ξi|2
)

= en
n∏
i=1

E exp(−|ξi|2/ε2),

which implies the desired result.

The following statement is a non-Hermitian counterpart of the spectral gap estimates for undi-
rected random d-regular graphs – a characteristic of major importance in connection with the graph
expansion properties. We refer to [1, 10, 13, 17, 19, 21, 24, 25, 32, 46, 57] for more information on
random expanders. The following statement was first proved in [13] for d ≤ C

√
n (which is enough

in this paper), then it was extended to the range d ≤ Cn2/3 in [17] and to d ≤ n/2 in [57].

Theorem 2.8. There exists a universal constant C2.8 > 0 such that for 1 ≤ d ≤ n
2 one has P(E2.8) ≥

1− 1/n100, where

E2.8 :=
{
M ∈Mn,d :

∥∥∥M − d

n
11t
∥∥∥ ≤ C2.8

√
d
}
.

In fact one can replace the term 1/n100 in the above probability bound by any negative power of
n at the expense of increasing the constant C2.8.

3 Edge count statistics of d-regular digraphs

A combination of probabilistic arguments shows that the edge counting statistics of random d-regular
digraphs (i.e., the number of edges connecting subsets of vertices of given cardinalities) concentrate
around their average values. In this section, we collect some estimates of the number of edges con-
necting given subsets of vertices (equivalently, the number of non-zero elements in a given submatrix)
and of the number of in- or out-neighbors of a given vertex subset. While some of the statements are
borrowed from earlier works, others are new. We would like to note that properties of this type were
considered in the random setting in [14, 37, 38].

First we introduce some notation. Denote by Dn,d the set of directed d-regular graphs on n
vertices, where we allow loops but no multiple edges. This way, there is a natural bijection between
Dn,d and Mn,d. We endow Dn,d with the uniform probability measure also denoted by P. Given
a graph G ∈ Dn,d with an edge set E and a subset I ⊂ [n] of its vertices, define sets of out- and
in-neighbors as

N out
G (I) =

{
v ≤ n : ∃i ∈ I (i, v) ∈ E

}
and N in

G (I) =
{
v ≤ n : ∃i ∈ I (v, i) ∈ E

}
.

Similarly, we define the out-edges and the in-edges as

EoutG (I) =
{
e ∈ E : e = (i, j) for some i ∈ I and j ≤ n

}
and

EinG (I) =
{
e ∈ E : e = (i, j) for some i ≤ n and j ∈ I

}
.
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If I = {i} we use lighter notation N out
G (i), N in

G (i), EoutG (i), and EinG (i). Given a graph G = ([n], E),
for every I, J ⊂ [n] the set of all edges departing from I and landing in J is denoted by

EG(I, J) :=
{
e ∈ E : e = (i, j) for some i ∈ I and j ∈ J

}
.

Let M = {µij} ∈ Mn,d and let Ri = Ri(M) be the i’s row of M , i = 1, ..., n. For every subset
J ⊂ [n], let

SJ := {i ≤ n : suppRi ∩ J 6= ∅}

be the union of supports of columns indexed by J (the matrix will be clear from the context). Given
an n × n matrix M and a set K ⊂ [n], we use notation MK for a |K| × n matrix obtained from M
by removing rows Ri(M) with indices i 6∈ K.

We start with the statement which essentially says that given a typical d-regular digraph and a
set of vertices J , which is not too large, the set of all in-neighbors of J has cardinality close to the
largest possible, i.e., d|J |. To formulate the statement, given k ≤ n and ε ∈ (0, 1) we introduce the
set

Ωk,ε :=
{
M ∈Mn,d : ∀J ⊂ [n] with |J | = k one has |SJ | ≥ (1− ε)dk

}
. (1)

Clearly, if k = 1 then Ωk,ε =Mn,d. The following theorem is essentially Theorem 2.2 of [37] (see also
Theorem 3.1 there).

Theorem 3.1. Let e8 < d ≤ n, ε0 =
√

ln d/d, and ε ∈ [ε0, 1). Let k ≤ c3.1εn/d, where c3.1 ∈ (0, 1)
is a sufficiently small absolute positive constant. Then

P(Ωk,ε) ≥ 1− exp

(
−ε

2dk

8
ln
(eεc3.1n

kd

))
.

In particular,

P
( bc3.1εn/dc⋂

k=1

Ωk,ε

)
≥ 1− (Cd/εn)ε

2d/8 ,

where C is an absolute positive constant.

In this paper, we prove the following auxiliary theorem, which states that given a large set of
columns (of a typical matrix from Mn,d), there are many rows having many ones in this set.

Theorem 3.2. Let d ≤ n be large enough integers and let `0 ≥ d+ 24en/d. For every k ≥ `0, denote

αk :=
d(k − d)

8en
− 1 and βk := max

(
en exp (−αk/2),

4k ln(en/k)

αk

)
.

Let E3.2 be the set of all M ∈Mn,d such that for every J ⊂ [n] with |J | ≥ `0 one has∣∣{i ≤ n : |suppRi(M) ∩ J | < α|J |
}∣∣ ≤ β|J |.

Then
P(E3.2) ≥ 1− 4e−`0 .

Before passing to the proof of Theorem 3.2 we mention an immediate corollary which will be used
in Section 7.

Corollary 3.3. There exist positive absolute constants C3.3, c3.3 such that the following holds. Let
C3.3 ≤ d ≤ c3.3

√
n and let E3.3 be the set of all M ∈Mn,d such that for every J ⊂ [n] with |J | ≥ n/

√
d

one has ∣∣{i ≤ n : |suppRi(M) ∩ J | < c3.3d|J |/n
}∣∣ ≤ n/√d.

Then
P(E3.3) ≥ 1− 4 exp

(
− n/

√
d
)
.
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Proof of Corollary 3.3. Let J ⊂ [n] be such that k := |J | ≥ n/
√
d. By the conditions on n and d we

have k ≥ 2d so that, with αk, βk defined as in Theorem 3.2, we have αk ≥ dk/(32en) ≥
√
d/(32e) and

βk ≤ Cn ln d/d, for some positive constant C. Adjusting the choice of the constant c3.3 and applying
Theorem 3.2 with `0 = dn/

√
de ≥ d+ 24en/d we obtain the result.

In order to prove Theorem 3.2, we need the lemma below (it will be more convenient for us to
formulate it in the graph language). For every S, J ⊂ [n] we introduce

ΓJS := {G ∈ Dn,d : ∀i ∈ S one has |EG(i, J)| < α|J |},

where αk’s were defined in Theorem 3.2. When S = [s] and J = [k] (we postulate that [0] = ∅) we
will denote the above set by Γks . For every ` ≤ d, denote

Γks,` := Γks−1 ∩ {G ∈ Dn,d : |EG(s, [k])| = `}.

With these notations, we have Γk0 = Dn,d for every k. Clearly

Γks ⊆ Γks−1 and Γks =

bαkc⊔
`=0

Γks,`. (2)

Lemma 3.4. Let d, n, `0, and αk, k ≥ `0, be as in Theorem 3.2 and let S, J ⊂ [n] be such that
|J | ≥ `0. Then

P(ΓJS) ≤ exp(−α|J ||S|).

Proof. Without loss of generality we may assume that S = [s] and J = [k] for some s ≥ 1 and k ≥ `0.
Let q be a parameter in the interval αk < q ≤ d, which will be chosen later. We first compare the
cardinalities of Γks,` and Γks,`+1 for every ` < q. To this end we construct a relation R` ⊂ Γks,`×Γks,`+1.

Let G ∈ Γks,`. For j > k denote

Ej := EG([s]c, [k]) \
(
EinG
(
N out
G (s) ∩ [k]

)
∪ EoutG

(
N in
G (j)

))
.

Since G ∈ Γks,`,
|EG([s]c, [k])| = kd− |EG([s], [k])| ≥ kd− αk(s− 1)− `.

On the other hand, since |N out
G (s) ∩ [k]| = `, then |EG

(
[s]c,N out

G (s) ∩ [k]
)
| ≤ `(d− 1). Using that

|EG
(
N in
G (j) \ [s], [k]

)
| ≤ d(d− 1)

we obtain
|Ej | ≥ kd− αk(s− 1)− `d− d(d− 1) ≥ (k − d+ 1)d− q(s+ d− 1). (3)

Now we are ready to define the relation R`. We let a pair (G,G′) belong to R` for some G′ ∈ Γks,`+1

if G′ can be obtained from G in the following way. Choose j ∈ N out
G (s)∩ [k]c and an edge (u, v) ∈ Ej .

We destroy the edge (s, j) and create the edge (s, v), then we destroy the edge (u, v) and create the
edge (u, j) (in other words, we perform the simple switching on the vertices s, u, j, v). Note that the
conditions u 6∈ N in

G (j) and v 6∈ N out
G (s), which are implied by the definition of Ej , guarantee that the

simple switching does not create multiple edges, and we obtain a valid graph in Γks,`+1. Using (3) and
assuming

q ≤ d(k − d)

2(n+ d)
, (4)

we deduce that for every G ∈ Γks,` one has

|R`(G)| ≥ (d− `)
[
(k − d+ 1)d− q(s+ d− 1)

]
≥ d(k − d)(d− q)

2
. (5)
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Now we estimate the cardinalities of preimages. Let G′ ∈ R`(Γks,`). In order to reconstruct a graph
G for which (G,G′) ∈ R` we need to perform a simple switching which destroys an edge in EG′(s, [k])
and adds an edge in EG′(s, [k]c). To this end, choose

v ∈ N out
G′ (s) ∩ [k] and j ∈ [k]c \ N out

G′ (s).

Since |N in
G′ (j)| = d, there are at most d simple switchings which destroy the edge (s, v) and create the

edge (s, j). Using that |N out
G′ (s) ∩ [k]| = `+ 1, we observe

|R−1
` (G′)| ≤ d(`+ 1)(n− k − (d− `− 1)) ≤ dq(n− k). (6)

Using Claim 2.1 together with inequalities (5) and (6), we obtain that for every ` < q,

|Γks,`| ≤
2q(n− k)

(k − d)(d− q)
|Γks,`+1|.

Therefore

|Γks,`| ≤
(

2q(n− k)

(k − d)(d− q)

)q−`
|Γks,q| ≤

(
2q(n− k)

(k − d)(d− q)

)q−`
|Γks−1|.

This together with (2) implies that

|Γks | ≤
bαkc∑
`=0

(
2q(n− k)

(k − d)(d− q)

)q−`
|Γks−1| ≤ ebαkc+1−q |Γks−1|,

provided that
2q(n− k)

(k − d)(d− q)
≤ e−1.

We choose q = 2bαkc + 2 which satisfies the above condition and the condition (4) by the definition
of αk. Therefore we have

|Γks | ≤ e−αk |Γks−1|.

Since we do not impose any restrictions on s, we conclude that

|Γks | = |Dn,d|
s∏

p=1

|Γkp|
|Γkp−1|

≤ e−sαk |Dn,d|.

Proof of Theorem 3.2. We start by defining

Γ :=
{
G ∈ Dn,d : ∃J ⊂ [n], |J | ≥ `0 with

∣∣{i ≤ n : |EG(i, J)| < α|J |
}∣∣ > β|J |

}
.

It is not difficult to see that Γ is the graph counterpart of event E3.2, in particular P(E3.2) = P(Γ).
Note that

Γ =
⋃
J⊂[n]
|J|≥`0

⋃
S⊂[n]
|S|>β|J|

ΓJS .

Therefore, applying Lemma 3.4 and taking the union bound, we obtain

P(Γ) ≤
∑
J⊂[n]
|J|≥`0

∑
S⊂[n]
|S|>β|J|

P(ΓJS) ≤
∑
J⊂[n]
|J|≥`0

∑
S⊂[n]
|S|≥β|J|

e−α|J||S| =
∑
k≥`0

∑
s≥βk

(
n

k

)(
n

s

)
e−αks.
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Further, by the choice of βk, we have
(
n
s

)
e−αks ≤ (en/s)s e−αks ≤ e−αks/2 for all s ≥ βk and since

αk ≥ 2, then ∑
s≥βk

(
n

s

)
e−αks ≤ 2e−αkβk/2.

By the choice of βk’s, this implies

P(Γ) ≤ 2
∑
k≥`0

(
n

k

)
e−αkβk/2 ≤ 2

∑
k≥`0

(
k

en

)k
≤ 4e−`0 ,

which completes the proof.

Combining Theorems 3.1 and 3.2, we prove the following proposition.

Proposition 3.5. There exist absolute positive constants C and c3.5 such that the following holds.
Let C ≤ d ≤ c3.5

√
n/ lnn and let E3.5 be the set of all M ∈Mn,d such that for all J ⊂ [n] one has∣∣{i ≤ n : |suppRi(M) ∩ J | ≥ c3.5d|J |/n and

|suppRi(M) ∩ Jc| ≥ c3.5d|Jc|/n
}∣∣ ≥ c3.5 min(d|J |, d|Jc|, n).

Then
P(E3.5) ≥ 1− n−c3.5d.

Proof. Let c > 0 be small enough absolute constant and let d ≤ c
√
n. We first treat subsets J

satisfying |J | < 2d. Recall that SJ denotes the union of supports of columns indexed by J . Therefore,
using d ≤ c

√
n and applying Theorem 3.1, we observe that there exists an absolute constant c′ > 0

such that with probability at least 1 − n−c′d one has |SJ | ≥ 0.9d|J | for all J with |J | < 2d. Now fix
J ⊂ [n] satisfying both |J | < 2d and |SJ | ≥ 0.9d|J |. Since d ≤ c

√
n, then cd|J |/n ≤ 2c3 < 1 for small

enough c. Therefore, the condition

|suppRi(M) ∩ J | ≥ cd|J |/n

means that i ∈ SJ . Note also that in this case min(d|J |, d|Jc|, n) = d|J |. Thus, it is enough to show
that

|{i ∈ SJ : |suppRi(M) ∩ Jc| ≥ cd}| ≥ cd|J |.

Let ` denote the number of rows having at least d − 1 ones in Jc. Counting ones in the columns
indexed by J we have

d|Jc| = dn− d|J | ≤ d`+ (d− 2)(n− `) = 2`+ dn− 2n.

This implies ` ≥ n − d|J |/2. Therefore there are at least ` + |SJ | − n ≥ 0.4d|J | rows indexed by
SJ and having at least d − 1 ones in Jc. This proves that the set of all matrices in Mn,d satisfying
the condition of the proposition for subsets J ⊂ [n] with |J | < 2d, has measure at least 1 − n−c′d.
Interchanging the role of J and Jc we obtain the same bound for subsets J satisfying |J | > n− 2d.

For the rest of the proof we deal only with sets J satisfying |J | ∈ [2d, n − 2d] for which the
quantities d(|J |−d)/n and d|J |/n are equivalent up to a constant multiple (and similarly for Jc). We
will prove a more precise relation, which is convenient to formulate in the graph language. Namely,
denoting by E the set of all digraphs G ∈ Dn,d such that for every J ⊂ [n] with |J | ∈ [2d, n− 2d]∣∣∣{i ≤ n : |EG(i, J)| ≥ c1d(|J | − d)

n
and |EG(i, Jc)| ≥ c1d(|Jc| − d)

n

}∣∣∣
≥ c1 min(d|J |, d|Jc|, n),
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we show that the event E has probability at least 1 − n−c1d, where c1 > 0 is a sufficiently small
universal constant.

Given `0 ≥ d+ 24en/d and k ≥ `0, we consider parameters αk and βk introduced in Theorem 3.2.
Additionally, for k < `0 we set αk := α`0 and let βk be defined by the same formula as βk for k ≥ `0.
Note that (αk)k is a non-decreasing sequence, while (βk)k is a non-increasing sequence. Now set
`0 = bd + Cn/dc, where C ≥ 24e is a sufficiently large universal constant chosen so that β`0 ≤ n/4
(then βi + βj ≤ n/2 for every i, j ≥ `0). Note that 2d < `0 < n/2. Define the event

E1 :=
{
G ∈ Dn,d : ∀J ⊂ [n], |J | ∈ [`0, n− `0]), one has∣∣{i ≤ n : |EG(i, J)| ≥ α|J | and |EG(i, Jc)| ≥ α|Jc|

}∣∣ ≥ n− β|J | − β|Jc|}
and, for m = 2, 3, the events

Em :=
{
G ∈ Dn,d : ∀J ⊂ [n], |J | ∈ Sm, one has∣∣∣{i ≤ n : |EG(i, J)| ≥

α|J |

α`0
and |EG(i, Jc)| ≥

α|Jc|

α`0

}∣∣∣ ≥ c1 min(d|J |, d|Jc|, n)
}
.

where S2 = [`0 − 1], S3 = [n − `0 + 1, n]. Then we clearly have P(E2) = P(E3) and, moreover,
E1 ∩ E2 ∩ E3 ⊂ E , provided that c1 is sufficiently small. Therefore,

P(E) ≥ P(E1) + P(E2) + P(E3)− 2 = P(E1) + 2P(E2)− 2. (7)

First, we estimate probability of E1. For any set J with |J | ≥ `0 and |Jc| ≥ `0, the condition∣∣{i ≤ n : |EG(i, J)| ≥ α|J |
}∣∣ ≥ n− β|J | and

∣∣{i ≤ n : |EG(i, Jc)| ≥ α|Jc|
}∣∣ ≥ n− β|Jc|

for a graph G ∈ Dn,d implies∣∣{i ≤ n : |EG(i, J)| ≥ α|J | and |EG(i, Jc)| ≥ α|Jc|
}∣∣ ≥ n− β|J | − β|Jc|.

Therefore by Theorem 3.2 we obtain P(E1) ≥ 1− 8e−`0 .
We now turn to the probability of E2. Note that for every J with |J | < `0, we have α|J | = α`0 and

α|Jc| ≤ αn. Further, for every i ≤ n,

|EG(i, J)|+ |EG(i, Jc)| = d.

Therefore, for every graph G ∈ Dn,d we have{
i ≤ n : |EG(i, J)| ≥

α|J |

α`0
and |EG(i, Jc)| ≥

α|Jc|

α`0

}
⊃
{
i ≤ n : |EG(i, J)| ≥ 1 and |EG(i, Jc)| ≥ αn

α`0

}
= N in

G (J) \
{
i ≤ n : |EG(i, J)| > d− αn

α`0

}
.

Since α`0 ≥ 2, αn ≤ d/(8e), we observe∣∣∣{i ≤ n : |EG(i, J)| > d− αn
α`0

}∣∣∣ ≤ d|J |
d− αn/α`0

≤ 2|J |.

Therefore,

E2 ⊃
{
G ∈ Dn,d : ∀J ⊂ [n], |J | < `0, |N in

G (J)| ≥ c1 min(d|J |, n) + 2|J |
}
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We apply Theorem 3.1 with ε = 0.1. Recall that c1 is small enough. Theorem 3.1 implies that there
exists a universal constant c′1 > 0, such that with probability at least 1 − n−c

′
1d for every J with

|J | ≤ c3.1n/(10d) one has

|N in
G (J)| ≥ 0.9d|J | ≥ c1 min(d|J |, n) + 2|J |

and for every J with c3.1n/(10d) ≤ |J | < `0, passing to a subset J0 ⊂ J with |J0| = bc3.1n/(10d)c and
using `0 ≤ 2Cn/d, one has

|N in
G (J)| ≥ |N in

G (J0)| ≥ 0.9d|J0| ≥ 9c3.1d|J |/(400C) ≥ c1 min(d|J |, n) + 2|J |.

Thus P(E2) ≥ 1−n−c′1d. By (7) this implies P(E) ≥ 1−8e`0−2n−c
′
1d, which together with the bounds

obtained at the beginning of the proof implies the desired result.

Finally, we need the following deterministic statement dealing with sets of in-neighbours of two
disjoint sets of vertices. Given two disjoint subsets J `, Jr ⊂ [n] and a matrix M ∈Mn,d, denote

I` = I`(M) := {i ≤ n : |suppRi ∩ J `| = 1 and suppRi ∩ Jr = ∅},

and
Ir = Ir(M) := {i ≤ n : suppRi ∩ J ` = ∅ and |suppRi ∩ Jr| = 1}.

Here the upper indices ` and r refer to left and right, since later for a given vector x ∈ Cn, denoting
by σ a permutation of [n] satisfying x∗i = |xσ(i)| for all i ≤ n, we will choose J ` = σ([k1]) and
Jr = σ([k2, n]) for some k1 < k2. The following statement is Lemma 2.7 from [38].

Lemma 3.6. Let d and ε be as in Theorem 3.1. Let p ≥ 2, m ≥ 1 be integers satisfying pm ≤ c3.1εn/d
and let J `, Jr ⊂ [n] be such that J ` ∩ Jr = ∅, |J `| = m, |Jr| = (p− 1)m. Let M ∈ Ωpm,ε. Then

|I`| ≥ (1− 2εp)d|J `|.

In particular, if |Jr| = |J `| = m with m ≤ c3.1εn/(2d) then

(1− 4ε)dm ≤ min(|I`|, |Ir|) ≤ max(|I`|, |Ir|) ≤ dm.

