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Abstract

Fix a constant C ≥ 1 and let d = d(n) satisfy d ≤ lnC n for every large integer
n. Denote by An the adjacency matrix of a uniform random directed d-regular
graph on n vertices. We show that, as long as d→∞ with n, the empirical spectral
distribution of the appropriately rescaled matrix An converges weakly in probability
to the circular law. This result, together with an earlier work of Cook, completely
settles the problem of weak convergence of the empirical distribution in directed
d-regular setting with the degree tending to infinity. As a crucial element of our
proof, we develop a technique of bounding intermediate singular values of An based
on studying random normals to rowspaces and on constructing a product structure
to deal with the lack of independence between the matrix entries.
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1 Introduction

Given an n×n random matrix B, its empirical spectral distribution (ESD) is the random
probability measure on C given by

µB :=
1

n

n∑
i=1

δλi ,

where (λi)i≤n denote the eigenvalues of B (counting multiplicities). The study of the em-
pirical spectral distribution is one of the major research directions in the theory of random
matrices, with applications to other fields [29, 4, 6, 34, 14]. A fundamental fact in this
area is the universality phenomenon which asserts that under very general conditions the
empirical spectral distribution and some other characteristics of a random matrix asymp-
totically behave similarly to the empirical distribution (or corresponding characteristics)
of the Gaussian random matrix of an appropriate symmetry type. This phenomenon has
been confirmed for various models and in various senses (including limiting laws for the
ESD, local eigenvalue statistics, distribution of eigenvectors). We refer to monographs
[4, 6, 34, 14] for a (partial) exposition of the results.

In case of non-Hermitian random matrices with i.i.d. entries, the limit of the empir-
ical spectral distribution is governed by the circular law. Compared to ESD’s of the
Wigner and sample covariance matrices, the study of the spectral distribution in the non-
Hermitian setting is complicated due to its instability under small perturbations of the
matrix entries and due to the fact that some of standard techniques, involving the moment
method and a truncation of the matrix entries, fail in the non-Hermitian case (we refer
to [6, Section 11.1] for more information). As a specific example, while the bulk of the
ESD of Hermitian matrices is stable under small-rank perturbations due to interlacing
properties, the spectrum of random non-Hermitian matrices can be very sensitive even to
a rank one perturbation (see [6, Example 11.1] or [10, Example 1.2]).

Denote by µcirc the unifom probability measure on the unit disk of the complex plane,
that is

dµcirc = π−11|z|≤1 dx dy.

Convergence of the appropriately rescaled empirical spectral distribution of the standard
Gaussian matrix with i.i.d. complex entries was derived in the first edition of monograph
[29, Chapter 15], and, much later, a corresponding result in the more delicate real case
was obtained in [13]. Both results relied on the explicit formula for joint distribution
of eigenvalues, which is available in the Gaussian setting [15]. The circular law for non-
Gaussian matrices with bounded densities of the entries was verified in [5] (following an
earlier work [16], see also [18]); the density condition was removed in [17, 32, 19, 37, 39],
with paper [39] establishing the circular law for the i.i.d. model under weakest moment
assumptions. The sparse i.i.d. model was considered in papers [37, 38, 19, 8] (see also
[26] for non i.i.d. sparse model). We refer to [10] for a detailed exposition and historical
overview of the circular law in the i.i.d. setting, and for further references. For a review
of other recent developments, including the limiting laws for inhomogeneous matrices and
the local circular law, we refer to the introduction of [12].

In this paper, we are concerned with a sparse model of random matrices, whose entries
are not independent. In what follows, for every positive integers d ≤ n we denote byMn,d
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the set of all n× n matrices, whose entries take values in {0, 1} and the sum of elements
within each row and each column is equal to d. In other words, Mn,d is the set of
adjacency matrices of d-regular directed graphs on n vertices, where we allow loops but
do not allow multiple edges. We consider the random matrix An uniformly distributed on
Mn,d. Random directed d-regular graphs provide a basic model of a typical graph with
predefined in- and out-degree sequences and in this connection are of interest in network
analysis. In more general setting, random (weighted) directed graphs are used to model
connections between neurons and the eigenvalue distribution of their adjacency matrices
(the synaptic matrices for the neural networks) has been given considerable attention in
literature. We refer to the introduction of [12] for a discussion of those works.

In the directed d-regular setting, it was conjectured (see [10, Section 7]) that for any
fixed 3 ≤ d ≤ n− 3, µAn converges to the probability measure with the density

1

π

d2(d− 1)

(d2 − |z|2)2
1{|z|<

√
d}.

as n goes to infinity. This measure is usually referred to as the oriented Kesten–McKay
distribution, a non-symmetric version of the classical Kesten–McKay law for the limiting
ESD of random undirected d-regular graphs [20, 28, 9]. Up to rescaling by

√
d, this

measure tends to the circular law as d tends to infinity. Proving the above conjecture
remains a major challenge as of this writing.

In this paper we establish the circular law for sparse random directed d-regular graphs
for any d going to infinity with n. We prove the following theorem.

Theorem 1.1 (The circular law). Fix a constant C ≥ 1 and for any n > 1 let d = d(n)
be a positive integer satisfying d ≤ lnC n. Assume that d→∞ with n. Then the sequence
of empirical spectral distributions (µd−1/2An

)n, corresponding to the random matrices An
uniformly distributed in Mn,d, converges weakly in probability to the uniform distribution
on the unit disk of the complex plane.

The circular law for d-regular digraphs in the range ln96 n ≤ min(d, n−d) was verified
in earlier work [12] (see also [7]). Thus, our Theorem 1.1 closes the gap between known
limiting distribution for denser d-regular digraphs and the conjectured oriented Kesten–
McKay limiting distribution for d-regular digraphs of constant degree. The proof of
Theorem 1.1 combines some known methods, used previously in works on the circular
law, with new crucial ingredients related to estimating the intermediate singular values of
the shifted adjacency matrix. The rest of the introduction is divided into two parts. In the
first part, we recall known techniques (such as Hermitization) and previously established
facts about d-regular digraphs that will be needed for the proof. In the second part, we
discuss limitations of existing tools (see remarks after Proposition 1.5) and describe our
approach to bounding intermediate singular values of An − z Id.

As in works [16, 5, 19, 39] dealing with the i.i.d. setting, a key element in the proof of
the circular law for d-regular digraphs is to transport the problem of the limiting ESD to
the singular values distribution, which is much easier to study. This method – called the
Hermitization technique – goes back to Girko [16] and exploits a close relation between
the log-potential functions of the spectral and singular values distributions. Following
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Girko, this idea was used in various papers dealing with non-Hermitian random matrices,
in particular in [5, 19, 39]. The Hermitization technique is presented in literature in
somewhat different forms, we follow the exposition in [10].

The singular values distribution of an n×n random matrix B is the random probability
measure on R given by

νB :=
1

n

n∑
i=1

δsi ,

where (si)i≤n denote the singular values of B. Everywhere in this paper, we use non-
increasing ordering for the singular values, that is, s1 = s1(B) is the largest one and
sn = sn(B) is the smallest one.

The logarithmic potential Uµ : C → (−∞,∞] of a probability measure µ on C is
defined for every z ∈ C by

Uµ(z) := −
∫
C

ln |z − λ| dµ(λ).

The logarithmic potential uniquely determines the underlying measure, that is, if Uµ = Uµ′
Lebesgue almost everywhere then µ = µ′ (see, in particular, [10, Lemma 4.1]).

Given an n× n matrix B, it is easy to check that

UµB(z) = − 1

n
ln |det(B − zId)| = −

∫ ∞
0

ln(t) dνB−zId(t) = − 1

n

n∑
i=1

ln(si(B − zId)).

Therefore, knowing νB−zId for almost all z ∈ C, we can determine UµB , hence µB itself.
This observation lies at the heart of the method. We state its formalized version.

Lemma 1.2 (Hermitization, see [10, Lemma 4.3]). For each n, let Bn be an n×n complex
random matrix. Assume that for Lebesgue almost all z ∈ C one has

(i) There exists a probability measure νz on R+ such that νBn−zId tends weakly to νz in
probability;

(ii) The function ln(·) is uniformly integrable for νBn−zId in probability, i.e. for every
ε > 0 there exists T = T (z, ε) <∞ such that

sup
n

P
{∫
{| ln(s)|>T}

| ln(s)| dνBn−zId(s) > ε

}
≤ ε.

Then µBn converges weakly in probability to the unique probability measure µ on C, whose
logarithmic potential is given by

Uµ(z) = −
∫ ∞

0

ln(s) dνz(s). (1)

Thus in order to establish the circular law, it is enough to show the convergence of
the empirical singular values distribution and the uniform integrability of the logarithm.
For the first part, we will rely on a recent result of Cook [12], who uses the above strategy
in order to establish the circular law for the uniform model on Mn,d for d ≥ ln96 n. The
following is a version of Proposition 7.2 in [12]. Note that its proof doesn’t require that
d is at least polylogarithmic in n, just d→∞ is enough (see Remark 5.2 below).
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Proposition 1.3 (Weak convergence of singular values distributions, [12]). Assume that
d = d(n) = o(

√
n) and d → ∞ together with n. Denote Bz = d−1/2An − zId. Then for

each z ∈ C there exists a probability measure νz on R+ such that νBz converges weakly in
probability to νz as n→∞. Moreover, the family {νz}z∈C satisfies (1) with µ = µcirc.

In fact, this proposition was stated in [12] for the centralized matrix

Xn = An −
d

n
11t

instead of An, where 1 denotes the column vector with all components equal 1. However,
since these two matrices differ by a rank one matrix, then using the interlacing of their
singular values one can deduce that their empirical singular value distributions satisfy

sup
a>0

∣∣∣νBz([0, a])− νBz([0, a])
∣∣∣ ≤ 1

n
,

where Bz is as in Proposition 1.3. This has been also used in [12] (see formula (7.6) there).
Therefore the two corresponding singular values distributions exhibit the same limiting
behavior.

It is clear from above discussion that the main obstacle in establishing Theorem 1.1
is in showing the uniform integrability of the logarithm. More precisely, one needs to
prove that for any ε ∈ (0, 1) and any z ∈ C there exists T = T (z, ε) > 0 such that with
probability going to one as n→∞,∑

i: | ln si(Bz)|≥T

| ln si(Bz)| ≤ εn. (2)

A simple computation involving the Hilbert–Schmidt norm of Bz shows that the main
contributors to the above sum are small singular values, i.e., those smaller than e−T .

In [24], building upon ideas in [11] as well as on the authors’ works [23, 22], a polyno-
mial lower bound on the smallest singular value of Bz was obtained.

Theorem 1.4 ([24]). There exists a universal constant C ≥ 1 such that for all positive
integers d, n satisfying C ≤ d ≤ n/ ln2 n and every z ∈ C with |z| ≤ d/6 one has

P
{
smin(An − z Id) ≥ n−6

}
≥ 1− d−1/4.

The above came as an improvement (in the sparse regime) of an earlier estimate of
Cook [12], who derived his result under an additional assumption d ≥ lnC n for a universal
constant C. Theorem 1.4 implies that the contribution of o(n/ lnn) least singular values
to the sum in (2) is negligible.

Together with the observation concerning largest singular values, this leaves the task
of estimating the sum

∑
J | ln si(Bz)|, where

J := {i : i ≤ n− o(n/ lnn) and si(Bz) ≤ e−T}.