4 Almost constant and steep vectors

As in [38] we split Cn into three classes of vectors which we call steep, gradual, and almost constant
vectors. This section is devoted to steep and almost constant vectors. The definition of steep vectors
is similar to the one given in [38], with slight modifications one of which is quite important. Note
that if a subset K ⊂ [n] is such that |Kc| is much larger than n1−1/d, then the submatrix MK will
contain null columns with large probability, hence the kernel of MK will contain very sparse vectors.
Therefore, when studying the kernel of MK (or (M − z Id)K), very sparse vectors and those “close”
to very sparse should be handled separately, see the definition of T3 below. The set T3 – the set of
very steep vectors – can be viewed as an enlargement of the set of very sparse vectors; in this sense,
our construction is related to the definition of compressible vectors,

Comp(m, ρ) := {x ∈ Cn : ∃ m-sparse vector y ∈ Cn such that ‖x− y‖2 ≤ ρ‖x‖2},

introduced in [49] following ideas from [41] (as usual, m-sparse means that a vector has at most m non-
zero coordinates). Both classes, T3 and Comp, are introduced as classes of vectors close to m-sparse
vectors (for an appropriate m). An important difference between the two lies in how the distance to
the set of sparse vectors is measured – instead of the Euclidean distance used for compressible vectors,
we estimate the `∞-norm after some normalization related to a variant of the weak `1/3-norm.
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After introducing and eliminating very steep vectors we consider other vectors with a jump in their
non-increasing rearrangement. The goal is to show that such vectors are far from the kernel of MK .
We will distinguish two types of jumps. The first one occurs at the beginning of the non-increasing
rearrangement and is of order 4d, that is for certain m < k, we have x∗m > 4dx∗k, see the definition
of T0 below. To treat such vectors x we use Lemma 4.4, which yields that with large probability the
random matrix distributed in Mn,d has many rows with exactly one 1 in coordinates corresponding
to m largest components of x, and all zero coordinates in places corresponding to m + 1-st to k-th
largest component of x. Since the total numbers of ones in every row is d we have that the inner
product of every such row with x is separated from zero. Unfortunately, since this procedure relies
on graph expansion properties given by Theorem 3.1, it works only when k is not too large, namely
when k ≤ c3.1εn/d. For larger values of k we use a different technique, which requires considering a
jump of order d3/2, see the definitions of T1 and T2. For vectors with such jumps, using the switching
technique, we estimate the probability that a fixed vector is close to the kernel, construct a special
net of rather small cardinality in the set of such vectors, then use the union bound. This scheme
is similar to the one used in [38] with an important difference in the class T2 – we use a number
of coordinates proportional to n in the definition (meaning n3 is proportional to n), while in [38]
we used only n/ ln d coordinates. This makes bounding the probability for individual vectors much
more difficult and involved (the method of [38] does not work). The main novelty of our new method
is splitting the set Mn,d into many equivalence classes and working in each class separately. The
construction of nets, which is also rather delicate, comes from [38].

Finally, we treat almost constant vectors, i.e., vectors having many coordinates which are almost
equal to each other. Having excluded vectors with jumps it only remains to treat those without any.
However, if a vector x with no jumps has many almost equal coordinates (say on a set J), then
its inner product with a row having many ones inside J cannot be close to zero (and we show that
there are many such rows). In view of this observation, it is important to find a balance between
quantitative characteristics of the level of jumps and the places where these jumps occur. Due to
technical reasons, such a balance cannot be achieved directly, in particular, to treat almost constant
vectors, one needs to consider constant jumps (not a power of d). Fortunately, it turns out that every
almost constant vector without a constant jump can be represented as the sum of a vector with a big
jump and a constant vector, i.e., a vector whose coordinates are equal to each other. Moreover, our
proof for vectors with big jumps is stable under shifts by constant vectors which makes our treatment
of almost constant vectors a lot easier.

We now introduce the following parameters, which will be used throughout this section. First
fix 1 ≤ L ≤ n/d3 (we always assume that n ≥ d3). When considering the minor MK , L will be
responsible for the size of the set Kc. In order to use Theorem 3.1, we fix ε0 and a related parameter
p as follows:

ε0 =
√

(ln d)/d, p = b1/(5ε0)c =
⌊

1
5

√
d/ ln d

⌋
(the choice of p comes from ε0p < 1 needed in Lemma 4.4 in order to apply Lemma 3.6). Furthermore,
we fix a sufficiently small positive absolute constant a3 (we don’t try to estimate the actual value of
a3, the conditions on how small it is appear in the corresponding proofs). Set

n1 := dn/d3/2e, n2 := bn/d2/3c, and n3 := ba3nc.

We also fix two positive integers r and r0 = r0(L) such that pr < n1 ≤ pr+1 and r0 is the smallest
non-negative integer satisfying pr0 ≥ 20L/d. Note that 0 ≤ r0 < r. Indeed,

pr−1 ≥ n1/p
2 ≥ 25n ln d/d5/2 > 20L/d,

which implies that r0 ≤ r − 1.
Finally, denote the class of constant vectors by

K := {x = (xi)
n
i=1 ∈ Cn : x1 = x2 = ... = xn}.
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4.1 Steep vectors

The definition of the class of steep vectors consists of few steps at which we define the sets T0, T1, T2,
and T3. We start with T3, the class of very steep vectors. Set

T3 = T3(L) := {x ∈ Cn : ∃i ≤ pr0 such that x∗i > (n/i)3x∗pr0}.

Note that one can relate this class to the class of vectors close to m-sparse vectors with m = pr0 − 1.
Indeed, consider the following variant of the weak `1/3-norm,

|||x||| = 1

n3
sup
i≤m

i3x∗i .

Then
T3 = {x ∈ Cn : ∃ m-sparse vector y ∈ Cn such that ‖x− y‖∞ < |||x|||}.

We now define the set T0. For r0 ≤ i ≤ r − 1 set

T0,i = T0,i(L) := {x ∈ Cn : x 6∈ T3 ∪
i−1⋃
j=r0

T0,j and x∗pi > 4dx∗pi+1},

where ∪r0−1
j=r0
T0,j means ∅, and for i = r let

T0,r = T0,r(L) := {x ∈ Cn : x 6∈ T3 ∪
r−1⋃
j=r0

T0,j and x∗dn1/pe > 4dx∗n1
},

Let

T0 = T0(L) :=
r⋃

i=r0

T0,i.

Next we define T1 and T2 as

T1 = T1(L) := {x ∈ Cn : x 6∈ T0 ∪ T3 and x∗n1
> d3/2 x∗n2

}

and
T2 = T2(L) := {x ∈ Cn : x 6∈ T0 ∪ T1 ∪ T3 and x∗n2

> d3/2 x∗n3
}.

Below we work with constant shifts of steep vectors, so we also introduce the following sets for
0 ≤ i ≤ 3,

T Ki := {v ∈ Cn : v = x+ y for some x ∈ Ti and y ∈ K with |y1| ≤ x∗n1
/10}.

Note that
T K3 ⊂ {v ∈ Cn : ∃i ≤ pr0 such that v∗i > 0.9(n/i)3v∗pr0}. (8)

Finally we define sets of steep and shifted steep vectors as

T := T0 ∪ T1 ∪ T2 ∪ T3 and TK := T K0 ∪ T K1 ∪ T K2 .

Note that the set of steep vectors contains very steep vectors.

Our first goal in this section is to prove the following theorem.

Theorem 4.1. Let d ≥ 1 be large enough, n ≥ d3, 1 ≤ L ≤ n/d3, K ⊂ [n] with |Kc| ≤ L, and z ∈ C
be such that |z| ≤ d/2. Let

Esteep :=
{
M ∈Mn,d : ∃ v ∈ TK such that ‖(M − zId)Kv‖2 <

L3d

n6
‖v‖2

}
.

Then
P(Esteep) ≤ min

(
exp (−L/d) , exp

(
− (ln d)(lnn)/20

))
.
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We will now formulate simple properties of steep vectors which will be used later. The follow-
ing lemma shows that the vectors from the complement of T have a rather regular decay of their
coordinates.

Lemma 4.2. Let d ≥ 1 be large enough, n ≥ d3, and x 6∈ T . Then

x∗m ≤
{

(n/m)6 x∗n3
if 1 ≤ m ≤ pr0 ,

d (n/m)3 x∗n3
, if pr0 ≤ m ≤ n1.

Furthermore, for every n1 ≤ j ≤ i ≤ n3 one has

x∗j ≤ x∗n1
≤ d3x∗n3

≤ d3x∗i .

Proof. Since pr ≥ dn1/pe and x /∈ T , we have x∗pr ≤ 4dx∗n1
≤ 4d4x∗n3

. Therefore, for every r0 ≤ j ≤ r,

x∗pj ≤ (4d)x∗pj+1 ≤ . . . ≤ (4d)r−jx∗pr ≤ 4d4(4d)r−jx∗n3
.

Since for large d one has 4d < p3 and pr ≤ n1 ≤ n/d3/2 + 1, we deduce for j = r0 that

x∗pr0 ≤ 4d4(4d)r−r0x∗n3
≤ 4d4p3(r−r0)x∗n3

≤ 4d4(n1/p
r0)3x∗n3

≤ (n/pr0)3x∗n3
.

Since x 6∈ T3, this implies the bound for every 1 ≤ m ≤ pr0 .
Now let pj ≤ m < pj+1 for some r0 ≤ j < r. Then

x∗m ≤ x∗pj ≤ 4d4p3(r−j)x∗n3
≤ 4d4(n1p/m)3x∗n3

≤ d (n/m)3 x∗n3
,

which proves the case m < pr. For pr ≤ m ≤ n1 we have n/m ≥ n/n1 ≥ d3/2/2, hence

x∗m ≤ 4dx∗n1
≤ 4d4x∗n3

≤ (n/m)3 x∗n3
.

The last inequality is trivial.

The next lemma provides a comparison of the `2-norm of a given vector with one of its coordinates.
It is similar to Lemma 3.5 from [38]. Since our choice of parameters as well as the definition of steep
vectors is slightly different we provide the proof for the sake of completeness.

Lemma 4.3. Let d ≥ 1 be large enough, n ≥ d3, 1 ≤ L ≤ n/d3, and x ∈ Cn \ T3. Then

‖x‖2 ≤
n6

100L3d3/2
x∗m,

where m = pi if x ∈ T0,i for some r0 ≤ i ≤ r and m = n1 if x /∈ T3 ∪ T0.

Proof. By the definition of T3, for x 6∈ T3 one has

pr0∑
i=1

(x∗i )
2 ≤

pr0∑
i=1

(n/i)6 (x∗pr0 )2 ≤ 4

3
n6 (x∗pr0 )2.

If x ∈ T0,r0 , then

‖x‖22 =

pr0−1∑
j=1

(x∗j )
2 +

n∑
j=pr0

(x∗j )
2 ≤ 4

3
n6 (x∗pr0 )2 + n(x∗pr0 )2 ≤ 2n6 (x∗pr0 )2,

which implies the bound in the case i = r0. Let x ∈ T0,i for some r0 < i ≤ r. Then x 6∈ T3 and for
every j < i one has x 6∈ T0,j . Therefore, assuming without loss of generality that x∗

pi
= 1, as in the

previous lemma we observe

x∗pr0 ≤ (4d)i−r0x∗pi = (4d)i−r0 ≤ p3(i−r0).
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Therefore, using again that 4d ≤ p3, we observe

‖x‖22 =

pr0∑
j=1

(x∗j )
2 +

pr0+1∑
j=pr0+1

(x∗j )
2 +

pr0+2∑
j=pr0+1+1

(x∗j )
2 + . . .

≤ 2n6 (x∗pr0 )2 + pr0+1(4d)2(i−r0) + pr0+2(4d)2(i−r0−1) + . . .+ pi(4d)2 + n

≤ 3n6p6(i−r0) + (i− r0)p6i+1−5r0

≤ 4n6p6(r−r0).

Recalling that 20L/d ≤ pr0 ≤ 20Lp/d and pr ≤ n1 = dn/d3/2e ≤ pr+1, we have

pr−r0 ≤ n1d

20L
≤ n

10L
√
d
,

which, together with the above, implies the desired bound in the case r0 < i ≤ r. Repeating the
above scheme and using that pr ≤ n1 < pr+1, we obtain the result for x 6∈ T3 ∪ T0.

4.2 Lower bounds on ‖Mx‖2 for vectors from T0

Here we provide lower bounds on the ratio ‖Mx‖2/‖x‖2 for vectors x from T0. Recall that given ε
and k the set Ωk,ε was introduced before Theorem 3.1 (see (1)).

Lemma 4.4. There exists an absolute positive constant C such that the following holds. Let d ≥ C,
n ≥ d3, 1 ≤ L ≤ n/d3, K ⊂ [n] with |Kc| ≤ L, and let z ∈ C be such that |z| ≤ d/2. Then for every
v ∈ T K0 and every

M ∈ Ωn1,ε0 ∩
r⋂

j=r0+1

Ωpj ,ε0

one has

‖(M − zId)Kv‖2 ≥
pr0/2 L3 d2

n6
‖v‖2.

Proof. Let v = x+ y, where x ∈ T0 and y ∈ K with |y1| ≤ x∗n1
/10. Fix r0 ≤ i ≤ r such that x ∈ T0,i.

If i < r set m = pi, if i = r set m = dn1/pe. Then x∗m > 4dx∗pm. Fix a permutation σ = σx of [n] such
that x∗i = |xσ(i)| for i ≤ n. Let

J ` = σ([m]), Jr = σ([pm] \ [m]), and J = (J ` ∪ Jr)c.

Then, for sufficiently large d,

|J ` ∪ Jr| = pm ≤ pdn1/pe ≤ c3.1ε0n/d and |Jr| = (p− 1)|J `| = (p− 1)m.

Denote by I` the set of rows having exactly one 1 in J ` and no 1’s in Jr. Lemma 3.6 implies that

|I`| ≥ (1− 2pε0)md ≥ 3md/5.

Let I = (I` \ (J ` ∪ Jr))∩K (so that the minor I × (J ` ∪ Jr) does not intersect the main diagonal and
only rows indexed by K are considered). Since |Kc| ≤ L and m ≥ pr0 ≥ 20L/d, we have

|I| ≥ 3md/5− pm− L ≥ md(3/5− p/d− 1/20) ≥ md/2

provided that d is large enough. By definition, for every s ∈ I there exists j(s) ∈ J ` such that

suppRs ∩ J ` = {j(s)}, suppRs ∩ Jr = ∅, and max
i∈J
|xi| ≤ x∗mp.
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Since |y1| ≤ x∗n1
/10 ≤ x∗pm/10, s 6∈ J ` ∪ Jr (which implies |xs| ≤ x∗pm), and j(s) ∈ J ` (which implies

|xj(s)| ≥ x∗m > 4dx∗mp), we obtain

|〈Rs(M − zId), (x+ y)†〉| =
∣∣∣xj(s) +

∑
j∈J∩suppRs

xj − zxs + dy1 − zy1

∣∣∣
≥ |xj(s)| − (d− 1)x∗mp − |z|x∗mp − (d+ |z|)|y1| ≥ x∗m/2.

Since the number of such rows is |I| ≥ md/2 and I ⊂ K, we obtain

‖(M − zId)K(x+ y)‖2 ≥
√
mdx∗m/2

√
2.

Using Lemma 4.3, we have

‖x+ y‖2 ≤ ‖x‖2 + ‖y‖2 ≤
n6

100L3d3/2
x∗m +

√
n|y1| ≤

(
n6

100L3d3/2
+
n1/2

10

)
x∗m,

which implies the desired result.

4.3 Bounds for vectors from T K1 ∪ T K2
For the vectors from T K1 ∪ T K2 we will use the union bound together with a covering argument. We
first construct nets for “normalized” versions of the sets T Ki and then provide individual probability
bounds for elements of the nets. The natural normalization for “non-shifted” component would be
x∗n1

= 1, which we use for T K1 . However, for individual probability bounds below and to have the
same level of approximation, it is more convenient to use a slightly different normalization for T K2 .
We construct nets for the sets

T ′i = {x+ y : x ∈ Ti : x∗ni = 1 and y ∈ K : |y1| ≤ x∗n1
/10}, i = 1, 2.

Then, repeating the proof of Lemma 3.8 from [38] with slight adjustments, we obtain the following
lemma.

Lemma 4.5 (Cardinalities of nets). Let d ≤ n1/3 be large enough and i = 1, 2. There exists a set
Ni = N ′i +N ′′i , N ′i ⊂ Cn, N ′′i ⊂ K, with the following properties. The cardinality

|Ni| ≤ exp (7ni+1 ln d) .

For every u ∈ N ′i one has u∗j = 0 for all j ≥ ni+1. For every x ∈ Ti with x∗ni = 1 and every y ∈ K
with |y1| ≤ x∗n1

/10 there are u ∈ N ′i and w ∈ N ′′i satisfying

‖x− u‖∞ ≤ 1/d3/2 and ‖y − w‖∞ ≤ 1/d3/2.

We now turn to the individual probability bounds where we will work in a more general setting by
considering any n×n complex matrix W instead of the shift zId. To obtain the lower bounds on ‖(M+
W )x‖2 for vectors x from our nets, we investigate the behavior of the inner products

〈
Ri(M +W ), x†

〉
.

One of the tools that we use is the Lévi concentration function for
〈
Ri(M +W ), x†

〉
. To estimate

this function we, in particular, will use Theorem 3.1 for 2m columns of M corresponding to the m
biggest and m smallest (in modulus) coordinates of x, where m = n1 or m = n2. The main difficulty
in this scheme comes from the restriction 2m ≤ c3.1εn/d in Theorem 3.1, which is not satisfied for
m = n2. To resolve this problem we split the set of 2m columns into smaller subsets of columns of
size at most c3.1εn/d, and create independent random variables corresponding to this splitting and
such that their sum is

〈
Ri(M +W ), x†

〉
up to a constant. Then we apply Proposition 2.2, allowing

to deal with Lévy concentration function for sums of independent random variables.
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We first describe subdivisions ofMn,d needed for our construction. Given J ⊂ [n] and M ∈Mn,d

denote
I(J,M) = {i ≤ n : |suppRi(M) ∩ J | = 1}

(cf., the definition of I`(M), Ir(M) before Lemma 3.6 – clearly, if we split J into J ` and Jr, then
I(J,M) = I`(M) ∪ Ir(M)). By MJ we denote the set of n × |J | matrices obtained from matrices
M ∈Mn,d by taking columns with indices in J , i.e.,

MJ = {V = {vij}i≤n,j∈J : ∃M ∈Mn,d such that ∀i ≤ n ∀j ∈ J vij = µij} .

Now we fix q0 ≤ n and a partition J0, J1, ..., Jq0 of [n]. Given subsets I1, ..., Iq0 of [n] and V ∈MJ0 ,
denote I = (I1, . . . , Iq0) and consider the class

F(I, V ) = {M ∈Mn,d : ∀q ∈ [q0] I(Jq,M) = Iq and ∀i ≤ n ∀j ∈ J0 µij = vij}

(depending on the choice of I such a class can be empty). In words, we fix the columns indexed by
J0 and for each q ∈ [q0] we fix the rows having exactly one 1 in columns indexed by Jq. Then Mn,d

is the disjoint union of classes F(I, V ) over all V ∈ MJ0 and all I ∈ (P([n]))q0 , where P(·) denotes
the power set.

Furthermore, given V and I as above, we split each class F(I, V ) into smaller equivalence classes
using the following equivalence relation. Fix i ≤ n and A ⊂ [q0]. Denote A0 := {0} ∪ ([q0] \ A). We

say that two matrices M, M̃ ∈ F(I, V ) are equivalent if

∀s < i ∀j ≤ n µsj = µ̃sj ,

∀s ≤ n ∀j ∈ J ′ :=
⋃
q∈A0

Jq µsj = µ̃sj ,

and
∀s ≤ n ∀q ∈ A

∑
j∈Jq

µsj =
∑
j∈Jq

µ̃sj .

The collection of equivalence classes corresponding to this relation will be denoted by

H = H(F(I, V ), i, A), in particular F(I, V ) =
⋃
H∈H

H.

Note that for matrices in a given class H, the rows R1, ..., Ri−1 are fixed and every block [n]×Jq has
a prescribed sum in each row, thus, in a sense, these blocks are independent of each other on H.

Finally, given a vector x ∈ Cn, an index i ≤ n, a class H ∈ H (in particular, V, I, i, A are fixed),
and q ∈ A, we introduce a random variable ξq on H by

ξq = ξq(M) :=
∑
j∈Jq

µijxj .

In words, ξq represents the dot product of x with the restriction of the i-th row to Jq. Later we use
this construction in the case when i ∈ Iq for all q ∈ A, that is for a specific choice of parameters
defining our classes (recall here that for M ∈ H, |suppRi(M) ∩ Jq| = 1 provided that i ∈ Iq). As
we have already mentioned, by construction, for matrices in the class H every block [n] × Jq has a
prescribed sum in each row, therefore the random variables ξq, q ∈ A, are independent. Thus, using
that for a fixed matrix W = {wij} and a fixed constant vector y ∈ K, the function

ξ′ = ξ′(M) :=
∑
j∈J ′

µijxj +
n∑
j=1

wijxj + y1d+ y1

n∑
j=1

wij
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is a constant on H, we may apply Proposition 2.2 (in which we identify C with R2) to∣∣∣〈Ri(M +W ), (x+ y)†
〉∣∣∣ =

∣∣∣∑
q∈A

ξq + ξ′
∣∣∣

with some α > 0 satisfying Q(ξq, 1/3) ≤ α for every q ∈ A. This gives

P
(∣∣∣〈Ri(M +W ), (x+ y)†

〉∣∣∣ ≤ 1/3
)
≤ C0√

(1− α)|A|
, (9)

where C0 is a positive absolute constant.

We are ready now to estimate individual probabilities.

Lemma 4.6 (Individual probability). There exist absolute constants C,C ′ > 1 > c1 > 0 such that
the following holds. Let C < d < n, K ⊂ [n], ε ∈ [ε0, 0.01]. Set m0 = bc3.1εn/(2d)c and let m1 and
m2 be such that m1 < m2 ≤ n−m1. Assume that x ∈ Cn satisfies

x∗m1
> 2/3 and x∗i = 0 for every i > m2.

Let W be a complex n× n matrix, y ∈ K, and denote m = min(m0,m1) and

E = E(x) =
{
M ∈Mn,d : ‖(M +W )K(x+ y)‖2 ≤

√
c1md

}
.