Partially, the estimate comes from the following result of [12], obtained via comparison
with Bernoulli random matrices.
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Proposition 1.5. There are absolute constants C > 1 > c > 0 such that the following
holds. Let C ≤ d ≤ n be positive integers and z ∈ C. Assume that d = d(n) = o(

√
n)

and d → ∞ together with n. Denote Bz = d−1/2An − zId. Then for large enough n with
probability at least 1− exp(−n/2), one has for every k ≤ n− Cnd−1/48,

sk(Bz) ≥ c
n− k
n

.

This proposition is an immediate consequence of Proposition 7.3 in [12] (see Section 5
below). In fact, Proposition 7.3 in [12] was stated for d polylogarithmic in n. In Re-
mark 5.2) below we indicate the changes to be made in [12] to derive Proposition 1.5
without this restriction on d (these changes are actually implicitly mentioned in [12]).

Proposition 1.5 can be viewed as a (weak local) form of the Marchenko–Pastur law for
the singular values distribution [27, 41]. When d is at least polylogarithmic in n (with an
appropriate power of the logarithm), the proposition is enough to cover the entire range
of singular values indexed by the set J and complete the proof. This is the approach
realized in [12]. However, when d is smaller than a power of lnn, the above result leaves
untreated the range of smallish singular values sk for n− Cnd−1/48 ≤ k ≤ n− o(n/ lnn).

The idea of the proof of Proposition 7.3 in [12] is to compare the uniform directed
d-regular model with the directed Erdős–Renyi graph, that is, to replace the matrix An by
a matrix Bn, whose entries are i.i.d. Bernoulli random variables with the parameter d/n.
At this step one has to condition on the event that the Erdős–Renyi graph is d-regular,
which is of very small probability, superexponential in n [30]. In this way satisfactory
estimates for the intermediate singular values of the shifted adjacency matrix An − z Id
can be obtained only if very strong estimates are available in the Bernoulli setting, which
hold with probability at least 1− exp(−ω(n)), where ω(n)/n→∞ as n→∞. Currently,
no estimates of this type are available in the very sparse regime, moreover, it is not
clear whether such strong estimates can be obtained at all. This forces us to develop a
completely different approach to bound the singular values sk of An − z Id in the range
n− Cnd−c ≤ k ≤ n− o(n/ lnn). We obtain the following bounds.

Theorem 1.6 (Intermediate singular values). There exists a universal constant C ≥ 1
with the following property. Let d, n be integers satisfying C ≤ d ≤ ln96 n and let z ∈ C
be such that |z| ≤

√
d ln d. Then for all

n− 2nd−3/2 ≤ k ≤ n− 3n/ ln144 n

one has

P
{
An ∈Mn,d : sk(An − z Id) ≥ exp

(
− C

( n

n− k

)1/144)}
≥ 1− C n− k

n
.

In particular,

P
{
An ∈Mn,d : sk(An − z Id) ≥ exp

(
− C d1/96

)
for all k ≤ n− 2nd−3/2

}
≥ 1− C

d3/2
.

In the above, we restricted our analysis to d ≤ ln96 n as it complements what is covered
by Proposition 1.5. Our approach can be extended to higher powers of lnn (even possibly
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for any d ≤ exp(
√

lnn) as in [25]), however we prefer to prove the above formulation as it
is sufficient for our purposes and improves the exposition. Equipped with Theorem 1.4,
Proposition 1.5, and Theorem 1.6, we have bounds on all singular values which would allow
us to show the uniform integrability of the logarithm and thus to establish the circular law.
We note that the idea of splitting the singular values into different regimes is standard in
this context (see [36, Chapter 2, Section 8] for more details) as one needs different levels of
precision depending on the magnitude of the singular values. In our case, the sparsity adds
a serious challenge and the comparison methods described above are ineffective. Moreover,
due to the lack of independence, standard approaches to estimating the singular values
are not applicable in our setting. For example, one cannot use Talagrand’s concentration
inequality [36, Theorem 2.1.13] in this context the same way as was previously done in
the literature (see, in particular, [39]). The issues appear when one tries to follow the
standard scheme which reduces estimates for the singular values to distance estimates for
the matrix rows. Namely, the second moment identity [36] or the restricted invertibility
principle (see, for example, [31, Theorem 9]) relates the intermediate singular values to
quantities of the form

dist
(
Ri(Bz), span {Rj(Bz)}j∈I

)
,

for I ⊂ [n] and i ∈ [n] \ I, where Ri(Bz) denotes the i-th row of Bz. When these rows are
independent, one can condition on a realization of E := span {Rj(Bz)}j∈I then use the
randomness of the i-th row together with standard anti-concentration arguments to get a
lower bound for ‖PE⊥Ri(Bz)‖2 = dist(Ri(Bz), E).On the other hand, the randomness of E
is used to ensure that its normal vector is well spread for the anti-concentration argument
to work. In our setting, i.e., for random d-regular graphs, the lack of product structure
adds serious complications to the problem. Studying the distribution of a row conditioned
on the realization of other rows involves careful application of the expansion properties of
the underlying graph. In particular, such a direction was pursued by the third and last
named authors [40] to establish, for denser d-regular graphs, a large deviation inequality
for the inner product of a row with an arbitrary vector, conditioned on a realization of
a block of rows. At the same time, the technical approach of [40] is not applicable here
as we deal with very spars random graphs and are interested in a small ball inequality
instead of large deviations.

The key idea behind the argument developed in this paper is to inject additional
randomness and create a sort of product structure, which would allow us to use the
randomness of each of the (dependent) quantities involved. Similar ideas were used in
Asymptotic Geometric Analysis in the context of the study of the volume distribution in
convex bodies [3, 33, 1, 2]. We provide a rough illustration of this idea. Fix I ⊂ [n] and
i ∈ [n] \ I, and observe that

dist(Ri(Bz), E)2 = ‖PE⊥Ri(Bz)‖2
2 = EG |〈PE⊥G,Ri(Bz)〉|2, (3)

where G is a standard Gaussian vector in Cn and the expectation is taken with respect
to G. Now standard Gaussian concentration allows us to remove the expectation above
and to benefit from the randomness of G to study the quantity 〈PE⊥G,Ri(Bz)〉. The
vector PE⊥G plays the role of a uniform random normal to E. In other words, instead of
working with a fixed normal to E vector, we choose a normal vector randomly according
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to the Gaussian distribution on E⊥. As the key technical ingredient, we prove that
the random normal is typically unstructured, i.e., has many levels of coordinates. In
this sense, one of the most important inputs of this paper is a statement about the
kernel of submatrices of An − z Id formed by removing a small proportion of rows (see
Theorem 4.2). Once equipped with this statement, we switch back to the randomness of
Ri(Bz) in order to establish an anti-concentration inequality. Note that this also requires
additional efforts as we deal with a sum of dependent random variables with non-trivial
conditional distributions (conditioned on a realization of E) as opposed to the standard
estimates in the independent case.

The structure of normal vectors to subspaces spanned by the rows of random d-regular
graphs was investigated by the authors in [25]. In particular, it was shown that if the
subspace E is of large dimension, then any normal vector to it is either very steep (has
a sudden drop at the beginning of the non-increasing rearrangement of absolute values of
its coordinates) or has a moderate coordinates decay and is unstructured (i.e., has many
levels of coordinates). The latter property is essential for the anti-concentration argument
to be effective. However, in general, a normal vector can be not enough unstructured for
our purposes. To improve this, we pass to uniform random normal. Informally speaking,
one of the advantages of introducing the additional randomness lies in the fact that the
random Gaussian vector picks the best normal vector and benefits from better structural
properties. This vague observation will become more rigorous and clear from the proof of
Theorem 4.2 (see also remarks following that theorem). We expect that some elements of
our proof can be fruitful in the study of other matrix models with the lack of independence.

The paper is organized as follows. In Section 2, we derive the circular law assuming
the estimates on the intermediate singular values. In Section 3, we introduce notations.
In Section 4, we prove the structural theorem (Theorem 4.2) for uniform random nor-
mals after providing estimates for order statistics of projection of Gaussian vectors. In
Section 5, we establish an anti-concentration estimate and combine it with the structural
theorem in order to prove Theorem 1.6.

2 Proof of Theorem 1.1

In this section we prove Theorem 1.1 – the circular law for the limiting spectral distribution
– assuming the results mentioned in the introduction. As discussed before, we only need
to verify uniform integrability of the logarithm, that is, item (ii) of Lemma 1.2.

Fix z ∈ C, ε > 0 and, given n and d satisfying assumptions of the theorem, set
Bz := d−1/2An − zId. We want to show that there exists T = T (z, ε) > 0 such that

P
{ ∑
i: | ln si(Bz)|≥T

| ln si(Bz)| ≥ εn
}
≤ ε.

In the proof below summation over an empty set is always assumed to be equal to 0.
For large singular numbers we will apply a deterministic bound which follows from

d-regularity, namely we will use that ‖An‖2
HS = nd, where ‖ · ‖HS denotes the Hilbert–
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Schmidt norm. Choose a sufficiently large T = T (z, ε) > 0 to ensure that

lnx ≤ ε

4(1 + |z|2)
x2

whenever x ≥ eT . Then∑
i: si(Bz)≥eT

ln si(Bz) ≤
ε

4(1 + |z|2)

∑
i: si(Bz)≥eT

s2
i (Bz) ≤

ε

4(1 + |z|2)
‖Bz‖2

HS

≤ ε

2(1 + |z|2)

(
‖d−1/2An‖2

HS + ‖zId‖2
HS

)
=
ε

2
n.

Note that one could also use the spectral gap estimate for d-regular graphs (see [40] and
references therein), which implies that with large probability all singular values of d−1/2An
except for s1 are bounded above by a universal constant.

Thus it is enough to show a bound for small singular values, more precisely, it is
enough to show that

P
{∑

i∈I

| ln si(Bz)| ≥ εn/2
}
≤ ε,

where
I = {i : si(Bz) ≤ e−T}.

We split the set I into four parts:

I1 := I ∩ {i : i ≤ n− Cnd−1/48}, I2 := (I ∩ {i : i ≤ n− 2n/d3/2}) \ I1,

I3 := (I ∩ {i : i ≤ n− n/ ln2 n}) \ (I1 ∪ I2), and I4 := I ∩ {i : i > n− n/ ln2 n},

where C ≥ 1 is the absolute constant from Proposition 1.5. Proposition 1.5 implies that
with probability at least 1− exp(−n/2), for all i ≤ n− Cd−1/48n we have

si(Bz) ≥
c(n− i)

n

for an absolute constant c ∈ (0, 1). Note that if i ∈ I then this inequality implies
i ≥ n(1 − 1/(ceT )). Thus I1 6= ∅ if and only if d1/48 ≥ ceT , in which case n � ceT .
Denoting

I ′1 :=
{
i : n(1− 1/ceT ) ≤ i ≤ (1− Cd−1/48)n

}
and assuming I1 6= ∅ we obtain

∑
i∈I1

| ln si(Bz)| ≤
∑
i∈I′1

ln
n

c(n− i)
≤

n/ceT∑
k=1

ln
n

ck
≤ 2

∫ n/ceT

1

ln
n

ct
dt ≤ 2n(T + 1)

ceT
.

For large enough T and for n ≥ 2 ln(4/ε), this implies

P
{∑
i∈I1

| ln si(Bz)| ≥ εn/8
}
≤ ε/4.
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Further, by Theorem 1.6 we obtain that for some universal constants C ′, C0 with
probability at least 1− C ′d−3/2 we have∑

i∈I2

| ln si(Bz)| ≤ |I2| (C ′d1/96) ≤ C0d
−1/96n ≤ εn/8,

provided that d ≥ (8C0/ε)
96 and that d ln2 d ≥ |z|2.