Then if m1 ≤ m0 and |Kc| ≤ 3m1d/5

P(E ∩ Ω2m1,ε) ≤ (5/6)m1d/2 ,

if m1 > C ′m0, ε = 0.01, and |Kc| ≤ 3m0d/5

P(E ∩ Ω2m0,ε) ≤
(
Cn

m1d

)m0d/4

.

Remark 4.7. We apply this lemma below twice: first with m1 = n1 < m0, m2 = n2, ε = 0.01,
obtaining

P(E ∩ Ω2n1,0.01) ≤ (5/6)n1d/2 ;

then with m1 = n2 > m0, m2 = n3, ε = 0.01, obtaining

P(E ∩ Ω2m0,0.01) ≤
(
Cn

dn2

)0.01 c3.1n/8

≤
(
C1

d

)cn
,

where C1 = 8C3 and c = c3.1n/2400 are positive absolute constants.

Proof. Fix γ = 3md/5n. Fix x ∈ Cn and y ∈ K satisfying the condition of the lemma. Let σ be
a permutation of [n] such that x∗i = |xσ(i)| for all i ≤ n. Denote q0 = m1/m and without loss of

generality assume that either q0 = 1 or that q0 is a large enough integer. Let J `1, J
`
2, . . . , J

`
q0 be a

partition of σ([m1]) into sets of cardinality m. Let Jr1 , J
r
2 , . . . , J

r
q0 be a partition of σ([n−m1 + 1, n])

into sets of cardinality m. Denote

Jq := J `q ∪ Jrq for q ∈ [q0] and J0 := [n] \
q0⋃
q=1

Jq.

Then J0, J1, ..., Jq0 is a partition of [n], which we fix in this proof. Let M ∈ Ω2m,ε. For every pair J `q ,

Jrq , let the sets I`q(M) and Irq (M) be defined as before Lemma 3.6 and let Iq = Iq(M) = I`q(M)∪Irq (M).
Since

|Jq| = 2m ≤ 2m0 ≤ c3.1εn/d,
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Lemma 3.6 implies that
|I`q(M)|, |Irq (M)| ∈ [(1− 4ε)md, md],

in particular,
|Iq| ∈ [2(1− 4ε)md, 2md]. (10)

Now we splitMn,d into a disjoint union of classes F(I, V ) defined at the beginning of this subsection
with V ∈ MJ0 and I = (I1, . . . , Iq) and note that Ω2m,ε ∩ F(I, V ) 6= ∅ implies that Iq satisfies (10)
for every q. Thus, to prove our lemma it is enough to prove a uniform upper bound for such classes,
indeed,

P(E(x) ∩ Ω2m,ε) ≤ maxP(E(x) ∩ Ω2m,ε | F(I, V )) ≤ maxP(E(x)| F(I, V ))

where the first maximum is taken over all F(I, V ) with Ω2m,ε∩F(I, V ) 6= ∅ and the second maximum
is taken over F(I, V ) with Iq’s satisfying (10).

Fix such a class F(I, V ) and denote the uniform probability on it just by PF , that is

PF (·) = P(· | F(I, V )).

Let

I :=

q0⋃
q=1

Iq.

Note that |I| ≤ 2q0md. We first show that the set of i’s belonging to many Iq’s is rather large. More
precisely, given i ∈ [n] denote

Ai = {q ∈ [q0] : i ∈ Iq}, I00 = {i ∈ I : |Ai| ≥ γq0}, and I0 = I00 ∩K.

Then, using bounds on cardinalities of Iq’s, one has

2(1− 4ε)mdq0 ≤
q0∑
q=1

|Iq| =
n∑
i=1

|Ai| ≤ |I00|q0 + (n− |I00|)γq0 ≤ |I00|q0 + nγq0.

Since ε ≤ 0.01, γ = 3md/(5n) and |Kc| ≤ 3md/5, we get

|I0| ≥ |I00| − |Kc| ≥ 2(1− 4ε)md− 6md/5 ≥ 2md/3.

Without loss of generality we assume that I0 = {1, 2, . . . |I0|} and only consider the first k := d2md/3e
indices from it. Then [k] ⊂ I0 ⊂ K.

Now, by definition, for matrices M ∈ E(x) we have

‖(M +W )K(x+ y)‖22 =
∑
i∈K
|
〈
Ri(M +W ), (x+ y)†

〉
|2 ≤ c1md.

Therefore there are at most 9c1md rows with |〈Ri(M +W ), (x+ y)†〉| ≥ 1/3. Hence,

|{i ≤ k : |〈Ri(M +W ), (x+ y)†〉| < 1/3}| ≥ 2md/3− 9c1md ≥ 2(1− 14c1)md/3

(we used that I0 ⊂ K). Let k0 := d2(1− 14c1)md/3e and for every i ≤ k denote

Ωi := {M ∈ F(I, V ) : |
〈
Ri(M +W ), (x+ y)†

〉
| < 1/3} and Ω0 = F(I, V ).

Then

PF (E(x)) ≤
∑
B⊂[k]
|B|=k0

PF
( ⋂
i∈B

Ωi

)
≤
(
k

k0

)
max
B⊂[k]
|B|=k0

PF
( ⋂
i∈B

Ωi

)
.
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Without loss of generality we assume that the maximum above is attained at B = [k0]. Then

PF (E(x)) ≤ (1/c1)10c1md
k0∏
i=1

PF (Ωi|Ω1 ∩ . . . ∩ Ωi−1). (11)

Next we estimate the factors in the product. Fix i and Ai = {q : i ∈ Iq}. Since i ∈ I0, we have
|Ai| ≥ γq0. Consider the splitting of F(I, V ) into classes H ∈ H = H(F(I, V ), i, Ai) as described
before the statement of the lemma and let PH denote the uniform probability on a class H, i.e.,
PH(·) = P(·|H). Since in every class H all matrices have their first i− 1 rows fixed, for every H the
intersection Hi := H ∩ Ω1 ∩ . . . ∩ Ωi−1 is either H or ∅. Thus

PF (Ωi|Ω1 ∩ . . . ∩ Ωi−1) ≤ max
H:Hi 6=∅

PH(Ωi).

Fix H such that Hi 6= ∅ and consider the random variables ξq, q ∈ Ai, defined above. Then by (9) we
have

PH(Ωi) = PH(|
〈
Ri(M +W ), (x+ y)†

〉
| ≤ 1/3) ≤ C0α√

(1− α)|Ai|
≤ C0α√

(1− α)γq0

where α = maxq∈Ai Q(ξq(M), 1/3). Note that in the case q0 = 1 we just have

PH(Ωi) = α = Q(ξ1(M), 1/3).

Thus it remains to estimate Q(ξq, 1/3) for q ∈ Ai. Fix q ∈ Ai, so that i ∈ Iq. Recall that, by
construction, the intersection of the support of Ri(M) with Jq is a singleton. Denote the corresponding
index by j(q). Then

ξq = ξq(M) =
∑
j∈Jq

µijxj = xj(q)

and note that |xj(q)| > 2/3 whenever j(q) ∈ J `q and xj(q) = 0 whenever j(q) ∈ Jrq . Denote

H` = {M ∈ H : j(q) ∈ J `q} and Hr = {M ∈ H : j(q) ∈ Jrq }.

Since |ξq| is either larger than 2/3 or equals 0 we observe that

Q(ξq(M), 1/3) ≤ max{PH(H`), PH(Hr)}.

Claim 4.8. For i ≤ d2md/3e one has

max{PH(H`), PH(Hr)} ≤ 4/5.

Combining the probability estimates starting with (11), using that γ = 3md/5n, and applying
Claim 4.8, we obtain in the case q0 = m1/m ≥ C ′,

PF (E(z)) ≤
(

1

c1

)10c1md ( 4C0√
5γq0

)2(1−14c1)md/3

=

(
1

c1

)10c1md ( 4C0
√
n√

3m1d

)2(1−14c1)md/3

≤
(
C1n

m1d

)md/4
,

provided that c1 is small enough and C ′ is large enough. In the case q0 = 1 we have

PF (E(z)) ≤
(

1

c1

)10c1md (4

5

)2(1−14c1)md/3

≤
(

5

6

)md/2
provided that c1 is small enough. This completes the proof.
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Proof of Claim 4.8. We show the bound for PH(H`), the other bound is similar. Note that for matrices
in H we have I(Jq,M) = Iq and Iq satisfies (10). Since |J `q | = |Jrq | = m, we observe that on H one
has

|I`q(M)| ≥ |Iq| −md ≥ (1− 8ε)md and |Irq (M)| ≤ md.

To compare cardinalities, define a relation R ∈ H` ×Hr by (M, M ′) ∈ R iff M ∈ H`, M ′ ∈ Hr,
and M ′ can be obtained from M by a simple switching in

(Iq \ [i− 1])× Jq

(note that the i-th row is necessarily involved in the switching). It is easy to check that for every
M ∈ H` and every M ′ ∈ Hr one has

|R(M)| = |Irq (M) \ [i− 1]| and |R−1(M ′)| = |I`q(M ′) \ [i− 1]|,

hence |R(M)| ≥ (1− 8ε)md− i+ 1 and |R−1(M ′)| ≤ md. Claim 2.1 yields

|H`|/|Hr| ≤ md

(1− 8ε)md− i+ 1
≤ 1

1/3− 8ε
.

Therefore,
|H|/|H`| = (|H`|+ |Hr|)/|H`| ≥ 4/3− 8ε,

which completes the proof since ε ≤ 0.01.

4.4 Proof of Theorem 4.1

We are ready to complete the proof.

Proof of Theorem 4.1. Recall that d is large enough, ε0 =
√

(ln d)/d, p = b1/(5ε0)c, and let ε = 0.01.
Denote m = m0 = bc3.1εn/(2d)c and note that n/d3/2 ≤ n1 ≤ m0 ≤ n2 and that |Kc| ≤ L ≤ 3n1d/5 ≤
3m0d/5. Below we deal with matrices from

Ω0 = Ω2n1,ε ∩ Ω2m0,ε ∩ Ωn1,ε0 ∩
r⋂

j=r0

Ωpj ,ε0 .

If v ∈ T K0 and M ∈ Ω0 then Lemma 4.4 implies that

‖(M − zId)Kv‖2 ≥
L3 d2

n6
‖v‖2.

We turn now to the case v ∈ T Ki for i = 1, 2. Let

Ei :=
{
M ∈Mn,d : ∃ v ∈ T Ki such that ‖(M − zId)Kv‖2 ≤

√
c1md

2 bi
‖v‖2

}
,

where c1 is the constant from Lemma 4.6, b1 = n6/(L3d3/2), and b2 = d3/2b1 = n6/L3. For a matrix
M ∈ Ei there exists v = v(M) ∈ T Ki

‖(M − zId)Kv)‖2 ≤
√
c1md

2 bi
‖v‖2.

Write v = x+ y, where x ∈ Ti and y ∈ K such that |y1| ≤ x∗n1
/10. Normalize v so that x∗ni = 1 (that

is, v ∈ T ′i ). By Lemma 4.3 we have

‖v‖2 = ‖x+ y‖2 ≤
n6

100L3d3/2
x∗n1

+

√
nx∗n1

10
≤ n6

L3d3/2
x∗n1
≤ bix∗ni = bi.
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Let Ni = N ′i + N ′′i be the net constructed in Lemma 4.5. Then there exist u ∈ N ′i with u∗ni ≥
1− 1/2d3/2 > 2/3 and u∗j = 0 for j > ni+1, and w ∈ N ′′i ⊂ K, such that for large enough d,

‖v − (u+ w)‖2 ≤
√
n (‖x− u‖∞ + ‖y − w‖∞) ≤ 2

√
nd−3/2 ≤

√
c1md

4d
.

Therefore, using that ‖M‖ = d and |z| ≤ d, we obtain that for every matrix M ∈ Ei there exist
u = u(M) ∈ N ′i and w = w(M) ∈ N ′′i ⊂ K with

‖(M − zId)K(u+ w)‖2 ≤ ‖(M − zId)Kv‖2 + (‖M‖+ |z|)‖v − (u+ w)‖2 ≤
√
c1md.

Using union bound, our choice of n1, n2, n3, Lemma 4.5, and Lemma 4.6 twice – first with
m1 = n1 < m0, m2 = n2, ε = 0.01, then with m1 = n2 > m0, m2 = n3, ε = 0.01 (see Remark 4.7),
we obtain for small enough a3 and large enough d,

P (E1 ∩ Ω0) ≤ exp (−(n1d/2) ln(6/5) + 7n2 ln d) ≤ exp (−n1d/20)

and
P (E2 ∩ Ω0) ≤ exp (−cn ln d+ 7n3 ln d) ≤ exp (−c0n ln d) ,

where c0 > 0 is an absolute constant.
Combining all cases we obtain that for x ∈ TK one has ‖(M − zId)Kx‖2 ≤ β‖x‖2, where

β := min

(
L3 d2

n6
,
L3
√
c1m0d

2n6

)
≥ L3d2

n6
min

(
1,

√
c1c3.1εn/2

2d2

)
≥ L3d

n6

with probability at most

p0 := P (Ωc
0) + exp (−n1d/20) + exp (−c0n ln d) .

We now estimate the probability p0. Using Theorem 3.1 and that n1 ≥ n/d3/2, ε2
0d = ln d, ε = 0.01,

we obtain for large enough d,

p1 := P
(
Ωc

2n1,ε

)
+ P

(
Ωc

2n1,ε0

)
+ exp (−n1d/20)

≤ exp
(
−ε2dn1/4

)
+ exp

(
−ε2

0dn1/8
)

+ exp (−n1d/20) ≤ exp
(
−n/d3/2

)
;

p2 := P
(
Ωc

2m0,ε

)
+ exp (−c0n ln d) ≤ exp

(
−ε2dm0/4

)
+ exp (−c0n ln d) ≤ exp (−c3n) ;

and

p3 :=
r∑

i=r0

P
(

Ωc
pj ,ε0

)
≤

r∑
i=r0

exp
(
− pi ln d

8
ln
( n

pid3/2

))
≤ exp

(
− pr0 ln d

9
ln
( n

pr0d3/2

))
,

where c3 is a positive absolute constant. Since r0 ≥ 0 and n ≥ d3, we have

p3 ≤ exp

(
− ln d

9
ln
( n

d3/2

))
≤ exp

(
−(ln d) lnn

18

)
.

Since pr0 ≥ 20L/d, we also have p3 ≤ exp(−2L(ln d/d)). Since p0 ≤ p1 + p2 + p3, the desired estimate
follows.
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4.5 Almost constant vectors

Given θ > 0, we introduce a class of almost constant vectors by

B(θ) = {x ∈ Cn : ∃λ ∈ C such that |{i ≤ n : |xi − λ| ≤ θ x∗n3
}| > n− n3}.

Note that this class slightly differs from the class considered in [38] – there we compared the error in
terms of ‖x‖2 instead of x∗n3

.

Remark 4.9. Let x ∈ B(θ). Fix a permutation σ = σx of [n] such that x∗i = |xσ(i)| for i ≤ n. Fix
λ0 = λ0(x) ∈ C such that the cardinality of

J1 := {i ≤ n : |xi − λ0| ≤ θ x∗n3
}

is at least n− n3 + 1. Then there exist positive integers k, ` with k ≤ n3 < ` such that σ(k), σ(`) ∈ J1

and
x∗k − θx∗n3

≤ |xσ(k)| − |xσ(k) − λ0| ≤ |λ0| ≤ |λ0 − xσ(`)|+ |xσ(`)| ≤ θx∗n3
+ x∗` ,

which implies
(1− θ)x∗n3

≤ |λ0| ≤ (1 + θ)x∗n3
. (12)

Define n0 = bn/16dc. Given t > 0, consider the following class of vectors

S(t) := {x ∈ Cn : 0 < x∗n0
≤ tx∗n3

}.

The proof of the next lemma is similar to that of Theorem 3.1 from [38]. We provide it at the end
of the section for the sake of completeness.

Lemma 4.10. Let θ ∈ (0, 1/20] and t ≥ 12 be such that a3t ≤ 1/100. Let K ⊂ [n] with |Kc| ≤ n/4
and z ∈ C with |z| ≤ d/5. Then for every x ∈ B(θ) ∩ S(t) and every M ∈Mn,d one has

‖(M − zId)Kx‖2 ≥
d
√
n

2
√

2
x∗n3

.

We also need the following simple lemma about almost constant vectors not covered by Lemma 4.10.

Lemma 4.11. Let d ≥ 3, 0 < θ ≤ 10/d3 and t ≥ 12 be such that a3t ≤ 1/100. Then every
x ∈ B(θ) \ S(t) can be represented as x = w + y with w ∈ T and y ∈ K with |y1| ≤ w∗n1

/10.

Proof. Fix x ∈ B(θ) \ S(t). Then x∗n0
> tx∗n3

. Let σ, J1, and λ0 be as in Remark 4.9. Consider
y = (λ0, λ0, ..., λ0) ∈ K and w = x− y. Since x 6∈ S(t) and by (12), for every i ≤ n0 we have

|wσ(i)| ≥ |xσ(i)| − |λ0| ≥ x∗n0
− (1 + θ)x∗n3

> (t− 1− θ)x∗n3
> 10x∗n3

.

This implies w∗n0
> 10x∗n3

. On the other hand, for every i ∈ J1, one has |wi| ≤ θx∗n3
. Since |J1| > n−n3,

this implies w∗n3
≤ θx∗n3

. Using that θ ≤ 10/d3, we obtain

w∗n1
≥ w∗n0

> d3w∗n3
,

which shows w ∈ T .
Using again that x 6∈ S(t) and the inequality (12), we observe that for every i ≤ n0,

|wσ(i)| ≥ |xσ(i)| − |λ0| ≥ |xσ(n0)| − |λ0| ≥ tx∗n3
− |λ0| > (t/(1 + θ)− 1)|λ0| > 10|λ0|,

which implies |y1| = |λ0| ≤ w∗n1
/10 and completes the proof.

As a consequence of Theorem 4.1 and Lemmas 4.10, 4.11, and 4.3, we obtain the main theorem of
this section.
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Theorem 4.12. Let a3 ≤ 1/1200, d ≥ 1 be large enough, n ≥ d3, 1 ≤ L ≤ n/d3, and 0 < θ ≤ 10/d3.
Let K ⊂ [n] with |Kc| ≤ L and z ∈ C with |z| ≤ d/5. Then with probability at least

1−min(exp(−L/d), exp(−(ln d)(lnn)/20),

one has that for every x ∈ (B(θ) \ T K3 ) ∪ TK

‖(M − zId)Kx‖2 ≥
L3d

n6
‖x‖2.

Proof. Fix t = 12. Fix x ∈ B(θ) \ T K3 . If x ∈ TK then the result follows by Theorem 4.1. Therefore
we assume that x 6∈ TK ∪ T K3 . Then, in particular, x 6∈ T0 ∪ T3 and x 6∈ T1 ∪ T2, hence, by Lemma 4.3
we have

x∗n3
≥ x∗n1

/d3 ≥ 100L3

n6d3/2
‖x‖2.

Since n ≥ d3, this and Lemma 4.10 implies the case when x ∈ S(t). Note that Lemma 4.11 says that

B(θ) \ S(t) ⊂ TK ∪ T K3 ,

therefore we are done.

Proof of Lemma 4.10. Since x ∈ S(t), we have x∗n3
6= 0. Let σ, J1, and λ0 be as in Remark 4.9 and

set
J2 = σ([n0]) \ J1, J3 = σ([n3]) \ (J1 ∪ J2), and J4 = [n] \ (J1 ∪ σ([n3])).

Then |J3|, |J4| ≤ n3, [n] = J1 ∪ J2 ∪ J3 ∪ J4, and

∀j ∈ J4 |xj | ≤ x∗n3
and ∀j ∈ J3 |xj | ≤ x∗n0

≤ tx∗n3
(13)

Now, given a matrix M ∈Mn,d, consider

I2 = {i ≤ n : suppRi(M) ∩ J2 6= ∅} and I` = {i ≤ n : |suppRi(M) ∩ J`| ≥ 16n3d/n},

for ` = 3, 4. Since M ∈Mn,d, we have |I2| ≤ dn0 and (16n3d/n)|I`| ≤ d|J`|, hence

|I2| ≤ n/16 and |I`| ≤ n/16 for ` = 3, 4.

Set I := [n] \ (I2 ∪ I3 ∪ I4 ∪ σ([n3]) ∪Kc). Then for small enough a3,

|I| ≥ n− 3n/16− n3 − n/4 ≥ n/2 and ∀i ∈ I |xi| ≤ x∗n3
≤ |λ0|/(1− θ).

Moreover, for every i ∈ I, denote J` = J`(i) = J` ∩ suppRi(M) for 1 ≤ ` ≤ 4, and note that J2 = ∅
since i 6∈ I2. Using the triangle inequality, we observe for every i ∈ I,

|〈Ri(M − zId), x†〉| ≥
∣∣∣ ∑
j∈J1

xj

∣∣∣−∑
j∈J3

|xj | −
∑
j∈J4

|xj | − |zxi|.

We estimate each of the terms on the right hand side separately. By the definition of J1, we have∣∣∣ ∑
j∈J1

xj

∣∣∣ ≥ |λ0| |J1| −
∑
j∈J1

∣∣∣xj − λ0

∣∣∣ ≥ |J1| (|λ0| − θx∗n3
) ≥ (d− 32n3d/n) (1− 2θ)x∗n3

,

where for the last inequality we used (12) and that for i 6∈ I2 ∪ I3 ∪ I4 one has

|J1| = d− |J2| − |J3| − |J4| ≥ d− 32n3d/n.
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Using (13), ∑
j∈J3

|xj |+
∑
j∈J4

|xj | ≤ |J3|x∗n0
+ |J4|x∗n3

≤ 16(1 + t)n3dx
∗
n3
/n.