Next, by Theorem 1.4, applied to the matrix An − z
√
d Id, with probability at least

1− d−1/4 we have sn(Bz) ≥ n−6/
√
d and thus∑

i∈I4

| ln si(Bz)| ≤
∑

i>n−n/ ln2 n

| ln si(Bz)| ≤
n

ln2 n
| ln sn(Bz)| ≤ εn/8,

provided that d ≥ 36|z|2 and 7/ lnn ≤ ε/8.
It remains to estimate the sum over I3. Note that I3 6= ∅ only if 2n/d3/2 ≥ n/ ln2 n.

Consider a sequence of indices i0, i1, . . . defined by

iu := bn− 2−ud−3/2nc

for u ≥ 0 and let u0 be the smallest integer such that iu0 ≥ n− n/ ln2 n. Then

∑
i∈I3

| ln si(Bz)| ≤
u0−1∑
u=0

(iu+1 − iu)| ln siu+1(Bz)| ≤ 4d−3/2n

u0−1∑
u=0

2−(u+1)| ln siu+1(Bz)|. (4)

Assuming that d ln2 d ≥ |z|2 and applying Theorem 1.6 again we obtain that for every
0 ≤ u ≤ u0 − 1,

P
{
siu+1(Bz) ≥ exp

(
− C ′ d1/962(u+1)/144

)}
≥ 1− C ′

d3/22u+1
,

where C ′ > 0 is a universal constant. Taking the union bound, we get with probability
at least 1− C ′d−3/2,

| ln siu+1(Bz)| ≤ C ′ d1/962(u+1)/144 for all 0 ≤ u ≤ u0 − 1.

By (4) we obtain that with the same probability

∑
i∈I3

| ln si(Bz)| ≤ 2C ′d−3/2n

u0−1∑
u=0

2−(u+1)143/144d1/96 ≤ εn/8,

provided that d� 1/ε. Combining estimates for sums over I1, . . . , I4 we obtain the result,
provided that d ≥ d0 := max{36|z|2, C2/ε

96} for a large universal constant C2 > 0.

Finally, we would like to comment on a purely technical aspect – why we can assume
that d ≥ d0. Given n ≥ 1, let Xn ⊂ C be the set of all eigenvalues of all d-regular n× n
matrices divided by

√
d (taken for all d ≤ ln96 n). Since X :=

⋃
nXn has zero Lebesgue

measure it is enough to consider z 6∈ X. Now given a sequence d(n) → ∞, z ∈ C \ X,
and ε > 0 choose n0 = n0(z, ε) so that d(n) ≥ d0 whenever n ≥ n0. Set

ρ = ρ(z, ε) := dist(z,
⋃
n≤n0

Xn).
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Then ρ > 0 and for every d-regular n × n matrix An with n ≤ n0 the matrix Bz is
invertible and the norm of its inverse can be estimated in terms of n, d, and ρ (e.g., via
formula for the inverse matrix, its Hilbert–Schmidt norm, and Hadamard’s inequality).
Since n ≤ n0 and sn(Bz) = 1/‖B−1

z ‖, we obtain a lower bound on sn(Bz) in terms of n0

and ρ. Therefore, taking sufficiently large T = T (z, ε), we get that for any n ≤ n0 the set
{i : | ln si(Bz)| ≥ T} is empty.

3 Notation

Given two positive integers k ≤ `, we denote [k] = {1, ..., k} and [k, `] = {k, k + 1, ..., `}.
Given a sequence (xi)

n
i=1, we denote by (x∗i )

n
i=1 the non-increasing rearrangement of

(|xi|)ni=1. The vectors of the canonical basis of Cn are denoted by e1, e2, ..., en, the canon-
ical Euclidean norm on Cn is denoted by ‖ · ‖2. Given E ⊂ Cn, the orthogonal projection
on E is denoted by PE. Given J ⊂ [n], we denote by PJ the orthogonal projection on
the space spanned by ej, j ∈ J . Given an n × n matrix A we denote its rows by Ri(A),
i ≤ n. A set (or a subset of a certain set) of cardinality k is called k-set (resp., k-subset).
1 denotes the column vector with all components equal 1.

As mentioned in the introduction, for every positive integer d ≤ n, we denote by
Mn,d the set of all n × n matrices whose entries take values in {0, 1} and the sum of
elements within each row and each column is equal to d. In other words, Mn,d is the
set of adjacency matrices of directed d–regular graphs on n vertices. The random matrix
uniformly distributed onMn,d is denoted by An and as before, we denote Bz := d−1/2An−
zId, where z ∈ C and Id is the identity matrix. Below we often deal with a random
subspace of Cn spanned by some rows of a random matrix. Given I ⊂ [n], we denote by
E(An, I) (resp., E(Bz, I)) the random subspace spanned by the rows of An (resp., Bz)
indexed by I.

A standard Gaussian variable in C is the variable g = ξ1 + iξ2, where ξ1 and ξ2 are
independent real Gaussians distributed according to N (0, 1/2). A standard Gaussian
vector in Cn is a vector G := (g1, g2, ..., gn), where gi’s are independent standard complex
Gaussian variables. We always assume that G it is independent of An. We use that the
distribution of G, denoted below by γn, is invariant under orthogonal transformations and
that for every orthogonal projection P of rank k ≤ n the vector PG is distributed as the
standard Gaussian vector in PCn ≈ Ck. In particular, for every non-degenerate subspace
E of Cn and every fixed x ∈ Cn \ {0} one has for every t > 0,

P
{
|〈x, PEG〉| ≤ t‖PEx‖2

}
= P

{∣∣∣∣〈 PEx

‖PEx‖2

, G

〉∣∣∣∣ ≤ t

}
= P

{
|g| ≤ t

}
= 1− exp(−t2). (5)

In the next section we deal with uniform random normals which we define in the fol-
lowing way. Let E ⊂ Cn be a linear subspace and E⊥ denote its orthogonal complement.
The uniform random normal to E is a standard Gaussian vector in the orthogonal com-
plement of E. Note that the uniform random normal to E is distributed as PE⊥G which
will often be denoted by Y .
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4 Uniform random normals

The result of this section is based on the structural theorem proved in [25] (Theorem 1.1
there). We state a special case of this theorem, in which we fix several parameters and
restrict the range of d and of the index subset |Ic| according to our needs.