Putting together the above estimates, we obtain for large enough d

|〈Ri(M − zId), x†〉| ≥ ((d− 32n3d/n)(1− 2θ)− 16(1 + t)n3d/n− |z|)x∗n3

≥ (1− 2θ − 16a3(3 + t)− |z|/d) dx∗n3
≥ dx∗n3

/2,

where we used θ ≤ 1/20, t+ 3 ≤ 5t/4, a3t ≤ 1/100, and n3/n ≤ a3, and |z| ≤ d/5. This implies

‖(M − zId)x‖2 ≥
dx∗n3

2
|I|1/2 ≥

dx∗n3

2

√
n

2
,

and completes the proof.

5 Gradual vectors

In this section we introduce the notion of k-vectors, which provide a discretization of the set of gradual
vectors, and discuss their properties. We will use notations of Section 4, in particular, ε0, p, r, n1,
n2, and n3.

We first define the set of gradual vectors as the set of all vectors which are not almost constant and
not steep. Note that any gradual vector x satisfies x∗n3

6= 0. We will use the following normalization
of gradual vectors,

S :=
{
x ∈ Cn \ (T ∪ B) : x∗n3

= 1
}
,

where B = B(θ0) with θ0 = 10/d3 (the set B(θ) was introduced at the beginning of Section 4.5). Note
that, by the definition of the almost constant vectors, we have for any x ∈ S that

∀ λ ∈ C |{i ≤ n : |xi − λ| ≤ θ0}| ≤ n− n3,

and by the definition of the steep vectors,

∀ 0 ≤ i ≤ r0 : x∗pi ≤ (n/pi)3(4d)r−r0+1d3,

∀ r0 < i ≤ r : x∗pi ≤ (4d)r−i+1d3,

x∗dn1/pe ≤ 4d4, x∗n1
≤ d3, and x∗n2

≤ d3/2.

5.1 Gradual k-vectors

For every positive integer k we define k-vectors as vectors in Cn with coordinates taking values in the
set Z2/k = {ω/k : ω ∈ Z2}. Let x = (x1, x2, . . . , xn) ∈ Cn and k ∈ N. The k-approximation of x is
defined as the k-vector y ∈ Cn such that Re yi = bkRexic/k and Im yi = bkImxic/k for all i ≤ n.
Clearly, ‖x− y‖∞ ≤

√
2/k.

Below we split gradual vectors into classes of vectors, such that every pair of vectors from a given
class has the same coordinates up to some permutation. We formalize it as follows. Let x = {xi}i ∈ Cn.

By x] = {x]i}i denote the vector (xσ(1), xσ(2), . . . , xσ(n)), where the permutation σ is chosen so that
xσ(1) ≥ xσ(2) ≥ . . . ≥ xσ(n) in the sense of lexicographical order introduced in Section 2. Recall that
x∗ = {x∗i }i denotes the non-increasing rearrangement of {|xi|}i. Consider the following subset of
“normalized” k-vectors,

Ak :=
{
y ∈ Cn : y is a k-approximation of a vector in S

}
.
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Observe that for every y ∈ Ak,
1−
√

2/k ≤ y∗n3
≤ 1 +

√
2/k. (14)

Next consider the equivalence relation on Ak defined by x
]∼ y iff x] = y] for two k-vectors x and y.

This relation partitions the set Ak into the equivalence classes. We first estimate how many classes
we have.

Lemma 5.1. Let d ≤ n1/3 be large enough and 1 ≤ k ≤
√
n/d3/2. Then the number of the equivalence

classes (with respect to the relation
]∼) in Ak does not exceed en.

Proof. From every equivalence class choose exactly one representative x, satisfying |x1| ≥ |x2| ≥ . . . ≥
|xn|, multiply it by k and consider the set A′k of such elements. Note that by definitions every element
of A′k has integer coordinates and, moreover, A′k ⊂ kAk.

Define a partition of [n] into following r + 4 sets. Let I0 = [n] \ [n3]. Set I1 = [p]. Then for every
1 < i ≤ r, set Ii = [pi] \ [pi−1]. Finally, set

Ir+1 = [n1] \ [pr], Ir+2 = [n2] \ [n1], and Ir+3 = [n3] \ [n2].

The cardinalities of Ii’s, 0 ≤ i ≤ r + 3, we denote by Ni’s. Clearly, N0 ≤ n, Nr+j ≤ nj for j = 1, 2, 3,
and Ni ≤ pi for 1 ≤ i ≤ r.

By the normalization of vectors in S and by (14), for every x ∈ kAk, we have x∗n3
≤ k+

√
2 ≤ 2.5k.

Therefore, by the definition of gradual vectors we have that for every x ∈ A′k and every r0 ≤ i ≤ r,

x∗n3
≤ 2.5k, x∗n2

≤ 2.5kd3/2, x∗pr+1 ≤ x∗n1
≤ 2.5kd3, x∗pi ≤ 2.5kd3 (4d)r+1−i (15)

and, using that n ≤ n1d
3/2 ≤ pr+1d3/2 and p2 ≤ d, for 0 ≤ i < r0,

x∗pi ≤ 2.5k(n/pi)3x∗pr0 ≤ 2.5kp3(r+1−i) d4.5 (4d)r+1−r0 ≤ 2.5kd4.5 (4d)2.5(r+1−i). (16)

For 0 ≤ i ≤ r+ 3 let νi be the number of possible distinct coordinates of the projection of y ∈ A′k
on CIi . Recall that every element of A′k has integer coordinates. Note that if a complex number
z = a+ ib with integer a and b satisfy |z| ≤ A for some A ≥ 2.5 then −A ≤ a, b ≤ A, so there are at
most (2A+ 1)2 ≤ 6A2 such numbers z. Therefore, by (15) and (16), we have for 1 ≤ i ≤ r + 1,

ν0 ≤ 40k2, νr+3 ≤ 40k2d3, νr+2 ≤ 40k2d6, and νi ≤ 40k2d9 (4d)5(r+2−i).

The number of sequences {xi}Ni=1 in CN taking values in a set of cardinality ν, where we don’t
distinguish between sequences which can be obtained one from another by a permutation, equals(
N+ν−1
N

)
(indeed, after introducing an order, this corresponds to the number of non-increasing se-

quences {yi}Ni=1 ⊂ [ν] and we can pass to the strictly decreasing sequences {zi}Ni=1 ⊂ [ν + N − 1],
where zi = yi + N − i, hence this number is the same as the number of N elements subsets of
[ν +N − 1]). This leads to

|A′k| ≤
r+3∏
i=0

(
Ni + νi − 1

Ni

)
.

Using bounds for νi andNi, the standard estimate
(
m
`

)
≤ (em/`)`, and that d3k2 ≤ n, pr0 ≤ n/d3/2,

we get

B1 :=

(
N0 + ν0 − 1

N0

)
≤
(
N0 + ν0

ν0

)
≤
(
n+ 40k2

40k2

)
≤
(
n+ b40n/d3c
b40n/d3c

)
≤
(
ed3/20

)40n/d3
;

B2 :=

(
Nr+2 + νr+2 − 1

Nr+2

)
≤
(
n2 + 40k2d6

n2

)
≤
(

41end3

n2

)n2

≤ d4n/d2/3 ;
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B3 :=

(
Nr+3 + νr+3 − 1

Nr+3 − 1

)
≤
(
n3 + 40k2d3

n3

)
≤ (41e/a3)a3n;

and, for 1 ≤ i ≤ r + 1,

B4,i :=

(
Ni + νi − 1

Ni

)
≤
(
pi + 40k2d9 (4d)5(r+2−i)

pi

)
.

If pi > 40k2d9 (4d)5(r+2−i) then B4,i ≤ 4p
i
, otherwise, using

k2d3p−i ≤ np−i ≤ n1d
3/2p−i ≤ pr+1−id3/2,

we have

B4,i ≤

(
80ek2d9 (4d)5(r+2−i)

pi

)pi
≤
(
d8 (4d)6(r+2−i)

)pi
.

Denoting B4 =
∏r+1
i=1 B4,i, using that d is large enough, and passing to sums of logarithms, we

have

lnB4 ≤
r+1∑
i=1

pi ln
(
d8 (4d)6(r+2−i)

)
≤

r+1∑
`=1

(`=r+2−i)

pr+2−` (6` ln(4d) + 8 ln d)

≤ 20pr+1 ln d ≤ 20pn1 ln d ≤ n(ln d)/d.

Combining all bounds we obtain
|A′k| ≤ B1B2B3B4 ≤ en,

provided that a3 is small enough and d is large enough.

5.2 The `-decomposition with respect to k-vectors

In this subsection, we introduce one of the most important technical ingredients of the paper – the `-
decomposition with respect to k-vectors, which is a special way to structure a k-vector y as a collection
of two-dimensional “stairs” or “ladders” which ultimately determine the anti-concentration properties
of the product My (with a random matrix M uniformly distributed in Mn,d).

Let y = (yi)
n
i=1 ∈ Cn be a k-vector. We will construct a partition of [n] into two sequences

of subsets of [n], (LSj(y))∞j=0 and (LRj(y))∞j=0, which we call spread `-parts and regular `-parts,
respectively. Note that all but a finite number of the subsets are empty. When the vector y is clear
from the context, we will simply write LSj and LRj for the corresponding `-parts.

Our construction consists of a series of steps (indexed by j), and each step comprises a sequence
of substeps. At j-th step (except j = 0), we already have sets (LSu)j−1

u=0 and (LRu)j−1
u=0 constructed.

If j = 0 set I0 := [n] and Λ0 := {yi : i ∈ [n]}, otherwise set

Ij := [n] \
( ⋃
u≤j−1

LSu ∪
⋃

u≤j−1

LRu
)

and Λj := {yi : i ∈ Ij}.

Now, for each λ ∈ Λj such that |{i ∈ Ij : yi = λ}| < 2j+1 we let

L(j, λ) := {i ∈ Ij : yi = λ},

and for every λ ∈ Λj with |{i ∈ Ij : yi = λ}| ≥ 2j+1 we let L(j, λ) be the subset of {i ∈ Ij : yi = λ}
of cardinality 2j such that

L(j, λ) = Ij ∩ [1, supL(j, λ)]
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(that is, we choose L(j, λ) as the “leftmost” subset of cardinality 2j). Note that by construction for
j ≥ 0 we have

2j−1 ≤ |L(j, λ)| < 2j+1. (17)

We refer to sets (L(j, λ))λ∈Λj as level sets of order j (with respect to y). The union of the level sets
of order j will form the spread and regular parts, LSj and LRj , i.e., we define LSj and LRj so that

LSj ∪ LRj =
⋃
λ∈Λj

L(j, λ).

To separate the spread part from the regular one of the same order, we apply an embedded procedure
consisting of substeps. Our construction of spread vectors is based on extracting a maximal (d/k)-
separated set subset from Λj , consisting of at least 2 elements, provided that such a set exists. Note,
that we need to have at least 2 elements to be able to apply anti-concentration later. We construct a
subset ΛSj ⊂ Λj as follows.

Substep 1. If the diameter of Λj is strictly less than d/k then we set ΛSj := ∅ and terminate. Otherwise,
note that there is at least one pair of numbers λ, λ′ ∈ Λj such that |λ − λ′| ≥ d/k. Define λ1 as the
largest (with respect to the lexicographical order, see Section 2) number in Λj such that |λ1−λ′| ≥ d/k
for some λ′ ∈ Λj and pass to the next substep.

Substep m (m > 1). We have already chosen numbers λ1, λ2, . . . , λm−1 in Λj . If all λ ∈ Λj are within a
distance strictly less than d/k to {λ1, λ2, . . . , λm−1} then set ΛSj := {λ1, λ2, . . . , λm−1} and terminate
(note, by the construction, this cannot happen if m = 2). Otherwise, let λm be the largest number in
Λj with the distance to {λ1, λ2, . . . , λm−1} greater or equal to d/k and go to the next substep.

Note that by construction we have that the sequence (λm)m≥1 is decreasing (with respect to the
lexicographical order) and, moreover, |λu − λv| ≥ d/k for every admissible u 6= v. Now, by the spread
`-part of order j with respect to y, we call the union

LSj = LSj(y) :=
⋃
λ∈ΛSj

L(j, λ)

and by the regular `-part of order j with respect to y, we call the union

LRj = LRj(y) :=
⋃

λ∈Λj\ΛSj

L(j, λ).

The height h(·) of a regular (resp, spread) `-part is the number of level sets it comprises (if the
`-part is empty then h = 0). In particular, by (17), if Lj is either LSj or LRj , then

2j−1h(Lj) ≤ |Lj | ≤ 2j+1h(Lj). (18)

Note also that by the construction the height of a non-empty spread part is at least 2. We will often
write L to denote an `-part (of some order) with respect to y. Note also that the maximal number
of steps (starting with the step j = 0) that we can have is the smallest j + 1 such that n < 2j+1, i.e.
j + 1 = dlog2 ne < 1.5 lnn for large enough n. Therefore, the number of non-empty `-parts, denoted
below by m(y) is at most 3 lnn.

Finally we introduce the `-decomposition. Let y be a k-vector with the corresponding `-parts
{LSj ,LRj}j≥0. We will re-enumerate the non-empty spread and regular `-parts and will write
(L(q))mq=1 (i.e., suppressing the order and spreadness/regularity), where m = m(y) ≤ 3 lnn. To

make this representation unique, we assume that within the sequence (L(q))mq=1, any spread `-part
precedes (by the index) any regular `-part, and that for any two spread (resp. regular) parts, the one
of smaller order precedes the other. In what follows, such a sequence will be called the `-decomposition
with respect to y.
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Below, given a level set L ⊂ [n], i.e., a set of coordinates where yi preserves its value, we denote
this value by y(L).

To clarify our construction we would like to provide the following example.

Example. Let n = 7, d = 2, k = 6. Consider y = (1/2, 1/3, 1/2, 1/6, 1/2, 1/3,−1/3). Note that y
is a k-vector. According to the above procedure, at step j = 0 we have Λ0 = {1/2, 1/3, 1/6,−1/3}
and construct level sets L(0, 1/2) = {1}, L(0, 1/3) = {2}, L(0, 1/6) = {4}, L(0,−1/3) = {7}. Since
d/k = 1/3, we get that ΛS0 = {1/2, 1/6,−1/3}. Thus {1, 4, 7} is the spread `-part of order 0, and
{2} is the regular `-part of order 0. At step 1, we have Λ1 = {1/2, 1/3} and construct level sets
L(1, 1/2) = {3, 5} and L(1, 1/3) = {6}. Then ΛS1 = ∅, therefore ∅ is the spread `-part of order 1, and
{3, 5, 6} is the regular `-part of order 1. Altogether, we have m(y) = 3 non-empty `-parts – one spread
`-part of order 0 with the height 3, one regular `-part of order 0 with the height 1, and one regular
`-part of order 1 with the height 2. The `-decomposition with respect to y is ({1, 4, 7}, {2}, {3, 5, 6}).

A quick analysis of the construction procedure for the `-parts gives the following properties, which
we summarize into three lemmas. We leave the (rather straightforward) proofs to the reader.

Lemma 5.2. Let y be a k-vector, λ ∈ Z/k and set I = {i ≤ n : yi = λ}. Assume that I 6= ∅ and
denote u :=

⌊
log2((|I|+ 1)/3)

⌋
. Then

I =
u+1⋃
j=0

L(j, λ),

2u ≤ |L(u+ 1, λ)| = |I| − 2u+1 + 1 ≤ 2u+2 − 1, and ∀ 0 ≤ j ≤ u : |L(j, λ)| = 2j .

Lemma 5.3. Let y be a k-vector, let j ≥ 1 and assume that LSj ∪LRj 6= ∅. Then for all 0 ≤ m < j
we have LSm ∪ LRm 6= ∅,

h(LSm) + h(LRm) ≥ h(LSj) + h(LRj),

and
{yi : i ∈ LSj ∪ LRj} ⊂ {yi : i ∈ LSm ∪ LRm}.

Lemma 5.4. Let y be a k-vector and let LSj, LRj, j ≥ 0, be its `-parts. Then

• The height of every non-empty spread `-part is at least 2.

• For every non-empty spread `-part LS and any i1, i2 ∈ LS with yi1 6= yi2 we have |yi1−yi2 | ≥ d/k.

• If ỹ is a permutation of the vector y then necessarily the `-parts of y and ỹ agree up to a
permutation of [n]; in particular, the heights and cardinalities of spread or regular `-parts of a
given order with respect to y and ỹ are the same.

The last property implies that with every equivalence class C ⊂ Ak and every j ≥ 0, we may
associate four integers by fixing (an arbitrary) y ∈ C and setting

csj(C) := |LSj(y)|, crj(C) := |LRj(y)|, hsj(C) := h(LSj(y)), hrj(C) := h(LRj(y)).

The following lemma allows to estimate cardinalities of equivalence classes in terms of these quan-
tities.

Lemma 5.5. Let k ≥ 1, C be an equivalence class in Ak with respect to the relation
]∼. Then the

cardinality of the class C can be estimated as

|C| ≤ n!
∞∏
j=0

hsj
csj hrj

crj

csj ! crj !
,

where we adopt the notation 00 = 1.
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Proof. There are clearly n!/
∏∞
j=0 csj !crj ! ways to “assign” `-parts to specific locations within [n]. Fix

for a moment j ≥ 0 with csj 6= 0 and let LS be a fixed subset of [n] of cardinality csj . Recall that
PLS(y) ∈ CLS denotes the coordinate projection of y onto CLS := span {ei : i ∈ LS}. Consider the
set

WLS :=
{
PLS(y) : y ∈ C is such that LSj(y) = LS

}
Since all vectors within a given equivalence class share the same levels, the cardinality of WLS can be
estimated from above by hsj

csj . Similarly, we can estimate the number of realizations of regular `-
parts. Combining this with the estimate for “location assignments,” we obtain the desired bound.

5.3 Decomposition of the set of gradual vectors

In this subsection, we define a way to partition the set of gradual vectors S in terms of structure of
their k-approximations. Roughly speaking, we will observe the following dichotomy for a vector x in
S: either x possesses a k-approximation y (for a relatively small k) whose `-decomposition contains
many spread `-parts (that is, the distance between the “stairs” in a graphical representation of y is
often large), or, for an appropriately chosen k, the k-approximation of x contains `-parts with large
heights.

Given integer u ≥ 0 we introduce two subsets of S,

Ku :=
{
x ∈ S : in the `-decomposition with respect to the du-approximation of x,

the total cardinality of the spread `-parts is at least cKn3

}
and

Pu :=
{
x ∈ S : in the `-decomposition with respect to the du-approximation of x,

the total cardinality of spread and regular `-parts with heights not smaller

than cP2cP (u−4)a3a3 is at least cPn3

}
.

Here, by “total cardinality” we mean the cardinality of the union of the respective `-parts, and cK,
cP ∈ (0, 1) are two universal constants whose values can be derived from the proofs. Note that for
small u ≥ 1, we have cP2cP (u−4)a3a3 ≤ 1, so the set Pu coincides with S.

The next theorem is the main statement of the subsection, and one of the main technical ingredients
of the paper.

Theorem 5.6 (Decomposition of S). Let v ≥ 5 be an integer. Then

S =
v⋃

u=4

Ku ∪ Pv.

Theorem 5.6 says that for any vector x in S, either x belongs to Ku for some u ≤ v or x ∈ Pv. To
prove this theorem, we first consider more technical (yet more simple) ways to partition S, and then
gradually “replace” them with the conditions we are interested in.

The following lemma is a straightforward implication of Lemma 2.2 in [38].

Lemma 5.7. Let θ0 = 10/d3, x ∈ S, k ≥ 5/θ0, and let y be the k-approximation of x. Then there
exist disjoint subsets I, J ⊂ [n] such that |I|, |J | ≥ n3/4 and for any i ∈ I and j ∈ J we have
|yi − yj | ≥ θ0/2.

We now prove a dichotomy lemma dealing with cardinalities of `-parts.

Lemma 5.8. Let θ0 = 10/d3, x ∈ S, k ≥ 2d/θ0, and let y be the k-approximation of x. Then at least
one of the following assertions holds.

38



• The cardinality of
⋃
j LSj∪LRj, where the union is taken over all j ≥ 0 with h(LSj)+h(LRj) ≥

10, is at least n3/8.

• The total cardinality of the spread `-parts in the `-decomposition with respect to y is at least
n3/120.

Proof. By Lemma 5.7, we can find disjoint sets I, J ⊂ [n] of cardinality at least n3/4 such that for
any i ∈ I and any j ∈ J one has |yi − yj | ≥ θ0/2 ≥ d/k. Let (LSj ,LRj)∞j=0 be the `-parts of y, and
let j0 be the largest integer j such that

(LSj ∪ LRj) ∩ (I ∪ J) 6= ∅.

For concreteness, assume that (LSj0 ∪ LRj0) ∩ I 6= ∅ (the other case is treated similarly). By
Lemma 5.3, {yi : i ∈ LSj ∪ LRj} ∩ {yi : i ∈ I} 6= ∅ for all j ≤ j0.

Consider two disjoint sets of indices,

U1 = {j ≤ j0 : (LSj ∪ LRj) ∩ J 6= ∅ and h(LSj) + h(LRj) ≥ 10}

and
U2 = {j ≤ j0 : (LSj ∪ LRj) ∩ J 6= ∅ and h(LSj) + h(LRj) ≤ 9} .

Clearly,

J ⊂
⋃

j∈U1∪U2

(LSj ∪ LRj),

hence either ∣∣∣ ⋃
j∈U1

(LSj ∪ LRj)
∣∣∣ ≥ n3/8 or

∣∣∣ ⋃
j∈U2

(LSj ∪ LRj)
∣∣∣ ≥ n3/8.