Theorem 4.1. Let d, n be sufficiently large integers satisfying d ≤ ln96 n and z ∈ C be
such that |z| ≤

√
d ln d. Let a ∈ (d−1/2, 1) and γ = 1/288. Fix a subset I ⊂ [n] satisfying

n/ ln1/γ n ≤ |Ic| ≤ n/d3.

Let E = E(Bz, I) be the random subspace spanned by the rows of Bz indexed by I. Then
with probability at least 1 − 1/n any non-zero vector x ∈ E⊥ satisfies one of the two
conditions:

• (Gradual with many levels) For all i ≤ a|Ic| one has x∗i ≤ 0.9 (n/i)3x∗a|Ic| and for all
λ ∈ C, ∣∣∣{j ≤ n : |xj − λ| ≤ exp

(
− 2
(
n/|Ic|

)γ)
x∗a|Ic|

}∣∣∣ ≤ ( |Ic|
n

)γ/2
n.

• (Very steep) There exists i ≤ a|Ic| such that x∗i > 0.9 (n/i)3x∗a|Ic|.

The idea, developed in this section, is that a normal vector picked uniformly at random
in E⊥ has better structural properties (in fact, more “unstructured”). At the intuitive
level, in the case of large co-dimensional E ⊂ Cn, the vector PE⊥G should be typically
unstructured, i.e., should not have many coordinates of almost the same value. We will
make this notion precise, by combining Theorem 4.1 with some probabilistic arguments.
The main result of this section is the following theorem.

Theorem 4.2. Let d, n be sufficiently large integers satisfying d ≤ ln96 n and z ∈ C be
such that |z| ≤

√
d ln d. Let γ = 1/288 and fix a subset I ⊂ [n] satisfying

n/ ln1/γ n ≤ |Ic| ≤ n/d3.

Let E = E(Bz, I) be the random subspace spanned by the rows of Bz indexed by I. Then

P
{

for every J ⊂ [n] with |J | ≤ 2
(
|Ic|/n

)γ/2
n there is λ ∈ C such that∣∣{j ∈ [n] \ J : |〈PE⊥G, ej〉 − λ| ≤ exp

(
− C

(
n/|Ic|

)γ)}∣∣ > |Ic|} ≤ |Ic|/n,
where we take the product probability measure on Mn,d× (Cn, γn), i.e. assume that G and
An are independent, and C is a universal positive constant.

We would like to note that using a better version of the structural theorem, namely
Theorem 4.1 of [25], one could prove a more general statement covering a wider range of
d and |Ic|. Since the above statement is sufficient for our purposes, we prefer to avoid
additional technicalities.
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Theorem 4.1 states that any normal vector to E which is not very steep (in the above

sense) necessarily has at least
(
n/|Ic|

)γ/2
levels of coordinates. Theorem 4.2 improves

this by asserting that the uniform normal has as many as n/|Ic| levels of coordinates.
Also, as was noticed in (3), there is a straightforward connection between the distance
of a vector x to E and the inner product of x with PE⊥G. This connection together
with Theorem 4.2 and anti-concentration machinery developed in Section 5 allows to get
bounds on the intermediate singular values.

4.1 Order statistics of uniform random normals

Given E ⊂ Cn, let Y = Y (E) = (Y1, . . . , Yn) = PE⊥G. We also deal with linear combina-
tions of vectors distributed as Y . Given p ≥ 1 and x ∈ Cp, denote

Y (x) = Y (x, p) :=

p∑
j=1

xjY
(j), (6)

where Y (j), j ≤ p are independent copies of Y . In this subsection, we derive bounds on
the order statistics of Y and Y (x). We start with the following lemma.

Lemma 4.3 (Small ball probability for order statistics). There exist absolute positive
constants c and C such that the following holds. Let E ⊂ Cn be a fixed subspace of Cn

with m := dimE⊥ ≥ C. Then

P
{
Y ∗cm ≤

cm

n

}
≤ exp(−cm).

Proof. Note that for every i ≤ n we have

Y ∗i ≥ min
{
‖PJY ‖2/

√
n : J ⊂ [n], |J c| = i

}
.

Therefore,

P
{
Y ∗i ≤ τ

}
≤
(
n

i

)
max
|Jc|=i

P
{
‖PJY ‖2 ≤ τ

√
n
}
.

Denoting W = PJPE⊥ , and applying a small ball probability estimate for Gaussian vectors
([21, Proposition 2.6], see also Remark 4.6 below), we have for every τ ≤ c0‖W‖HS/

√
n,

P
{
‖PJY ‖2 ≤ τ

√
n
}
≤
( τ
√
n

‖W‖HS

)c′ ‖W‖2HS
‖W‖2

,

where c0, c
′ ∈ (0, 1) are universal constants. Note that ‖W‖ ≤ 1 and

‖W‖2
HS = Tr

(
PJPE⊥

)
≥ m− i.

Therefore for τ < c0‖W‖HS/
√
n and i = c′m/4 we have

P
{
Y ∗i ≤ τ

}
≤
(en
i

)i(
τ

√
n

m− i

)c′(m−i)
≤
(4en

c′m

)c′m/4(
τ

√
2n

m

)c′m/2
≤
( 8nτ√

c′m

)c′m/2
.

The choice of τ =
√
c′m/(8en) and c = min{

√
c′/(8e), c′/4} completes the proof.
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As a consequence of Lemma 4.3, we obtain a bound for linear combinations.

Proposition 4.4 (Small ball for linear combinations). Let n be large enough integer,
E ⊂ Cn be a fixed subspace of Cn with m := dimE⊥ ≥ n1/2. Given p ≤

√
n/ ln2 n and

x ∈ Cp, let Y (x) = Y (x, p) be defined as in (6). Then

P
{

inf
‖x‖2=1

(Y (x))∗c4.4m ≤ c4.4m/n
}
≤ exp(−c4.4m),

where c4.4 > 0 is a universal constant.

Proof. Let N be a c/(pn2)-net on the set of complex unit vectors in Cp with cardinality

|N | ≤
(
3pn2/c

)2p
, where c is the constant from Lemma 4.3. Since for every unit vector

x the vector Y (x) has the same distribution as Y , Lemma 4.3 together with the union
bound implies

P
{

inf
x∈N

(Y (x))∗cm ≤ cm/n
}
≤ |N | exp

(
− cm

)
≤ exp

(
− cm+ 2p ln(3pn2/c)

)
.

By the definition of N , for any unit vector x ∈ Cp there is y = y(x) ∈ N such that
‖x− y‖2 ≤ c/(pn2), hence

‖Y (x)− Y (y)‖2 =
∥∥∥ p∑
j=1

xjY
(j) −

p∑
j=1

yjY
(j)
∥∥∥

2
≤

p∑
j=1

|xj − yj| ‖Y (j)‖2 ≤
c

n2
max
j≤p
‖Y (j)‖2.

This immediately implies that

(Y (x))∗cm ≥ (Y (y))∗cm −
c

n2
max
j≤p
‖Y (j)‖2.

Thus, we obtain a deterministic relation

inf
‖x‖2=1

(Y (x))∗cm ≥ inf
x∈N

(Y (x))∗cm −
c

n2
max
j≤p
‖Y (j)‖2.

This, together with a rough bound P{max
j≤p
‖Y (j)‖ ≥ n} < e−n, yields

P
{

inf
‖x‖2=1

(Y (x))∗cm ≤
cm

2n

}
≤ P

{
inf
x∈N

(Y (x))∗cm ≤
cm

2n
+
c

n

}
+ e−n

≤ P
{

inf
x∈N

(Y (x))∗cm ≤ cm/n
}

+ e−n

≤ exp
(
− cm+ 2p ln(3pn2/c)

)
+ e−n.

Since m ≥
√
n ≥ p ln2 n, this completes the proof.

We now pass to upper bounds.

Lemma 4.5 (Large deviations of order statistics). Let E be as in Lemma 4.3. Then for
every i ≤ n/2 and τ > 0 one has

P
{
Y ∗i ≥ C

√
ln(n/i)

}
≤
( i
n

)i
,

where C > 0 is a universal constant.
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Proof. Note that for a fixed i ≤ n we have

Y ∗i ≤ max
{
‖PJY ‖2/

√
i : J ⊂ [n], |J | = i

}
.

Thus,

P{Y ∗i ≥ τ} ≤
(
n

i

)
·max
|J |=i

P
{
‖WG‖2 ≥ τ

√
i
}
,

where W = PJPE⊥ . Using that E‖WG‖2
2 = Tr(W ) ≤ i, we get

P
{
‖WG‖2 ≥ τ

√
i
}
≤ P

{
‖WG‖2

2 ≥ E‖WG‖2
2 + (τ 2 − 1)i

}
.

Applying Hanson–Wright inequality (see for example [35, Theorem 1.1, Remark 3.3] and
Remark 4.6), we obtain that for any τ ≥

√
2

P
{
‖WG‖2 ≥ τ

√
i
}
≤ exp

(
− cτ 2i

)
,

for some absolute positive constant c. Taking τ = C
√

ln(n/i) for sufficiently large con-
stant C, completes the proof.

Remark 4.6. The results of [21] and [35] used in this section are both formulated for real
matrices and real random vectors. However, this is easily overcome by noticing that if W
is an n× n complex matrix and x ∈ Cn, then one may associate the (2n)× (2n) matrix

W̃ =

[
Re (W ) −Im (W )
Im (W ) Re (W )

]
and x̃ =

[
Re (x)
Im (x)

]
,

where Re and Im denote the real and imaginary parts. Now notice that ‖W̃ x̃‖2 = ‖Wx‖2

and thus ‖W̃‖ = ‖W‖. Moreover, one can check that ‖W̃ |2HS = 2‖W‖2
HS. Therefore, one

could apply the results of [21] and [35] to W̃ and deduce the analogous results for the
complex case.

As a consequence of Lemma 4.5 we obtain a bound for linear combinations.

Proposition 4.7. Let n be a large enough integer, E be a fixed subspace of Cn with
m := dimE⊥ ≥ n1/2. Given p ≤ 2n1/4 and x ∈ Cp, let Y (x) = Y (x, p) be defined as in
(6). Then

P
{

sup
‖x‖2=1

(Y (x))∗i ≥ C4.7p
√

ln(np/i) for some i ≤ m/4
}
≤ 8/

√
n,

where C4.7 is a universal positive constant.

Proof. Fix i ≤ n and a collection of n-dimensional vectors {z1, z2, . . . , zp}. Observe that
for every subset J ⊂ [n] of cardinality i, one has

min
j∈J
|(z1 + · · ·+ zp)j| ≤ min

j∈J

p∑
`=1

|z`j | ≤ pmin
j∈J

max
`≤p
|z`j | := p a.
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For any j ∈ J there is ` = `(j) ≤ p such that |z`j | ≥ a. Hence, by the pigeonhole principle,

there is `0 ≤ p such that |z`0j | ≥ a for at least |J |/p = i/p indices from J . Thus, we obtain

min
j∈J
|(z1 + · · ·+ zp)j| ≤ pmax

`≤p
(z`)∗di/pe.