If the first bound holds we get that the total cardinality of spread or regular `-parts of cumulative
height at least 10 is at least n3/8, i.e. the first alternative of the lemma holds. We now assume that
the second bound holds. Note that for every j ∈ U2 we have

{yi : i ∈ LSj ∪ LRj} ∩ {yi : i ∈ I} 6= ∅ and {yi : i ∈ LSj ∪ LRj} ∩ {yi : i ∈ J} 6= ∅.

Using that |ya − yb| ≥ d/k for all a ∈ I, b ∈ J , by the definition of the spread `-part, we necessarily
have h(LSj) ≥ 2, hence h(LRj) ≤ 7. By (18) this implies |LSj | ≥ |LRj |/14 for every j ∈ U2. Thus,∣∣∣ ⋃

j∈U2

LSj
∣∣∣ ≥ 1

15

∣∣∣ ⋃
j∈U2

(LSj ∪ LRj)
∣∣∣ ≥ n3/120,

which implies the desired result.

Lemma 5.8 allows us to prove a more elaborate dichotomy statement.

Lemma 5.9. Let x ∈ S, u ≥ 4, and let yu and yu+1 be the du- and du+1-approximations of x,
respectively. For each i ≤ n, set

Ju(i) := {j ≤ n : yuj = yui } and Ju+1(i) := {j ≤ n : yu+1
j = yu+1

i }.

Then we have the following dichotomy.

• Either x ∈ Ku ∪ Ku+1,

• or
∣∣{i ≤ n : 2|Ju+1(i)| ≤ |Ju(i)|

}∣∣ ≥ n3/192.
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Proof. Let x, yu, yu+1 be as above and note that du ≥ 2d/θ0 for any u ≥ 4, in particular we may
apply Lemma 5.8 witk k = du to the vector yu. Denote

I :=
{
i ≤ n : 2|Ju+1(i)| ≤ |Ju(i)|

}
.

Assume that x /∈ Ku and that I < n3/192. We show that x ∈ Ku+1.
For m = u, u+ 1 denote

Um := {Jm(i) : i ∈ Ic} and

V m :=
{
j ≥ 0 : |{J ∈ Um : (LSj(ym) ∪ LRj(ym)) ∩ J 6= ∅}| ≥ 10

}
.

We first prove that ∣∣∣ ⋃
j∈V u+1

(LSj(yu+1) ∪ LRj(yu+1)) ∩
⋃

J∈Uu+1

J
∣∣∣ ≥ n3/144. (19)

Note that by the definition of k-approximation, given j, Re yuj = `/du for some integer ` if and

only if Re yu+1
j = `/du +m/du+1 for some 0 ≤ m < d, and the same holds for the imaginary parts of

yuj , yu+1
j . This implies that Ju+1(i) ⊂ Ju(i) for every i. Thus, there exists a bijection ρ : Uu → Uu+1

such that each set J ∈ Uu corresponds to ρ(J) ∈ Uu+1 with ρ(J) ⊂ J and 2|ρ(J)| > |J |. Since every
J in Uu is a level set, Lemma 5.3 implies that the set V u is an interval in Z, that is, either V u = ∅ or
V u = {0, . . . , supV u}. Similarly, V u+1 is an interval. Moreover, if V u 6= ∅ then Lemma 5.2 together
with the inequality 2|ρ(J)| > |J | implies

supV u+1 ≥ max(supV u − 1, 0)

Consider the set

J0 := {j ≥ 0 : j /∈ V u and h(LSj(yu)) + h(LRj(yu)) ≥ 10}.

Observe that for every j ∈ J0, the union LSj(yu) ∪ LRj(yu) has at least

h(LSj(yu)) + h(LRj(yu))− 9 ≥ (h(LSj(yu)) + h(LRj(yu)))/10

of its level sets contained entirely in I. Hence, by (17) (see also Lemma 5.2),

∀j ∈ J0

∣∣(LSj(yu) ∪ LRj(yu)) ∩ I
∣∣ ≥ 1

40

∣∣LSj(yu) ∪ LRj(yu)
∣∣.

Since x 6∈ Ku, the total cardinality of the spread `-parts in the `-decomposition with respect to yu is
at most cKn3 < n3/120 provided that cK < 1/120. Therefore, by Lemma 5.8, the total cardinality of
spread and regular parts of cumulative height 10 or more, is at least n3/8. Then the last relation and
the upper bound on the cardinality of I yield that∣∣∣ ⋃

j∈V u
LSj(yu) ∪ LRj(yu)

∣∣∣ ≥ n3/8− 12|I| ≥ n3/16

(in particular, V u 6= ∅). Using that
⋃
J∈Uu J ⊃ Ic, we obtain∣∣∣ ⋃

j∈V u
(LSj(yu) ∪ LRj(yu)) ∩

⋃
J∈Uu

J
∣∣∣ ≥ n3/16− |I| ≥ n3/18. (20)

Next, consider a set J ∈ Uu satisfying

L :=
⋃
j∈V u

(LSj(yu) ∪ LRj(yu)) ∩ J 6= ∅.
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Then L is the union of level sets of yu of all orders 0, ..., j0 for some 0 ≤ j0 ≤ supV u. Since the
set ρ(J) ∈ Uu+1 has cardinality greater than |J |/2, Lemma 5.2 implies that ρ(J) must contain level
sets of yu+1 of all orders 0, ..., max(j0− 1, 0) (note that necessarily max(j0− 1, 0) ∈ V u+1). Applying
Lemma 5.2 again, we obtain∣∣∣ ⋃

j∈V u+1

(LSj(yu+1) ∪ LRj(yu+1)) ∩ ρ(J)
∣∣∣ ≥ 1

8

∣∣∣ ⋃
j∈V u

(LSj(yu) ∪ LRj(yu)) ∩ J
∣∣∣.

This together with (20) implies (19).

Finally we show that (19) implies that x ∈ Ku+1.

Fix j ∈ V u+1 and let J1, J2, . . . , Jb (b ≥ 10) be (distinct) elements of Uu+1, which have a non-
empty intersection with LSj(yu+1) ∪ LRj(yu+1). Denote za = yu+1(Ja) and wa = yu(ρ−1(Ja),
a ≤ b. Since ρ is a bijection, w1, ..., wb are also distinct. It will be convenient, to see elements of
those two sequences as elements of lattices Λu := (Z/du)2 and Λu+1 := (Z/du+1)2. We also denote
D = [0, (d− 1)/du+1]× [0, (d− 1)/du+1]. As we noticed above, by construction, we have za ∈ wa +D
for every a ≤ b. Now we split Λu into nine equivalence classes using the relation (v1, v2) ∼ (v3, v4) if
and only if du(v1 − v3) and du(v2 − v4) are divisible by 3. Let Λ be an equivalence class such that
|Λ ∪ {wa}a≤b| ≥ b/9. Note, if wa, w` ∈ Λ then ‖za − z`‖∞ ≥ 2/du, in particular, LSj(yu+1) 6= ∅. Let
λ1, ..., λm, m ≤ b/9 − 1, be as in the construction of LSj(yu+1). Then for each i ≤ m, λi ∈ Λu+1

and λi ∈ µi + D for some µi ∈ Λu+1. Let µ̄i be the closest (in `∞-metric) to µi point of Λ. Since
m ≤ b/9− 1, there exists wa ∈ Λ \ {µi}i≤m. Then for each i ≤ m we have

‖wa − µi‖∞ ≥ ‖wa − µ̄i‖∞ − ‖µ̄i − µi‖∞ ≥ 2/du.

Since za ∈ wa +D, λi ∈ µi +D, we observe

|za − λi| ≥ ‖za − λi‖∞ ≥ 1/du.

This shows that the sequence {λi}i≤m can be continued. Thus, LSj(yu+1), the spread `-part of order j
with respect to yu+1, must comprise at least b/9 levels (i.e., its height is at least b/9). Then, applying
estimates for cardinalities of individual level sets (17), we obtain

|LSj(yu+1)| ≥ 1

4
· 1

9

∣∣∣(LSj(yu+1) ∪ LRj(yu+1)) ∩
⋃

J∈Uu+1

J
∣∣∣.

Taking the union over all j ∈ V u+1 and choosing small enough cK, we obtain the desired result.

We are now ready to prove Theorem 5.6.

Proof of Theorem 5.6. Fix a vector x ∈ S, and assume that x /∈
⋃v
u=4Ku. We show that x ∈ Pv. For

every u ≥ 4, let yu be the du-approximation of x. For i ≤ n and u ≥ 4 let

Ju(i) := {j ≤ n : yuj = yui } and Iu :=
{
j ≤ n : 2|Ju+1(j)| ≤ |Ju(j)|

}
.

The assumption that x /∈
⋃v
u=4Ku, together with Lemma 5.9, implies that |Iu| ≥ n3/192 for 4 ≤ u < v.

Define an auxiliary integer vector a = (ai)
n
i=1 by setting for i ≤ n,

ai :=
∣∣{4 ≤ u < v : i ∈ Iu

}∣∣.
The lower bound on cardinalities of sets Iu implies that

n∑
i=1

ai ≥ (v − 4)n3/192.
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On the other hand, clearly ai ≤ v − 4 for all i ≤ n. Recall n3 = ba3nc. Let

J := {i ≤ n : ai ≥ (v − 4)n3/(384n)}.

Then

(v − 4)n3/192 ≤
n∑
i=1

ai ≤ |J |(v − 4) + (n− |J |)(v − 4)a3/384,

which implies
|J | ≥ (n3/192− a3n/384)/(1− a3/384) ≥ n3/400.

By the definitions of Iu and ai’s, we have for every i ∈ J , |Jv(i)| ≤ 2−(v−4)a3/384 n, hence, by
Lemma 5.3, in the `-decomposition of yv, any regular or spread `-part of order

j > j0 := blog2(2−(v−4)a3/384n)c+ 1

does not have a non-empty intersection with J . Thus, we obtain

∣∣∣ ⋃
j≥0

LSj(yv) ∪ LRj(yv)
∣∣∣ =

∣∣∣ j0⋃
j=0

LSj(yv) ∪ LRj(yv)
∣∣∣ ≥ |J | ≥ n3/400.

Finally, since by (18) any regular or spread `-part of order j and of height at most h has cardinality
at most 2j+1h, the last relation yields for every positive integer h,∣∣∣ ⋃

j≥0:h(LSj(yv))≥h

LSj(yv) ∪
⋃

j≥0:h(LRj(yv))≥h

LRj(yv)
∣∣∣

≥ n3/400−
∣∣∣ ⋃
j≤j0:h(LSj(yv))<h

LSj(yv) ∪
⋃

j≤j0:h(LRj(yv))<h

LRj(yv)
∣∣∣

≥ n3/400− 2 · 2j0+2(h− 1) ≥ n3/400− h · 24−(v−4)a3/384n.

Choosing h = 2(v−4)a3/384a3/(400 · 25), we get the result with cP = 1/(400 · 25).

6 A small ball probability theorem

Let K ⊂ [n] and M be the random matrix uniformly distributed onMn,d. The purpose of this section
is to study anti-concentration properties of a random vector of the form MKy+V , where y is a fixed
k-vector and V is a fixed vector in C|K|. The high-level idea is to replace the random vector MKy,
whose distribution is difficult to describe due to dependencies within MK , by a “simpler” random
vector Z = (Zi)i∈K whose anti-concentration properties can be studied with the help of standard
tools. The construction of Z will be done in such a way that we will be able to pass from estimates
for Z back to MKy by conditioning on a certain event of not too small probability. The actual
proof is technical, and even stating the main result of the section requires some preparatory work.
Instead of working with the probability space Mn,d, we will split it into certain equivalence classes
(the splitting will depend on the structure of the vector y, more precisely, on the partition of [n]
given by the `-decomposition of y), and study the conditional anti-concentration. The probability
estimate will be given as a function of the `-decomposition. As we mentioned in the introduction,
this argument is related to the LCD-based method of Rudelson and Vershynin [49] which in turn was
strongly influenced by earlier works on singularity of discrete random matrices [33, 54, 56]. A principal
difference of our approach is that the `-decomposition, being a “multidimensional” characteristic of a
vector, provides much more structural information than LCD. This structural information is heavily
used in this part of the paper.
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We start by introducing a structure on Mn,d. For each m ≤ n, let Rn,m,d be the set of n × m
matrices with integers coefficients from the set {0, 1, . . . , d} such that
1. the sum in each row is d, and
2. the sum in every column is a non-negative integer multiple of d.

Now, for every k-vector y with the `-decomposition (L(q))mq=1, where

m = m(y) ≤ 3 lnn,

we define the mapping
(y)−→ fromMn,d into Rn,m,d, which assigns to each matrix M ∈Mn,d an n×m

matrix Q = (Qiq)iq ∈ Rn,m,d defined by

∀i ≤ n ∀q ≤ m Qiq :=
∑
j∈L(q)

Mij ,

that is, the matrix Q is obtained from M by summing up respective columns. This mapping defines
an equivalence relation

y∼ onMn,d, where M
y∼M ′ whenever both M and M ′ are mapped to the same

element of Rn,m,d. Further, a given matrix Q ∈ Rn,m,d, we denote by Mn,d(Q, y) the equivalence

class of matrices in Mn,d, which are mapped to Q via the correspondence
(y)−→. If Mn,d(Q, y) 6= ∅

then the uniform probability measure on Mn,d(Q, y) will be denoted by PQ,y.
For the rest of this section we fix integers k ≥ 1, m ≥ 1, and a vector y ∈ Ak with the `-

decomposition (L(q))mq=1. Let Q ∈ Rn,m,d be such that there exists M ∈Mn,d which is mapped to Q

by
(y)−→, in particular, for every q ≤ m one has

n∑
i=1

Qiq = d |L(q)|. (21)

In what follows, such matrices Q will be called y-admissible. Denote hq := h(L(q)). For all i ≤ n and
q ≤ m, we define the weight wiq by

wiq = wiq(y, k,Q) :=

{
hqQiq/d, if L(q) is regular,

hq
√
Qiq, if L(q) is spread.

(22)

Now, given i ≤ n, the small ball probability estimator SBi is

SBi = SBi(y, k,Q) := min
(
1,min
q≤m

w−1
iq

)
,

where we adopt the convention 0−1 = ∞. The estimators SBi are designed to measure anti-
concentration of inner products 〈Ri(M), y†〉, for M distributed inMn,d(Q, y). We prove the following
theorem.

Theorem 6.1 (Small ball probability). Let d, n be large enough integers such that d3 ≤ n. Let
K ⊂ [n] be such that |Kc| ≤ n/(50 ln d) and assume

1 ≤ k ≤ min
(√
n/(8d3/2

√
ln d), d−10en/(5|K

c|)).
Let y and Q be as above. Then for any non-random vector V ∈ C|K| and any γ ≥ 1 one has

PQ,y
{
M ∈Mn,d(Q, y) : ‖MKy + V ‖2 ≤ γ

√
d|K|/k

}
≤ Cnγ2|K|

n∏
i=1

SBi,

where C > 0 is a universal constant.
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The main difficulty in proving Theorem 6.1 lies in the fact that the rows of the random matrix
uniformly disctributed onMn,d are dependent. To deal with this issue, we construct a special random
vector Z in C|K| with independent coordinates having a property that, conditioned on a certain event
of not too small probability, it has the same distribution as MKy.

Let y and K be as in the theorem. Recall that by the definition each `-part L(q) is representable
as the union of level sets of y,

L(q) =

hq⋃
p=1

Lqp, (23)

where we assume for concreteness that y(Lqp+1) < y(Lqp) (in lexicographical order) for all p < hq. For
each q ≤ m, we define the set of pairs

∆q :=
{

(i, w) : 1 ≤ i ≤ n, 1 ≤ Qiq, 1 ≤ w ≤ Qiq
}
.

Then |∆q| =
n∑
i=1

Qiq = d|L(q)|. Further, let{
ξqδ : 1 ≤ q ≤ m, δ ∈ ∆q

}
be a collection of jointly independent random variables, where each ξqδ is distributed in the set
{1, 2, . . . , hq} in such a way that for all p ≤ hq,

P
{
ξqδ = p

}
=
|Lqp|
|L(q)|

.

Define random variables Zi, i ∈ K, as

Zi :=
m∑
q=1

Qiq∑
w=1

y
(
Lq
ξq
(i,w)

)
(24)

and set Z := (Zi)i∈K . Note that each variable Zi is a function of{
ξq(i,w) : 1 ≤ q ≤ m, 1 ≤ w ≤ Qiq

}
,

and those sets of variables are clearly disjoint for distinct i’s, hence (Zi)i∈K are jointly independent.
Since each Zi is a sum of discrete complex-valued random variables, we can apply Proposition 2.5 to
study its anti-concentration properties. As we show below, the conditional distribution of Z given
a certain event of not too small probability, coincides with the distribution of AKy, where AK is a
“multigraph” version of MK in which we allow entries greater than one (i.e., multiple edges). This
correspondence will be made precise later, as the first step we define and estimate the probability of
the event to be conditioned on.

Claim 6.2. Let h, N,N1, . . . , Nh be positive integers satisfying
∑h

p=1Np = N . Let ξ1, ξ2, . . . , ξN be
i.i.d. random variables taking values in the set {1, 2, . . . , h} with probabilities P{ξi = p} = Np/N for
all p ≤ h. Then

P
{
∀p ≤ h : |{i ≤ N : ξi = p}| = Np

}
≥ (h/(Ne2))h/2.

Proof. Denote the event
{
∀p ≤ h : |{i ≤ N : ξi = p}| = Np

}
by E . Note that the random variables

ηp := |{i ≤ N : ξi = p}|, p ≤ h,

have a multinomial distribution. Since (n/e)n < n! ≤ e
√
n(n/e)n, we have

P(E) =
N !

N1! · · ·Nh!

h∏
p=1

(Np

N

)Np
>

(N/e)N
∏h
p=1Np

Np

NN
∏h
p=1 e

√
Np(Np/e)Np

= 1/

h∏
p=1

e
√
Np.

The arithmetic-geometric mean inequality
∏h
p=1Np ≤ (N/h)h implies the bound.
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Lemma 6.3. Let d ≤ n be large enough positive integers, k ≤
√
n/(8d3/2

√
ln d), y ∈ Ak, and {ξqδ} be

as above. Define the event

E6.3 :=
⋂
q≤m

{
∀p ≤ hq : |{δ ∈ ∆q : ξqδ = p}| = d|Lqp|

}
.

Then P(E6.3) ≥ e−n.

Proof. Let H =
∑m

q=1 hq be the total number of level sets of y. Since y is the k-approximation of a

gradual vector, we have y∗n2
≤ 2d

3
2 , with n2 defined in Section 4. Therefore, using the assumption on

k,

H ≤ n2 + ((2k + 1) 2d
3
2 )2 ≤ n/(2 ln d).

By the independence of ξqδ , q ≤ m, and by Claim 6.2 applied for every q ≤ m with N = d|L(q)|
and Np = d|Lqp|, p ≤ hq, we get

P(E6.3) ≥
m∏
q=1

( hq

d|L(q)|e2

)hq/2
= (e2d)−H/2

m∏
q=1

( hq

|L(q)|

)hq/2
≥ (e2d)−n/(4 ln d)

m∏
q=1

e−|L
(q)|/2e = exp (−n/(2 ln d)− n/4− n/(2e)) ,

where in the last inequality we used the bound on H and that xx ≥ e−1/e for all x > 0. This completes
the proof for large enough d.

As the next step, we study anti-concentration properties of a single variable Zi.

Lemma 6.4. Given k ≥ 1, let y ∈ Ak and let vector Z be defined as above. Then for every i ∈ K
and every τ ≥ 1 one has

Q(Zi,
√
dτ/k) ≤ Cτ2 SBi,

where C ≥ 1 is a universal constant.

Proof. A simple estimate Q(η1 + η2, γ) ≤ min
(
Q(η1, γ),Q(η2, γ)

)
, which is valid for any pair η1, η2 of

independent random variables and all γ > 0, together with the definitions of Zi’s and SBi’s, implies
that it is sufficient to prove the relations

Q
(Qiq∑
w=1

y
(
Lq
ξq
(i,w)

)
,

√
dτ

k

)
≤ Cτ2

wiq
.

for all i ∈ K and q ≤ m.
Fix i ∈ K and q ≤ m such that wiq 6= 0, and denote the variables y

(
Lq
ξq
(i,w)

)
by ψw, 1 ≤ w ≤ Qiq.

Note that each ψw is a discrete random variable taking values in the set

B :=
{
y(Lqp) : p ≤ hq

}
.

By (23) and by (17) one has

|L(q)| =
hq∑
p=1

|Lqp| and max
p≤hq

|Lqp| ≤ 4 min
p≤hq
|Lqp|.

Hence, for any b ∈ B

P{ψw = b} ≤ max
p≤hq

|Lqp|
|L(q)|

≤ 4

hq + 3
.
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If the part L(q) is regular then the set B is a (1/k)-separated subset of the complex plane. Applying
Proposition 2.5 and using that τ ≥ 1 and Qiq ≤ d, we obtain

Q
(Qiq∑
w=1

ψw,

√
dτ

k

)
≤ C0 max

( dτ2

hqQiq
,

1

hq

)
=
C0 dτ

2

hqQiq
=
C0 τ

2

wiq
,

where C0 > 0 is a universal constant.
If the part L(q) is spread then the set B is a (d/k)-separated subset of the complex plane. Note

that wiq = hq
√
Qiq ≤ hq

√
d. Without loss of generality, we can also assume that 1 ≤ τ2 ≤ wiq

(otherwise the probability estimate is trivial). Using that the number of (d/k)-separated points in a

ball of radius λ is smaller than
(
1 + 2λk/d

)2
, we obtain for all λ > 0 and w ≤ Qiq,

Q(ψw, λ) ≤ 4

hq + 3

(
1 + 2λk/d

)2
.

Assume first that hq ≤ 32. Using that the heights of non-empty spread parts hq are at least 2, we
have

Q(ψw,
√
d/k) ≤ 4

hq + 3

(
1 + 2/

√
d
)2 ≤ 5

6
,

provided d is large enough. Therefore, applying Proposition 2.2 with t =
√
dτ/k and t0 =

√
d/k, we

get

Q
(Qiq∑
w=1

ψw,

√
dτ

k

)
≤ C1 τ

2√
Qiq
≤ 32C1 τ

2

hq
√
Qiq

=
32C1 τ

2

wiq
,

where C1 > 0 is an absolute constant. Let now hq > 32. Then, using τ2 ≤ hq
√
d and that d is large

enough,

Q(ψw,
√
d τ/k) ≤ Q(ψw,

√
2d τ/k) ≤ 4

hq + 3

(
1 + 2

√
2τ/
√
d
)2 ≤ 8 + 64τ2/d

hq
≤ 1/2.

Therefore, applying Proposition 2.3 with t = t0 =
√
dτ/k, we obtain

Q
(Qiq∑
w=1

ψw,

√
dτ

k

)
≤ C2

8 + 64τ2/d

hq
√
Qiq

≤ 72C2
τ2

hq
√
Qiq

= 72C2
τ2

wiq
,

where C2 > 0 is an absolute constant. This completes the proof.

To complete the proof of Theorem 6.1 we tensorize the last lemma, i.e., we pass from the anti-
concentration estimates for individual Zi’s to the vector Z, and then we tie the obtained estimates
for Z with anti-concentration properties of MKy. At this point, it will be convenient to introduce a
new random object – a multigraph on [n] which, in a certain sense, will correspond to the vector Z.
This way, a direct relation between Z and MKy can be defined by conditioning on the event that the
multigraph is simple, i.e., does not contain multiple edges.

Let y, (L(q))mq=1, and Q be as above. We construct the multigraph ĜQ on [n] as the union of

certain independent bipartite multigraphs Ĝq on ([n],L(q)), that is

ĜQ =
m⋃
q=1

Ĝq,

where to form Ĝq we adapt the configuration model in the following way. For every q ≤ m, define

∆′q := L(q) × [d] =
{

(j, w′) : j ∈ L(q), 1 ≤ w′ ≤ d
}
.
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Clearly, |∆′q| = d|L(q)| = |∆q|. Let gq be a (fixed) bijection from ∆q to ∆′q, and let σq be a random
uniform permutation on ∆′q (σq does not respect the two-dimensional structure of ∆′q and can be
viewed as a uniform random element of the permutation group Π|∆′q |, also we suppose that σ1, ..., σm

are jointly independent). We define Ĝq as a bipartite multigraph on ([n],L(q)) with the edge multiset

Eq :=
{

(i, j) ∈ [n]× L(q) : ∃ 1 ≤ w ≤ Qiq , 1 ≤ w′ ≤ d such that

(i, w) ∈ ∆q, (j, w′) ∈ ∆′q and gq(i, w) = σq(j, w
′)
}
,

where the multiplicity rq(i, j) of each edge (i, j) in Eq is equal to the cardinality of the set

gq({i} × [Qiq]) ∩ σq({j} × [d]).

Note that by construction, Ĝq has degree sequence (Qiq)i≤n for vertices in [n] and a constant degree

d for vertices in L(q). We define ĜQ as the union of Ĝq’s, q ≤ m, in particular, the edge multisets E

of ĜQ is

E =
m⋃
q=1

Eq.

Denote
pq = pq(i, j) :=

∑
(w,w′)∈[Qiq ]×[d]

P{gq(i, w) = σq(j, w
′)} ≤ Qiq/|L(q)|.

Then E {rq(i, j) | (i, j) ∈ Eq} = pq, and by the union bound P{(i, j) ∈ Eq} ≤ pq. Therefore, using
that each Qiq is at most d, we observe

E rq(i, j) = E {rq(i, j) | (i, j) ∈ Eq} P{(i, j) ∈ Eq} ≤ p2
q ≤ Q2

iq/|L(q)|2 ≤ dQiq/|L(q)|2.

Let Nq be the total number of multiple edges produced in the random bipartite multigraph Ĝq. Using
Markov’s inequality and (21), we obtain

P
{
Nq ≥ 2d2

}
≤ 1

2d2
ENq ≤

1

2d2

∑
i≤n

∑
j≤|L(q)|

E rq(i, j) ≤
1

2d

∑
i≤n

Qiq

|L(q)|
≤ 1

2
. (25)

Thus for every q ≤ m at least half of realizations of the random bipartite multigraph Ĝq have the
number of multiple edges at most 2d2. In the sequel we will see that for every q ≤ m a non-negligible
part of realizations of Ĝq have no multiple edges, so that a non-negligible proportion of realizations

of ĜQ are simple.

One can check that any realization of ĜQ occurs with probability

m∏
q=1

(d!)|L
(q)|∏n

i=1Qiq!

(d|L(q)|)!
.

Moreover, the realizations of ĜQ which are simple precisely correspond to the graphs whose adjacency
matrices belong to Mn,d(Q, y). Therefore,

P{ĜQ is simple} = |Mn,d(Q, y)|
m∏
q=1

(d!)|L
(q)|∏n

i=1Qiq!

(d|L(q)|)!
. (26)

Below we denote the adjacency matrix of ĜQ by A (with the entries of A respecting multiplicities).
Then for any M ∈Mn,d(Q, y) one has

P{A = M | ĜQ is simple} =
(
P{ĜQ is simple}

)−1
m∏
q=1

(d!)|L
(q)|∏n

i=1Qiq!

(d|L(q)|)!
=

1

|Mn,d(Q, y)|
, (27)
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which means that conditioned on the event that ĜQ is simple, the matrix A is uniformly distributed
on Mn,d(Q, y).

In the next proposition, we provide a lower bound on the probability that ĜQ is simple. Note
that by our construction, this probability is equal to the product of the probabilities that each of the
bipartite graphs Ĝq is simple.

Proposition 6.5. Let d ≤ n be large enough and denote by E6.5 the event that ĜQ is simple. Then

P
(
E6.5

)
≥ exp(−33d2 ln2 n).

Proof. For every q ≤ m such that |L(q)| ≤ 5d, we bound from below the probability that Ĝq is simple
by one over the number of realizations of such multigraphs, that is, by(

d|L(q)|)−d|L(q)| ≥ exp(−5d2 ln(5d)2) ≥ exp(−11d2 lnn).

Now we treat q ≤ m such that |L(q)| > d lnn. For such q we could use precise asymptotics
obtained in [44] (see also [28, Theorem 1.1]), however, for the readers’ convenience, we prefer to
provide a simple self-contained argument (which leads also to a better bound). For every q ≤ m,
denote by Mn,d(Q, y,L(q)) the set of n× |L(q)| matrices corresponding to blocks of columns indexed
by L(q) of matrices from the equivalence class Mn,d(Q, y). With this notation, we have

|Mn,d(Q, y)| =
m∏
q=1

|Mn,d(Q, y,L(q))|.

Similarly to (26), the probability that the random multigraph Ĝq on ([n],L(q)) is simple is given by

|Mn,d(Q, y,L(q))|
(d!)|L

(q)|∏n
i=1Qiq!

(d|L(q)|)!
.

Therefore it is sufficient to estimate the cardinality of Mn,d(Q, y,L(q)) for each q ≤ m. Let M̂q

be the set of all adjacency matrices corresponding to realizations of Ĝq (with the entries respecting

multiplicities). Moreover, let M̂′′ be the subset of M̂q given by matrices such that the sum over
entries exceeding 1 is bounded above by 2d2. The latter corresponds to multigraphs having at most
2d2 multiple edges. By (25), we have

|M̂′′| ≥ 1

2
|M̂q|. (28)

To estimate the cardinality of Mn,d(Q, y,L(q)), we define a relation R ∈ M̂′′ ×Mn,d(Q, y,L(q)) as
follows. We let a pair (M,M ′) belong to R if M ′ can be obtained from M by a sequence (of maximal
length 2d2) of simple switching operations in the following way: for every (i, j) such that Mij > 1,
choose first (i′, j′) such that Mij′ = Mi′j = 0 and Mi′j′ ≥ 1, then operate the simple switching on

i, j, i′, j′. By regularity of our matrices and by the definition of M̂′′, the number of pairs (i′, j′) with
Mi′j′ ≥ 1 is at least ∑

s,t

Ms,t −
∑

s,t:Ms,t≥1

(Ms,t − 1) ≥ d|L(q)| − 2d2.

Moreover, the number of s and t such that either Mis 6= 0 or Mtj 6= 0 is at most 2d(d− 1). Therefore,
using that |L(q)| ≥ 5d, we observe that there are at least d|L(q)|−4d2 ≥ d|L(q)|/5 choices for a “good”
pair (i′, j′), hence

|R(M)| ≥ d|L(q)|/5.

Note that after such a switching, the sum over entries exceeding 1 must decrease. Then we reiterate
this procedure until the all entries becomes less than or equal to 1. Note that we do not need more
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than 2d2 steps (since the sum over entries exceeding 1 is bounded above by 2d2). Now we revert the

procedure and start with M ′ ∈ R(M̂′′). Since at each step the number of non-zero elements is at most
d|L(q)|, the number of possible switching operations is smaller than d2|L(q)|2/2. Since the number of
steps is at most 2d2, we have

|R−1(M ′)| ≤
(
d2|L(q)|2/2

)2d2
.

Claim 2.1 and the bound d|L(q)| ≤ n2 imply that

|M̂′′| ≤
(
5/d|L(q)|

) (
d2|L(q)|2/2

)2d2 |Mn,d(Q, y,L(q))| ≤
(
1/2
)

exp
(
8d2 lnn

)
|Mn,d(Q, y,L(q))|.

By (28) this yields

|Mn,d(Q, y,L(q))| ≥
(
d|L(q)|/4

) (√
2/(d|L(q)|)

)4d2 ≥ exp
(
− 8d2 lnn

)
|M̂q|,

hence, the probability that the Ĝq is simple is at least exp(−8d2 lnn).

Finally, as we mentioned above, the probability that ĜQ is simple is equal to the product of the

probabilities that each Ĝq, q ≤ m, is simple. Thus, the probability that ĜQ is simple is at least
exp

(
− 11d2m lnn

)
. Since by the construction of the `-decomposition, m ≤ 3 lnn, we obtain the

desired estimate.

We now verify that the adjacency matrix A of ĜQ satisfies a condition similar to that of Theo-
rem 6.1.

Lemma 6.6. Let d ≤ n be large enough, m ≥ 1, and k ≤
√
n/(8d3/2

√
ln d). Let y ∈ Ak, (L(q))mq=1 be

its `-decomposition, Q be a y-admissible matrix, and ĜQ be the random multigraph constructed above
with the adjacency matrix A. Then for any K ⊂ [n], any non-random vector V ∈ C|K|, and any γ ≥ 1
one has

P
{
‖AKy + V ‖2 ≤ γ

√
d|K|
k

}
≤ Cn6.6γ2|K|

∏
i∈K

SBi.

Proof. As before, for every q ≤ m we represent the `-set L(q) as the union
⋃
p≤hq L

q
p. For every j ∈ L(q)

let f q(j) denote the index of the level set in L(q) containing j, i.e., f q(j) = p whenever j ∈ Lqp. It is
convenient to have a representation for the multiset Eq in the form

Eq =
{
eδ : δ ∈ ∆q

}
,

where for every δ = (i, j) ∈ ∆q we have eδ = (i, jqδ ) with jqδ ∈ L
(q) being equal to the first component

of the pair
σ−1
q (gq(δ)) ∈ ∆′q.

Recall that random variables {ξqδ}, q ≤ m, δ ∈ ∆q, were introduced in the first part of this section.
Observe that for any fixed q ≤ m, the joint distribution of the variables {ξqδ}, δ ∈ ∆q, conditioned on
the event E6.3, coincides with the joint distribution of

{f q(jqδ ) : δ ∈ ∆q}.

Indeed, by the construction of the multigraph ĜQ, the variables
(
f q(jqδ )

)
δ∈∆q

take values in the set

of sequences {
(aδ)δ∈∆q ∈ N∆q : ∀p ≤ hq |{δ : aδ = p}| = d|Lqp|

}
. (29)

Note that the set of permutations of ∆q acts transitively on the set in (29). Hence, taking into account
that the distribution of

(
f q(jqδ )

)
δ∈∆q

is invariant under permutations of ∆q, we get that all realizations

of the sequence are equi-probable. On the other hand, conditioned on E6.3, the sequence (ξqδ )δ∈∆q is
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distributed over (29), and it is not difficult to see that the conditional distribution is uniform. Thus,
the distribution of

(
f q(jqδ )

)
δ∈∆q

and (ξqδ )δ∈∆q given E6.3 must coincide.

We now relate the coordinates of the vector AKy to the variables Zi. Denoting the entries of A
by aij , note that for every pair (i, j) the entry aij is the multiplicity of the edge (i, j) in Eq (which
can be zero if the edge does not belong to Eq). Therefore for all i ∈ K, we have

(Ay)i =

n∑
j=1

aijyj =

m∑
q=1

∑
j∈L(q)

aijyj =

m∑
q=1

∑
j∈L(q)

y
(
Lqfq(j)

)
aij =

m∑
q=1

Qiq∑
w=1

y
(
Lq
fq(jq

(i,w)
)

)
.

Hence,

AKy
d∼ Z conditioned on E6.3.

Applying Lemma 6.3, we get

P
{
‖AKy + V ‖2 ≤ γ

√
d|K|
k

}
= P

{
‖Z + V ‖2 ≤ γ

√
d|K|
k

∣∣∣ E6.3

}
≤ enP

{
‖Z + V ‖2 ≤ γ

√
d|K|
k

}
.

By Lemma 6.4 there is an absolute constant C ≥ 1 such that for all γ ≥ 1,

Q(Zi, γ
√
d/k) ≤ Cγ2 SBi.

Therefore, the random vector Z + v satisfies the assumptions of Lemma 2.7 with ε0 =
√
d/k and

pi = Ck2 SBi/d. Applying this lemma and taking ε = γε0, we obtain

P
{
‖Z + V ‖2 ≤ γ

√
d|K|
k

}
≤ C |K|1 γ2|K|

∏
i∈K

SBi,

where C1 ≥ 1 is an absolute constant. This completes the proof.

Before we complete the proof of Theorem 6.1, we show that
∏n
i=1 SBi and

∏
i∈K SBi are comparable

whenever K is not too small.

Lemma 6.7. Let d, n be large enough integers with d3 ≤ n. Let k ≥ 1 and K ⊂ [n] be such that

|Kc| ≤ n/(50 ln d) and k ≤ d−10en/(5|K
c|)

and let y ∈ Ak. Then ∏
i∈Kc

SB−1
i ≤ e

n.

Proof. Since Qiq ≤ d, we have wiq ≤ hq
√
d for all i ≤ n and q ≤ m. For each b ≥ 1, denote

Ib := {q ≤ m : hq ∈ [2b−1, 2b)} and Hb :=
⋃
q∈Ib

L(q).

Let b0 be such that
2b0−1

√
d ≤ en/(2|Kc|) < 2b0

√
d.

Note that the assumption on the cardinality of K implies that 2b0 ≥ d24. Since for every

q ∈ I0 :=
⋃
b<b0

Ib
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we have wiq ≤ hq
√
d ≤ en/(2|Kc|), then

S :=
∏
i∈Kc

SB−1
i ≤

∏
i∈Kc

en/(2|K
c|) max(1,max

q 6∈I0
wiq) ≤ en/2

∏
b≥b0

∏
i∈Kc

max(1,max
q∈Ib

wiq). (30)

Fix b ≥ b0. By the construction of the matrix Q (from a d-regular matrix M), there are at most d|Hb|
indices i for which Qiq 6= 0 for some q ∈ Ib. Therefore,∏

i∈Kc

max(1,max
q∈Ib

wiq) ≤ (2b
√
d)d|Hb|. (31)

Let j be the maximal order of `-parts in the definition of Hb and L be a corresponding `-part (if there
are two of them, spread and regular, we choose and fix one). Denote h := h(L). By the definition of
Hb, the construction of the `-decomposition, (17), and (18), we have

2b0−1 ≤ 2b−1 ≤ h < 2b and |Hb| ≤ 2 max
q∈Ib

hq

j∑
i=0

2i+1 ≤ 2j+b+3.

Moreover, the size of each level set in L is in the interval [2j−1, 2j+1], in particular, |L| ∈ [2j−1h, 2j+1h].
Since y is a k-vector, its levels are 1/k-separated. Thus, using that for any p > 0 there are at most
(2p+ 1)2 integer complex numbers of absolute value less or equal p, we obtain for s = d2j−3he:

y∗s >

√
h/8

k
≥ 2b/2

4k
≥ 2b0/2

4k
≥ en/(4|K

c|)

4kd1/4
≥ 2,

provided that k ≤ en/(4|K
c|)/(8kd1/4). Now we use that y is the k-approximation of a vector x ∈ S.

Since x∗n3
= 1, we observe s < n3. On the other hand, applying Lemma 4.2 to x,

y∗s ≤ 2x∗s ≤ d3(n/s)6,

which implies
2j+b ≤ 2j+1h ≤ 16s ≤ 16n

√
d (4k)1/6 2−b/12.

Therefore,
|Hb| ≤ 2j+b+3 ≤ C ′n

√
d k1/6 2−b/12

for a universal constant C ′ > 0. This, together with (30), (31), and 2b ≥ 2b0 ≥ en/(2|K
c|)/
√
d ≥ d,

implies for an appropriate absolute positive constant C,

S ≤ en/2 exp
(∑
b≥b0

C ′nd3/2k1/62−b/12 ln(2b
√
d)
)
≤ en/2 exp

(
Cnd3/2k1/6b0 2−b0/12

)
≤ en/2 exp

(
(n/2)d3/2k1/6

(√
de−n/(2|K

c|))1/13) ≤ en,
provided that k ≤ d−10en/5|K

c| and that d is large enough.

Proof of Theorem 6.1. Following our configuration-type model construction, the law of the adjacency
matrix A of the multigraph ĜQ, conditioned on the event that ĜQ is simple, coincides with the uniform
distribution on Mn,d(Q, y) (see (27)). Using this and applying Proposition 6.5 and Lemma 6.6, we
obtain

PQ,y
{
M ∈Mn,d(Q, y) : ‖MKy + V ‖2 ≤ γ

√
d|K|/k

}
= P

{
‖AKy + V ‖2 ≤ γ

√
d|K|/k

∣∣ E6.5

}
≤ P

{
‖AKy + V ‖2 ≤ γ

√
d|K|/k

}
/P(E6.5)

≤ exp(33d2 ln2 n)Cn6.6γ
2|K|

∏
i∈K

SBi.

Lemma 6.7 implies the desired result.
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7 Proof of Theorem 1.1

This section is devoted to the proof of the main result of the paper, obtained by a combination of
the estimates for steep and almost constant vectors from Section 4, the structural information on the
set of gradual vectors from Section 5 and the small ball probability theorem of Section 6. Setting
aside technical details, the principal idea of the proof is to define a discrete structure on the set
of gradual vectors with “not small” subsets of almost equal coordinates and, by a combination of
small ball probability estimates for individual vectors (Lemmas 7.7 and 7.9), the union bound and
an approximation argument (Proposition 7.6), to eliminate those vectors from the set of “potential”
null vectors of our matrix. Construction of the discrete subset (which can be viewed as a collection
of nets with respect to `∞-metric in Cn) is quite involved – it uses rather complex information about
the structure of a gradual vector (the `-decompositions of its k-approximations) which affects both
cardinalities of the nets and the probability estimates. As for the latter, to simplify analysis of the
product

∏n
i=1 SBi, we introduce another set of estimators {TEi}ni=1, which we call trivial estimators

(see Subsection 7.1 for definitions). The product
∏n
i=1 SBi is then estimated in terms of

∏n
i=1 TEi and

an auxiliary functional η (also defined in Subsection 7.1). Note that, by the definition, the probability
estimators SBi depend both on the structure of the underlying k-vector and on statistics of the
corresponding matrix Q. By introducing the estimators TEi and the functional η, we “separate”
these dependencies: the trivial estimators are entirely determined by the `-decomposition of the
related k-vector while η carries information about the matrix Q and the `-decomposition in a much
more convenient form compared to SBi’s.

The next informal argument, following the universality paradigm of the random matrix theory,
may be useful as an illustration of our approach. Given the random matrix M , we may think that
null vectors of (M − z Id)K behave essentially like Gaussian vectors (up to rescaling). In particular,
this would imply that the `-decompositions of k-approximations of the null vectors are comprised of
`-parts which are “mostly” regular and, moreover, there are very few `-sets of comparable (up to a
constant multiple) cardinalities. Accordingly, vectors whose `-decompositions contain “many” spread
`-parts or many `-parts of approximately equal cardinalities, should be typically in the complement of
the matrix kernel. This imprecise observation can in fact be rigorously verified, in particular, we show
that vectors with large spread `-parts (from the sets Ku) are not in the kernel with high probability.

Before we pass to the probability estimators and computing the union bound over a discrete subset
of S, we reformulate the main statement of Section 6. We first construct the following subset RSTn,m,d
(“ST” stands for “standard”) of Rn,m,d. First consider the subset of matrices Q = (Qiq) ∈ Rn,m,d
such that

1. For every q ≤ m with ‖Cq(Q)‖1 =
∑n

i=1Qiq ≥
√
dn one has∣∣{i ≤ n : Qiq < c3.3‖Cq(Q)‖1/n

}∣∣ ≤ n/√d;

2. For every non-empty subset J ⊂ [m] and κ :=
∑
q∈J
‖Cq(Q)‖1 one has

∣∣∣{i ≤ n :
∑
q∈J

Qiq ≥ c3.5
κ

n
and

∑
q∈Jc

Qiq ≥ c3.5
dn− κ
n

}∣∣∣ ≥ c3.5 min
(
κ, (dn− κ), n

)
.

We denote this subset by RST0n,m,d. Note that in Corollary 3.3 and Proposition 3.5, we showed that the
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event

E =
{
M ∈Mn,d : ∀J ⊂ [n] one has∣∣∣{i ≤ n : |suppRi(M) ∩ J | ≥ c3.5

d|J |
n

and |suppRi(M) ∩ Jc| ≥ c3.5
d|Jc|
n

}∣∣∣
≥ c3.5 min(d|J |, d(|Jc|), n) AND

if |J | ≥ n/
√
d one has

∣∣∣{i ≤ n : |suppRi(M) ∩ J | < c3.3d|J |
n

}∣∣∣≤ n/√d}
has probability very close to one. Now, if M ∈ E and y is a k-vector with m non-empty `-parts in its

`-decomposition then the correspondence
(y)−→ necessarily maps M into RST0n,m,d. The image of E we

denote by RSTn,m,d. Thus, the preimage of RSTn,m,d with respect to
(y)−→ is almost the entire set Mn,d.

This fact combined with Theorem 6.1 gives the following proposition.

Proposition 7.1. Let d, n be large enough integers such that d3 ≤ n. Let K ⊂ [n] be such that
|Kc| ≤ n/(50 ln d) and assume

1 ≤ k ≤ min
(√
n/(8d3/2

√
ln d), d−10en/(5|K

c|)).
Let y ∈ Ak and A > 0 be such that

n∏
i=1

SBi ≤ A for every Q ∈ RSTn,m,d. Then for any non-random

vector V ∈ C|K| and any γ ≥ 1 we have

P
{
M ∈Mn,d : ‖MKy + V ‖2 ≤ γ

√
d|K|/k

∣∣ E} ≤ 2Cnγ2|K|A,

where C > 0 is an absolute constant.

Proof. As we already noted, the event E is contained inside

E0 := {M : M is mapped into RSTn,m,d via
(y)−→}.

By Corollary 3.3 and Proposition 3.5, we have P(E0) ≥ P(E) ≥ 1/2, in particular, P(E0)/P(E) ≤ 2.
This and Theorem 6.1 imply

P
{
M ∈Mn,d : ‖MKy + V ‖2 ≤ γ

√
d|K|/k

∣∣ E}
≤ 2P

{
M ∈Mn,d : ‖MKy + V ‖2 ≤ γ

√
d|K|/k

∣∣ E0

}
≤ 2Cnγ2|K|A.

7.1 Rough estimators for small ball probability

We now introduce a “rougher” estimator than SBi, which is easier to study. Note that conditioned on
the event E defined above, if |L(q)| ≥ n/

√
d then for most rows, Qiq is of the same order of magnitude

as d|L(q)|/n. Having this in mind, we replace non-zero Qiq in the definition of weights wiq in (22)
with d|L(q)|/n if |L(q)| ≥ d−1/3n and with 1 otherwise and come to the following definition. Given a
vector y ∈ Ak with the corresponding `-decomposition (L(q))mq=1, let

w̃q = w̃q(y, k) :=


hq|L(q)|/n, if |L(q)| ≥ d−1/3n and L(q) is regular,

hq/d, if |L(q)| < d−1/3n and L(q) is regular,

hq
√
d |L(q)|/n, if |L(q)| ≥ d−1/3n and L(q) is spread,

hq if |L(q)| < d−1/3n and L(q) is spread
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be the truncated weight (“truncated” because for small non-zero Qiq we replace it with its minimal
possible value 1). The reason why we truncate at level d−1/3n instead of n/

√
d is that we want the

weights w̃q to be significantly weaker than wiq. Specifically, this definition of the truncated weights
will allow us to estimate the product

∏n
i=1 SBi from above in terms of trivial estimators defined with

respect to the truncated weights (see below). Note that for any q ≤ m, we have

w̃q ≥ hq/d if L(q) is regular and w̃q ≥ hq if L(q) is spread. (32)

The principal difference between the weights w̃q and wiq is that w̃q does not depend on Qiq, which
makes its analysis easier. We define also the trivial estimator TEi, i ≤ n, as a weighted geometric
mean of w̃q, q ≤ m,

TEi := TEi(y, k,Q) :=
∏
q≤m

(w̃q)
−Qiq/d.

Note that by (21) and (32),

n∏
i=1

TEi =
∏
q≤m

(w̃q)
−|L(q)| ≤ dn

∏
q≤m

hq
−|L(q)|. (33)

In what follows, we usually do not mention explicitly dependency of the weights and the estimators
on the vector y, which is assumed to be fixed throughout most of the subsection. To compare SBi

and TEi, we introduce more notations. For each b ∈ Z, let Wb be the union of all spread and regular
`-parts L(q), whose truncated weights w̃q lie in the interval [2b, 2b+1), that is, we set

I(b) := {q : 2b ≤ w̃q < 2b+1} and Wb :=
⋃
I(b)

L(q)

(we will call Wb the w-set of order b). For a fixed i ≤ n, define

b(i) := max{b ∈ Z : ∃q ∈ I(b) such that Qiq 6= 0}.

Put bmin := blog2 1/dc, bmax := max
i≤n

b(i) and define for all bmin ≤ b ≤ bmax,

W1
b :=

b⋃
s=bmin

Ws =
⋃

Imin(b)

L(q), Imin(b) = {q : 2bmin ≤ w̃q < 2b+1}

W2
b :=

bmax⋃
s=b+1

Ws =
⋃

Icmin(b)

L(q), Icmin(b) = {q : 2b+1 ≤ w̃q < 2bmax+1}.

Note that for every bmin ≤ b ≤ bmax one has

Imin(b) =

b⋃
s=bmin

I(b), Icmin(b) =

bmax⋃
s=b+1

I(b), and W1
b ∪W2

b = [n].

The following quantities will play an important role below,

ηi :=
1

d

bmax∑
b=bmin

min
( ∑
q∈Imin(b)

Qiq,
∑

q∈Icmin(b)

Qiq

)
and η =

n∑
i=1

ηi.

We start with a useful bound on cardinalities of `-parts L(q) inside I(b) for a given b, in which we
also use that for all positive integers N , Ni, i ≤ `, with N = N1 + . . .+N` one has

N !/
∏̀
i=1

Ni! ≤
∏̀
i=1

(eN/Ni)
Ni ≤ (eN)N

∏̀
i=1

1/(Ni)
Ni (34)

(this follows by the standard inequality
(
N
`

)
≤ (eN/`)`).
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Lemma 7.2. Let bmin ≤ b ≤ bmax. Then the multiset {|L(q)| : q ∈ I(b)}, when arranged in the non-
increasing order, can be majorized by the geometric sequence

(
C|Wb| exp(−s/C)

)
s≥0

for a sufficiently
large absolute constant C > 0. In particular,∏

I(b)

|L(q)|! ≥ |Wb|! exp(−C ′|Wb|),

where C ′ > 0 is another absolute constant.

Proof. We apply (18), which roughly speaking says that an `-part obtained at step j satisfies |Lq| ≈
2jhq. Note also that at most two `-parts can be obtained on a given step j.

Split the set {L(q) : q ∈ I(b)} into four subsets U1, U2, U3, U4 determined by whether an `-part
is spread or regular and whether its cardinality is greater than d−1/3n or not. For concreteness,
assume that U1, U2 contain regular `-parts, with larger `-parts in U1, and U3, U4 include spread `-
parts, with larger ones in U3. Within the set U2, the heights of the respective `-parts are equivalent
up to multiple 2. Therefore their cardinalities, when arranged in non-increasing order, are majorized
by an appropriate geometric sequence. The same argument works for `-parts in U4. For the `-parts
in U1, the quantities hq|Lq| are equivalent to each other, say to a number a. This means that for
an `-part obtained at the step j we have h2

q ≈ a2−j . This in turn implies |Lq| ≈ 2j/2
√
a. Thus |Lq|

(after a rearrangement) are geometrically decreasing. Finally, for set U3, the quantities hq
√
|Lq| are

stable and a similar argument works. Combining the four decreasing sequences into one, we obtain a
sequence that can be also majorized by a geometric series (with worse constants).

To prove the “in particular” part, let Ns, s ≥ 0, corresponds to cardinalities of L(q), q ∈ I(b).
Then N =

∑
sNs = |Wb| and, by the first part, Ns ≤ CN exp(−s/C). Therefore, by (34),

ln

(
|Wb|!/

∏
I(b)

|L(q)|!
)
≤
∑
s≥0

Ns ln(eN/Ns) ≤ N
∑
s≥0

(s+ 1)e−s/C ≤ C ′N,

where C ′ > 0 is an absolute constant. This completes the proof.

In the next lemma we relate SBi and TEi estimators using the parameter η introduced above.

Lemma 7.3. Let y ∈ Ak, (L(q))mq=1 be its `-decomposition, and Q be a y-admissible matrix in RSTn,m,d.
Then

n∏
i=1

SBi ≤ Cn7.3 2−η
n∏
i=1

TEi,

where C7.3 ≥ 1 is a universal constant.

Proof. For every i ≤ n, set

S̃Bi = S̃Bi(y, k,Q) := min
{
w̃−1
q : q ≤ m and Qiq 6= 0

}
.

Since Qiq ≥ 1 in the above minimum, by the definition of the weights, we get for all i ≤ n,

S̃Bi ≥ SBi/d. (35)

We first show that
n∏
i=1

S̃Bi ≥ exp(−Cn)
n∏
i=1

SBi, (36)

where C is a positive universal constant. Let L(q) be one of `-parts from the `-decomposition (no
matter whether spread or regular), having cardinality at least d−1/3n. Then, by the definition of
RSTn,m,d (part 1), d-regularity of matrices in Mn,d, and (21), there are at most n/

√
d indices i ≤ n

such that Qiq < c3.3d|L(q)|/n. For all other i’s, we have Qiq ≥ c3.3d|L(q)|/n, implying together with
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the definitions of wiq and w̃q that wiq ≥ c3.3 w̃q. On the other hand, if the cardinality of L(q) is less
than d−1/3n and Qiq 6= 0 (hence greater or equal to 1) then necessarily wiq ≥ w̃q. Denote

I := {i ∈ [n] : wiq < c3.3 w̃q for some q ≤ m with Qiq 6= 0}.

By definitions of SBi and S̃Bi, we have S̃Bi ≥ c3.3 SBi for all i ∈ Ic. Since there are at most d1/3 `-parts
of cardinality at least d−1/3n each, then from the above we also have that |I| ≤ d1/3d−1/2n = d−1/6n.
Therefore, using (35) for i ∈ I, we obtain

n∏
i=1

S̃Bi ≥ (c3.3)|I
c| d−|I|

n∏
i=1

SBi ≥ cn3.3d−d
−1/6n

n∏
i=1

SBi,

which leads to (36).
To complete the proof, it is sufficient to show that for every i ≤ n

S̃Bi ≤ 2−ηi+1 TEi.

Fix i ≤ n. By the definition of S̃Bi and b(i) we have S̃Bi ≤ 2−b(i). Since

b(i)∑
b=bmin

∑
q∈I(b)

Qiq/d =
m∑
q=1

Qiq/d = 1, (37)

the definition of TEi implies

TEi =

b(i)∏
b=bmin

∏
q∈I(b)

(w̃q)
−Qiq/d >

b(i)∏
b=bmin

∏
q∈I(b)

2−(b+1)Qiq/d

=
1

2
exp
(
− ln 2

b(i)∑
b=bmin

b
∑
q∈I(b)

Qiq
d

)
.

Using (37) again and applying the simple identity

j1∑
j=j0

(j1 − j)aj =

j1−1∑
j=j0

j∑
k=j0

ak,

valid for any integers j0 < j1 and any numbers aj0 ,..., aj1 , we get

db(i)−
b(i)∑

b=bmin

b
∑
q∈I(b)

Qiq =

b(i)∑
b=bmin

(b(i)− b)
∑
q∈I(b)

Qiq =

b(i)−1∑
b=bmin

b∑
a=bmin

∑
q∈I(a)

Qiq

=

b(i)−1∑
b=bmin

∑
q∈Imin(b)

Qiq ≥
bmax∑
b=bmin

min
( ∑
q∈Imin(b)

Qiq,
∑

q∈Icmin(b)

Qiq

)
= dηi.

where we used that if b > b(i) then for every q ∈ I(b) one has Qiq = 0. Therefore,

S̃Bi ≤ 2−b(i) ≤ 2 TEi exp
(
− ln 2

(
b(i)−

b(i)∑
b=bmin

b
∑
q∈I(b)

Qiq/d
))
≤ 2−ηi+1TEi,

This completes the proof.

In the next two lemmas, we estimate η in the case when Q belongs to RSTn,m,d.
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Lemma 7.4. Let y ∈ Ak, (L(q))mq=1 be its `-decomposition and Wb, b ∈ Z, be its corresponding w-sets.

Further, let Q = (Qiq) be a y-admissible matrix in RSTn,m,d. Then

η ≥ c7.4

bmax∑
b=bmin

min
(
|W1

b |, |W2
b |
)
,

where c7.4 > 0 is a universal constant.

Proof. By the definition of η we have

η =
1

d

bmax∑
b=bmin

n∑
i=1

min
( ∑
q∈Imin(b)

Qiq,
∑

q∈Icmin(b)

Qiq

)
.

To prove the lemma we prove the corresponding inequality for each summand in the first sum. To
this end, for every (fixed) bmin ≤ b < bmax we apply the definition of RSTn,m,d (more precisely, part 2 of

the definition of RST0n,m,d), with

J = J(b) := Imin(b) and κ = κ(b) := d|W1
b |.

Note that by (21) and d-regularity we have

κ = d|W1
b | =

∑
q∈J
‖Cq(Q)‖1 and dn− κ = d|W2

b |.

We distinguish two cases.

Case 1. min
(
|W1

b |, |W2
b |
)
≥ n/d. In this case min

(
κ, dn − κ, n) = n. Thus, the definition of RSTn,m,d

yields that the cardinality of the set

I :=
{
i ≤ n :

∑
q∈Imin(b)

Qiq ≥ c3.5
d|W1

b |
n

and
∑

q∈Icmin(b)

Qiq ≥ c3.5
d|W2

b |
n

}
is at least c3.5n. Therefore,

n∑
i=1

min
( ∑
q∈Imin(b)

Qiq,
∑

q∈Icmin(b)

Qiq

)
≥
∑
i∈I

min
( ∑
q∈Imin(b)

Qiq,
∑

q∈Icmin(b)

Qiq

)
≥ c2

3.5dmin
(
|W1

b |, |W2
b |
)
.

Case 2. 1 ≤ min
(
|W1

b |, |W2
b |
)
< n/d. In this case κ/n < 1 or (dn − κ)/n < 1. Using that Qiq are

non-negative integers, that c3.5 < 1, and the definition of RSTn,m,d, we observe∣∣∣{i ≤ n :
∑

q∈Imin(b)

Qiq ≥ 1 and
∑

q∈Icmin(b)

Qiq ≥ 1
}∣∣∣

≥
∣∣∣{i ≤ n :

∑
q∈Imin(b)

Qiq ≥ c3.5
κ

n
and

∑
q∈Icmin(b)

Qiq ≥ c3.5
dn− κ
n

}∣∣∣
≥ c3.5 dmin

(
|W1

b |, |W2
b |
)
.

Therefore,

n∑
i=1

min
( ∑
q∈Imin(b)

Qiq,
∑

q∈Icmin(b)

Qiq

)
≥ c3.5dmin

(
|W1

b |, |W2
b |
)
.

Since the case min
(
|W1

b |, |W2
b |
)

= 0 is trivial, this completes the proof.
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Lemma 7.5. Let y ∈ Ak, (L(q))mq=1 and Wb, b ∈ Z, be as above, and Q = (Qiq) be a y-admissible

matrix from RSTn,m,d. Then

n!
∏
q≤m

1

|L(q)|!
≤ Cn 2η/2,

where C is a positive universal constant.

Proof. Denote c := (c7.4 ln 2)/2. By Lemma 7.4, it is enough to show that

n!
m∏
q=1

1

|L(q)|!
exp

(
− c

bmax∑
b=bmin

min
(
|W1

b |, |W2
b |
))
≤ Cn

for a universal constant C > 0. Denote

I :=
{
b ∈ Z : Wb 6= ∅ and |Wb| ln(n/|Wb|) ≥ cmin

(
|W1

b |, |W2
b |
)}

and for every integer p ≥ 0,

Ip :=
{
b ∈ Z : |Wb| ∈ (n2−p−1, n2−p]

}
∩ I.

Note that if b ∈ Ip then min
(
|W1

b |, |W2
b |
)
≤ n(p+ 1)2−p/c. Hence,

|Ip| ≤
∣∣∣{b ∈ Z : |Wb| ∈ (n2−p−1, n2−p] and min

(
|W1

b |, |W2
b |
)
≤ n(p+ 1)2−p/c

}∣∣∣
≤
∣∣∣{b ∈ Z : |Wb| ∈ (n2−p−1, n2−p] and |W1

b | ≤ n(p+ 1)2−p/c
}∣∣∣

+
∣∣∣{b ∈ Z : |Wb| ∈ (n2−p−1, n2−p] and |W2

b | ≤ n(p+ 1)2−p/c
}∣∣∣.

Denote the cardinalities of the sets in the last inequality by α = α(p) and β = β(p) correspondingly.
Let b1 < . . . < bα and b′1 < . . . < b′β be the elements of those set. Then

αn2−p−1 ≤
∣∣∣ α⋃
i=1

Wbi

∣∣∣ ≤ ∣∣∣W1
bα

∣∣∣ ≤ n(p+ 1)2−p/c

and

β n2−p−1 ≤
∣∣∣ β⋃
i=1

Wb′i

∣∣∣ ≤ ∣∣∣Wb′1

∣∣∣+
∣∣∣W2

b′1

∣∣∣ ≤ n2−p + n(p+ 1)2−p/c.

This implies that
|Ip| ≤ α+ β ≤ 6(p+ 1)/c.

Therefore using that
∑

b |Wb| = n and (34) with N = n and Nb = |Wb|, we obtain

n!

( bmax∏
b=bmin

1

|Wb|!

)
exp
(
−c

bmax∑
b=bmin

min
(
|W1

b |, |W2
b |
))

≤ en
∏

b:Wb 6=∅

(( n

|Wb|

)|Wb|
exp
(
−cmin

(
|W1

b |, |W2
b |
)))

≤ en
∏
b∈I

( n

|Wb|

)|Wb|
= en

log2 n∏
p=0

∏
b∈Ip

( n

|Wb|

)|Wb|

≤ en
log2 n∏
p=0

2(p+1)n2−p |Ip| ≤ en
log2 n∏
p=0

26(p+1)2n2−p/c ≤ exp(C̃n),
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where C̃ > 0 is a sufficiently large absolute constant. Applying Lemma 7.2 and using
∑

b |Wb| = n
again, we get (

n!
∏
q≤m

1

|L(q)|!

)
exp
(
−c

bmax∑
b=bmin

min
(
|W1

b |, |W2
b |
))
≤ exp

(
(C̃ + C ′′)n

)
,

which completes the proof.

7.2 Completion of the proof

In the proof of Theorem 1.1 we use the results established in the previous sections. Recall our
decomposition of Cn into three types of vectors: almost constant vectors, steep vectors, and gradual
vectors. We treat each of these types separately. The former two types are treated in Section 4, where
a lower bound on ‖(M − zId)Kx‖2 is given. This leaves us with the case of gradual vectors which we
approximate by k-vectors. First, one needs to check that it is sufficient to establish a lower bound for
the action of MK on the k-approximation of gradual vectors in order to deduce a similar bound for
all such vectors. The next proposition provides such an approximation argument.

Proposition 7.6. Let d ≥ 1 be large enough, n ≥ d3, and 1 ≤ L ≤ n/d3. Let K ⊂ [n] be such that
|Kc| ≤ L and z be such that |z| ≤ r

√
d for some r ≥ 1. Let X be a subset of the set of normalized

gradual vectors X ⊂ S and Ak(X) be the set of k-approximations of vectors from X. Then

P
{
M ∈Mn,d : ∃x ∈ X, ‖(M − zId)Kx‖2 ≤

L3

kn5.5 d
‖x‖2

}
≤ 2d2

∑
y∈Ak(X)

sup
V ∈C|K|

P
{
M ∈Mn,d : ‖MKy + V ‖2 ≤ C7.6 r

√
dn

k

}
+ n−100,

where C7.6 ≥ 1 is a universal constant.

Proof. By definitions we have x∗n1
≤ d3 for x ∈ S. Therefore, Lemma 4.3 implies

P
{
M ∈Mn,d :∃x ∈ X, ‖(M − zId)Kx‖2 ≤

L3

kn5.5 d
‖x‖2

}
≤ P

{
M ∈Mn,d : ∃x ∈ X, ‖(M − zId)Kx‖2 ≤

√
dn

k

}
.

Suppose that M ∈ E2.8. Let x ∈ X and let y ∈ Ak(X) be its k-approximation. Define a = (a1, a2), ã =
(ã1, ã2) ∈ C by

a =
1

n

n∑
i=1

(xi − yi) and ã1 = Re ã =
dkda1e
kd

, ã2 = Im ã =
dkda2e
kd

.

Below we use the same notation 1 for the vectors in C` for every ` ≥ 1. Note that since M ∈ E2.8 we
have that ‖Mw‖2 ≤ C2.8

√
d‖v‖2 for every v ∈ Cn which is orthogonal to 1. Denote

V (y, ã) := −zyK + ã(d− z)1 ∈ C|K|.

Since y is the k-approximation of x, then for i = 1, 2 we have 0 ≤ kai ≤ 1 and thus ãi ∈ {0, . . . , d}/kd.
Using the triangle inequality, d-regularity, |a− ã| ≤

√
2/(kd), and that x− y− a1 is orthogonal to 1,

we observe

‖MKy + V (y, ã)‖2
≤ ‖(M − zId)Kx‖2 + ‖(M − zId)K(x− y − a1)‖2 + |a− ã| ‖(M − zId)K1‖2

≤ ‖(M − zId)Kx‖2 + C2.8

(√
d+ |z|

)
‖x− y − a1‖2 +

√
2|d− z|
kd

√
|K|.
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Using that
‖x− y − a1‖2 ≤ ‖x− y‖2 + |a|

√
n ≤ 2

√
2n/k

together with |z| ≤ r
√
d we get

‖MKy + V (y, ã)‖2 ≤ ‖(M − zId)Kx‖2 + (2C2.8 + 1) (r + 1)
√

2dn/k.

Theorem 2.8 and the union bound imply

P
{
M ∈Mn,d : ∃x ∈ X, ‖(M − zId)Kx‖2 ≤

√
dn/k

}
≤ P

{
M ∈Mn,d : E2.8 and ∃x ∈ X, ‖(M − zId)Kx‖2 ≤

√
dn/k

}
+ n−100

≤ P
{
M ∈Mn,d : E2.8 and ∃ y ∈ Ak(X), ∃ ã ∈ {0, . . . , d}2/(kd),

‖MKy + V (y, ã)‖2 ≤ C r
√
dn/k

}
+ n−100

≤ 2d2
∑

y∈Ak(X)

sup
V ∈C|K|

P
{
M ∈Mn,d : ‖MKy + V ‖2 ≤ C r

√
dn/k

}
+ n−100,

where C > 0 is an appropriate large universal constant.

Applying Theorem 5.6, we further decompose gradual vectors into two types, Ku and Pu, depending
on some properties satisfied by their k-approximation. Recall that the set of k-vectors is partitioned
into equivalence classes and bounds on the cardinality of each class and on their total number are
established in Lemmas 5.1 and 5.5. Therefore, in view of the previous proposition, we can concentrate
our effort on bounding the probability that ‖MKy+ V ‖2 is small for a fixed k-vector y satisfying the
properties given in Ku or Pu and any vector V ∈ C|K|. Theorem 6.1 and Proposition 7.1 establish
such bound in terms of the small ball estimators SBi of the vector y. Therefore, it remains to estimate
SBi for these two types of vectors using all the tools developed in Section 7.1. We start with vectors
in Ku. Recall that for x ∈ Ku, the total cardinality of the spread `-parts in the `-decomposition with
respect to the du-approximation of x is at least cKn3, where cK ∈ (0, 1) is an absolute constant.

Lemma 7.7. Let u ≥ 2 be an integer, y be the du-approximation with respect to a vector in Ku,
(L(q))mq=1 be its `-decomposition, and Q = (Qiq) be a y-admissible matrix in RSTn,m,d. Then there exists
a universal constant c7.7 > 0 such that

n∏
i=1

SBi(y, k,Q) ≤ d−c7.7n(n!)−1
∏
q≤m

|L(q)|!

h
|L(q)|
q

.

Proof. To prove the lemma, it is enough to show that

β := n!
∏
q≤m

1

|L(q)|!

n∏
i=1

SBi ≤ d−c7.7n
∏
q≤m

h−|L
(q)|

q . (38)

Applying Lemmas 7.3 and 7.5 we get

β ≤ Cn2−η/2
n∏
i=1

TEi ≤ Cn
n∏
i=1

TEi,

where C is a positive absolute constant. Let c := cKa3/16 < 1/3, where a3 comes from the definition
of n3 (recall n3 = ba3nc), and I := {q : |L(q)| ≥ d−cn}. We consider two cases.

Case 1.
∣∣⋃

q∈I L(q)
∣∣ ≥ n − cKn3/4. Denote by I1 the set of all indices q corresponding to spread

`-parts of cardinality at least d−cn and by I2 be the set of indices corresponding to regular `-parts of
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cardinality at least d−cn. Let I3 be all the remaining indices, that is I3 = [m] \ (I1 ∪ I2). Note that∣∣⋃
q∈I3 L

(q)
∣∣ ≤ cKn3/4. By (33) we have

β ≤ Cn
∏
q∈I1

w̃−|L
(q)|

q

∏
q∈I2

w̃−|L
(q)|

q

∏
q∈I3

w̃−|L
(q)|

q .

By the definition of Ku, the total cardinality of `-parts with indices from I1 is at least

cKn3 − cKn3/4 = 3cKn3/4.

This together with the definition of the truncated weights for

|L(q)| ≥ d−cn ≥ d−1/3n,

implies that∏
q∈I1

(w̃q)
−|L(q)| ≤

∏
q∈I1

( n

d|L(q)|

)|L(q)|/2
h−|L

(q)|
q ≤ d−3cKn3/8

∏
q∈I1

( n

|L(q)|

)|L(q)|
h−|L

(q)|
q .

Hence, using the definition of the truncated weights for q ∈ I2 and the bounds (32) for q ∈ I3, we get

β ≤ Cnd−3cKn3/8
∏

q∈I1∪I2

(n/|L(q)|)|L(q)|
∏
q∈I3

d|L
(q)|

∏
q≤m

h−|L
(q)|

q

≤ Cnd−3cKn3/8dcndcKn3/4
∏
q≤m

h−|L
(q)|

q ≤ d−cKn3/16
∏
q≤m

h−|L
(q)|

q ,

which leads to (38).

Case 2.
∣∣⋃

q∈I L(q)
∣∣ < n− cKn3/4. In this case

∣∣⋃
q∈Ic L(q)

∣∣ ≥ cKn3/4. Using (33), we have

β ≤ Cndn2−η/2
∏
q≤m

h−|L
(q)|

q .

Denote
J(b) := Ic ∩ I(b) = {q : |L(q)| < d−cn and 2b ≤ w̃q < 2b+1}.

Arguing as in the proof of Lemma 7.2, we have∣∣∣∣ ⋃
q∈J(b)

L(q)

∣∣∣∣ ≤ C ′d−cn,
for a universal constant C ′ > 0. Define two integer numbers b1 and b2 by

b1 := min
{
b ∈ Z : |W1

b | ≥
cKn3

16

}
and b2 := max

{
b ∈ Z : |Wb ∪W2

b | ≥
cKn3

16

}
.

Clearly, b2 ≥ b1. Denoting J := Ic ∩
⋃
b1≤b≤b2 I(b), we observe∣∣∣∣ ⋃

q∈J
L(q)

∣∣∣∣ ≤ (b2 − b1 + 1)C ′d−cn.

On the other hand, using the definition of b1, b2 together with the condition of this case, we have∣∣∣∣ ⋃
q∈J
L(q)

∣∣∣∣ ≥ ∣∣ ⋃
q∈Ic
L(q)

∣∣− ∣∣W1
b1−1

∣∣− ∣∣W2
b2

∣∣ ≥ cKn3/4− cKn3/8 = cKn3/8.
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Thus b2 − b1 + 1 ≥ cKa3d
c/8C ′. Now applying Lemma 7.4, we get

η ≥ c7.4

b2−1∑
b=b1

min
(
|W1

b |, |W2
b |
)
≥ c7.4(b2 − b1)cKn3/16 ≥ c′ dcn,

where c′ > 0 is an absolute constant. Since d is large enough, we obtain that Cndn2−η/2 ≤ d−n, which
completes the proof.

We turn now to a particular class of vectors in Pv for some v ≥ 5. Recall that for x ∈ Pu, the total
cardinality of spread and regular `-parts in the `-decomposition with respect to the du-approximation
of x with heights not smaller than cP2cP (u−4)a3a3 is at least cPn3, where cP < 1 is a universal constant.
For every integer v ≥ 5 and every positive numbers δ, ρ we define

Pv,ρ,δ :=
{
x ∈ Pv : ∃λ ∈ C such that |{i ≤ n : |xi − λ| ≤ ρ}| ≥ δn

}
.

We start with a useful property of vectors in this set.

Lemma 7.8. Let v ≥ 5, ρ ≤ d−v, and δ ∈ (0, 1). Let x ∈ Pv,ρ,δ and y be its dv-approximation. Then
in the `-decomposition of y, there exists a w-set Wb of order b ≤ log2(72

√
d/δ) and of cardinality at

least δn/36.

Proof. Let x ∈ Pv,ρ,δ and y be its dv-approximation. Let λ = λ(x) ∈ C be such that

|{i ≤ n : |xi − λ| ≤ ρ}| ≥ δn.

Note that if |xi − λ| ≤ ρ, then since dvρ < 1 we have

Re(dvyi) ∈ {bRe(dvλ)c − 1, bRe(dvλ)c, bRe(dvλ)c+ 1}

and
Im(dvyi) ∈ {bIm(dvλ)e − 1, bIm(dvλ)c, bIm(dvλ)c+ 1},

which means that dvyi can take at most 9 possible values. This implies the existence of a set I ⊂ [n]
of size at least δn/9 such that yi = yj for all i, j ∈ I. Let a = blog2(1 + δn/9)c − 1 so that

a∑
i=0

2i ≤ |I|.

From the construction of the `-decomposition of y, at the step j = a the level set L(j, y(I)) is of size
at least 2a ≥ δn/36. This implies the existence of an `-part of size at least δn/36 and, by (18), of
height at most n/2a−1 ≤ 72/δ. Since for every q, w̃q ≤ hq

√
d, there exists a w-set of order at most

log2(72
√
d/δ) and of cardinality at least δn/36.

Next we estimate the product of SBi for approximations of vectors from Pv,ρ,δ.

Lemma 7.9. Let v ≥ 5 be an integer, 0 ≤ ρ ≤ d−v and 0 ≤ δ ≤ 36cPa3 be such that

cPa3(v − 4) ≥ 2 log2 d+ 2 log2(72
√
d/δ) + 2− log2(cPa3).

Further, let y be the dv-approximation of a vector in Pv,ρ,δ and (L(q))mq=1 be its `-decomposition.

Finally, let Q = (Qiq) be a y-admissible matrix in RSTn,m,d. Then

n∏
i=1

SBi(y, k,Q) ≤ (Cd)n2−cδnv(n!)−1
∏
q≤m

|L(q)|!

h
|L(q)|
q

,

where C > c > 0 are universal constants.
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Proof. Applying Lemmas 7.3 and 7.5 together with (33), we get

n∏
i=1

SBi(y, k,Q) ≤ (C d)n2−η/2(n!)−1
∏
q≤m

|L(q)|!

h
|L(q)|
q

,

for a positive absolute constant C. Let

b1 := log2(72
√
d/δ) and b2 := log2

(
cPa32(v−4)cPa3

)
− log2 d.

By the assumptions of the lemma, b2 − b1 ≥ cPa3(v − 4)/2.
By Lemma 7.8, there exists a w-set of order at most b1 and of cardinality at least δn/36. On the

other hand, using the definition of Pv and (32), the total cardinality of w-sets of order at least b2, is
at least cPa3n. Therefore, for every integer b in the range [b1, b2) we have

min
(
|W1

b |, |W2
b |
)
≥ δn/36.

Now, we apply Lemma 7.4 to deduce that

η ≥ c7.4

∑
b1≤b<b2

min
(
|W1

b |, |W2
b |
)
≥ c7.4δn(b2 − b1)/36 ≥ (cPc7.4a3/72) δ n (v − 4),

which implies the desired bound.

We are now ready to state and complete the proof of a generalization of Theorem 1.1.

Theorem 7.10 (Structural theorem). There exist absolute positive constants c, c′, and C such that
the following holds. Let d, n be a large enough integers satisfying d ≤ exp(

√
c′ lnn). Let z ∈ C be such

that |z| ≤
√
d ln d. Let 1 ≤ L ≤ n/d3 and let r0 be the smallest integer such that pr0 ≥ 20L/d, where

p = b(1/5)
√
d/ ln dc. Let K ⊂ [n] satisfy |Kc| ≤ L and assume that

max(n−c, e−cn/|K
c|) ≤ ρ ≤ e−C ln2 d and δ = C

ln2 d

ln(1/ρ)
.

Then with probability at least 1− 1/n any non-zero vector x ∈ Cn with the property that

‖(M − zId)Kx‖2 ≤ L3n−6‖x‖2

satisfies one of the two conditions:

• (Gradual with many levels) One has

x∗i ≤


(
n/i
)3
x∗pr0 if i ≤ pr0 ,

d
(
n/i
)3
x∗n3

if pr0 ≤ i ≤ n1,
d3x∗n3

if n1 ≤ i ≤ n3,

and ∣∣∣{i ≤ n : |xi − λ| ≤ ρx∗n3

}∣∣∣ ≤ δn for all λ ∈ C.

• (Very steep) x∗i > 0.9(n/i)3x∗pr0 for some i ≤ pr0.

Proof. Choose v from ρ = d−v. Without loss of generality we assume that v is an integer. Then
δ = Cv−1 log2 d and

C ln d ≤ v ≤ c min
(

logd n,
n

|Kc| ln d
)
,

63



where C is a large enough absolute constant and c ∈ (0, 1/2) is a small enough absolute constant
(c = 1/6 works). Note that the left hand side of this inequality is always smaller than the right hand
side, provided that d ≤ exp(

√
c′ lnn) with c′ = c/C. Then, using that d is large enough we have

dv ≤ min
(√
n/(8d3/2

√
ln d), d−10en/5|K

c|),
in particular, we may apply Lemma 5.1 and Proposition 7.1 with k ≤ dv. Note also that the assump-
tions of Lemma 7.9 are satisfied as well.

Let Γρ,δ be the set of non-zero vectors satisfying none of the two conditions in Theorem 7.10. For
every x ∈ Γρ,δ, define

Ex :=
{
M ∈Mn,d : ‖(M − zId)Kx‖2 ≤

L3

n6
‖x‖2

}
.

Since the event Ex is homogeneous in x, we may restrict Γρ,δ to vectors satisfying x∗n3
= 1 (if x∗n3

= 0,
we consider a slight perturbation of x).

Our goal is to show that P(
⋃
x∈Γρ,δ

Ex) ≤ 1/n. Recall that we decomposed Cn into the set of

almost constant vectors, denoted by B := B(θ0) with θ0 = 10/d3, the set of steep vectors, denoted
by T (note, an almost constant vector can be also steep), and the set of gradual vectors, denoted by
S = Cn \ (B ∪ T ). If x doesn’t satisfy the second condition of the theorem then, by (8), x 6∈ T K3 , that
is Γρ,δ ∩ T K3 = ∅. Note also that

Sc \ T K3 ⊂ B0 := (B \ T K3 ) ∪ TK.

Therefore, applying Theorem 4.12 we obtain

P
( ⋃
x∈Γρ,δ

Ex
)
≤ P

( ⋃
x∈B0∩Γρ,δ

Ex
)

+ P
( ⋃
x∈S∩Γρ,δ

Ex
)

≤ exp
(
− (ln d) (lnn)/20

)
+ P

( ⋃
x∈S∩Γρ,δ

Ex
)
.

We now show that Γρ,δ ∩ Pv ⊂ Pv,ρ,δ. Indeed, a vector in Γρ,δ does not belong in particular to
T3. Moreover, since Pv ⊂ S ⊂ T c, by Lemma 4.2 every x ∈ Pv satisfies x∗i ≤ d

(
n/i)3x∗n3

for all
pr0 ≤ i ≤ n1 and x∗i ≤ d3x∗n3

for all n1 ≤ i ≤ n3. Therefore, if x ∈ Γρ,δ ∩Pv then it cannot satisfy the
last condition in “gradual with many levels,” which means that x ∈ Pv,ρ,δ

This together with Theorem 5.6 and the union bound gives

P
( ⋃
x∈S∩Γρ,δ

Ex
)
≤

v∑
u=4

P
( ⋃
x∈Ku

Ex
)

+ P
( ⋃
x∈Pv,ρ,δ

Ex
)
.

Applying Proposition 7.6 with r = ln d and k = du (or k = dv) and using d1+u ≤ d1+v ≤
√
n, we get

that there exists an absolute constant C ′ > 0 such that for any 5 ≤ u ≤ v,

P
( ⋃
x∈Ku

Ex
)
≤ 2d2

∑
y∈Adu (Ku)

sup
V ∈C|K|

P
{
M ∈Mn,d : ‖MKy + V ‖2 ≤ C ′ ln d

√
dn

du

}
+ n−100,

and

P
( ⋃
x∈Pv,ρ,δ

Ex
)
≤ 2d2

∑
y∈Adv (Pv,ρ,δ)

sup
ω∈C|K|

P
{
M ∈Mn,d : ‖MKy + V ‖2 ≤ C ′ ln d

√
dn

dv

}
+ n−100.
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Take any 4 ≤ u ≤ v and fix for a moment y ∈ Adu(Ku), the set of k-approximations of vectors
in Ku. Assume that its `-decomposition consists of m sets (L(q))mq=1. Proposition 7.1 applied with

γ = C ln d
√
n/|K| and Lemma 7.7 imply

sup
V ∈C|K|

P
{
M ∈Mn,d : ‖MKy + V ‖2 ≤ C ′ (ln d)

√
dn/du | E3.5

}
≤ e−2n

n!

∏
q≤m

|L(q)|!

h
|L(q)|
q

,

provided that d is large enough.
Let C be the equivalence class in Adu generated by y. By Lemma 5.5 we have∑

ỹ∈C
sup

V ∈C|K|
P
{
M ∈Mn,d : ‖MK ỹ + V ‖2 ≤ C ′ (ln d)

√
dn/du | E3.5

}
≤ exp(−2n).

Finally, Lemma 5.1 implies∑
y∈Adu (Ku)

sup
V ∈C|K|

P
{
M ∈Mn,d : ‖MKy + V ‖2 ≤ C ′ (ln d)

√
dn/du | E3.5

}
≤ e−n.

Repeating the above argument for vectors in Adv(Pr,v,ρ) with Lemma 7.9 instead of Lemma 7.7 and
using that δ = C(log2 d)/v with large enough C, we get∑

y∈Adv (Pv,ρ,δ)

sup
V ∈C|K|

P
{
M ∈Mn,d : ‖MKy + V ‖2 ≤ C (ln d)

√
dn/dv | E3.5

}
≤ e−n.

Applying Proposition 3.5 to remove the conditioning from the two previous estimates and combining
bounds, we obtain

P
( ⋃
x∈S∩Γρ,δ

Ex
)
≤ 2vd2e−n +

v

n100
.

The proof is finished by the choice of v.

Note once more that the probability bound can be made 1−n−κ for any fixed κ ≥ 1 at the expense
of having worse constants.

Finally we prove Theorem 1.1 and Corollary 1.2.

Proof of Theorem 1.1. Set L = max(1, |Kc|) and

ρ = max
(
n−c, exp

(
−
(
n/(1 + |Kc|)

)c ln ln d/ ln d
))

for an appropriate positive constant c. Given d−1/2 ≤ a ≤ 1, let q = max(1, a|Kc|). Then pr0 ≤ q
and a|Kc| ≤ n1. Let x satisfy the dichotomy from Theorem 7.10. If x is very steep in the sense of
Theorem 7.10 then, using pr0 ≤ q, we get that x is very steep in the sense of Theorem 1.1. Assume
now that x is not very steep in the sense of Theorem 1.1, i.e., assume that x∗i ≤ (n/i)3x∗q for all i ≤ q.
If in addition, x is gradual with many levels in the sense of Theorem 7.10 then it is not difficult to
see that is gradual with many levels in the sense of Theorem 1.1 provided that c′ = a3. This proves
the desired result.

Proof of Corollary 1.2. Let n, d be as in Theorem 7.10. By Theorem 2.8, there is a universal constant
C > 0 such that the event

E :=
{
M ∈Mn,d :

∥∥∥M − d

n
11t
∥∥∥ ≥ C√d}
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has probability less than n−2. Denote by V the set of all vectors in Cn having sum of coordinates
equal 0. Clearly, V is an invariant subspace of M . Let λi, i ≤ n, be eigenvalues of M arranged so
that |λ1| ≥ |λ2| ≥ · · · ≥ |λn|. Since λ1(M) = d corresponds to the eigenvector 1, we observe that all
eigenvectors corresponding to λi, i ≥ 2, belong to V . This implies that, conditioned on Ec, we have
|λi(M)| < C

√
d, i ≥ 2. Now, letN be a fixed (1/(C

√
dn6)-net in the disk of radius C

√
d of the complex

plane (we assume the usual Euclidean metric on C). Clearly, N can be chosen so that |N | ≤ n13. For
any point z′ ∈ N , applying Theorem 7.10 with K := [n], L = 1, ρ := n−c, δ := ln2 d/ lnn, we get
that with probability at least 1− n−15 every unit complex vector x satisfying ‖(M − z′ Id)x‖2 < n−6,
is “gradual with many levels” (since q = 1, there are no “very steep” vectors). Now, observe that for
any matrix M ∈ Mn,d, any eigenvalue λ of M satisfying |λ| ≤ C

√
d and a corresponding normalized

eigenvector x, we necessarily have ‖(M − z′ Id)x‖2 < n−6 for some z′ = z′(λ) ∈ N . Combining this
with the last remark, we get that the event

E ′ :=
{
M ∈Mn,d : any normalized eigenvector of M with eigenvalue

in the disk of radius C
√
d is “gradual with many levels”

}
has probability at least 1 − n−2. Here, “gradual with many levels” means that the vector satisfies
the conditions listed in the corollary. Finally note, that conditioned on Ec all eigenvectors except for
(1/
√
n, . . . , 1/

√
n), have corresponding eigenvalues in the disk of radius C

√
d. Thus, all matrices in

Ec ∩ E ′ satisfy the assertion of the statement. The result follows.
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