Note that the right hand side does not depend on the choice of J , therefore

(z1 + · · ·+ zp)∗i ≤ pmax
`≤p

(z`)∗di/pe.

Returning to vectors Y (1), . . . , Y (p) we get for any unit complex vector x,

(Y (x))∗i ≤ pmax
`≤p

(x`Y
(`))∗di/pe ≤ pmax

`≤p
(Y (`))∗di/pe.

Recall that m = dimE⊥. Applying Lemma 4.5, and using that the function f(t) = (t/n)t

is decreasing on (0, n/e), we obtain for an appropriate absolute constant C > 0,

P
{

sup
‖x‖2=1

(Y (x))∗i ≥ Cp
√

ln(np/i) for some i ≤ m/4
}

≤ P
{

(Y (`))∗di/pe ≥ C
√

ln(np/i) for some i ≤ m/4 and ` ≤ p
}

≤ p

m/4∑
i=1

(di/pe
n

)di/pe
≤ p2

m/(4p)∑
j=1

( j
n

)j
≤ p2

(
1

n
+
m

4p

4

n2

)
≤ 2p2

n
≤ 8√

n
,

provided that n is large enough. This completes the proof.

4.2 Strongly correlated indices

Let E be a fixed subspace of Cn and let Y = PE⊥G as before. Let α, β > 0 be parameters.
We say that a pair of indices (i, j) is (α, β)-strongly correlated (with respect to E) if

P{|Yi − Yj| ≥ α} ≤ β.

Next, we construct inductively a sequence of (non-random) sets (U`)`≥1 = (U`(α, β))`≥1,
satisfying ∪`≥1U` = [n], in the following way. At the first step, choose U1 as the largest
subset of [n] such that there is u1 ∈ U1 so that (u1, u) is (α, β)-strongly correlated for all
u ∈ U1. At the `-th step, we define

U` ⊂ Ū` := [n] \ (U1 ∪ . . . ∪ U`−1)

as the largest subset of Ū`, such that there is an index u` ∈ U` so that (u`, u) is (α, β)-
strongly correlated for all u ∈ U` (if Ū` = ∅ then we set U` = ∅ as well). Further, it will
be convenient for us to assume that the sequence (U`)`≥1 is uniquely defined. This can
be achieved, for example, by defining a total order respecting cardinality on the set of all
subsets of [n] and, at each step above, choosing the largest admissible set with respect
to that order. Observe that by the construction of U`’s, the sequence of cardinalities
(|U`|)`≥1 is non-increasing, and for every ` and that for every i, j ∈ U`, the pair (i, j) is
(2α, 2β)-strongly correlated. Note that together with (U`)`≥1 we have also constructed a
sequence of indices (u`)`≥1, which can be also defined in a unique way.
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Lemma 4.8. Assume that a pair (i, j) is not (α, β)-strongly correlated for some α > 0
and β ∈ (0, 1/2]. Then for every s > 0 one has

P
{
|Yi − Yj| ≤ α s/

√
ln(1/β)

}
≤ s2.

Proof. Set ξ := Yi − Yj. Observe that ξ is a centered complex Gaussian variable and
denote its variance by σ2. By the assumption of the lemma and by (5), we have

β ≤ P{|ξ| > α} = e−α
2/σ2

,

which implies that σ ≥ α/
√

ln(1/β). Since for every s > 0,

P{|ξ| ≤ sσ} = 1− e−s2 ≤ s2

the desired result follows.

The last lemma, combined with averaging arguments, implies the following lemma.

Lemma 4.9. Let α > 0 and β ∈ (0, 1/2], and let the sequence (U`)`≥1 be defined as above.
Let k ≥ 1 and b > 0 be such that |Uk| ≤ b. Then for every s > 0 one has

P
{
∃λ ∈ C :

∣∣∣{j ∈ ⋃
`≥k

U` : |Yj − λ| ≤ α s/
√

4 ln(1/β)
}∣∣∣ ≥ 2b

}
≤ (sn)2

2b2
.

Proof. Let U =
⋃
`≥k U` and for every i ∈ U set

Ki =
{
j ∈ U : (i, j) are (α, β)-strongly correlated

}
.

By the construction of (U`)`≥1, for every i ∈ U we have |Ki| ≤ b. Applying Lemma 4.8,
we obtain for all s > 0 and j ∈ U \Ki,

P
{
|Yi − Yj| ≤ α s/

√
ln(1/β)

}
≤ s2.

Fix now s > 0 and for every i ∈ U define the event

Ei :=
{∣∣{j ∈ U : |Yi − Yj| ≤ α s/

√
ln(1/β)

}∣∣ ≥ 2b
}
.

Since |Ki| ≤ b, Ei is contained in the event {|{j ∈ U\Ki : |Yi−Yj| ≤ α s/
√

ln(1/β)
}∣∣ ≥ b}.

Hence, applying Markov’s inequality, we get

P(Ei) ≤
1

b

∑
j∈U\Ki

P
{
|Yi − Yj| ≤ α s/

√
ln(1/β)

}
≤ s2n

b
.

Next, given λ ∈ C, denote

Jλ =
{
j ∈ U : |Yj − λ| ≤ α s/

√
4 ln(1/β)

}
.
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By the triangle inequality for every i, j ∈ Jλ we have |Yi−Yj| ≤ α s/
√

ln(1/β). Therefore,
using Markov’s inequality again, we observe

P
{
∃λ ∈ C :

∣∣Jλ∣∣ ≥ 2b
}

≤ P
{∣∣{i ∈ U :

∣∣{j ∈ U : |Yi − Yj| ≤ α s/
√

ln(1/β)
}∣∣ ≥ 2b

}∣∣ ≥ 2b
}

= P
{∑
i∈U

χEi ≥ 2b
}
≤ 1

2b

∑
i∈U

P(Ei) ≤
n

2b
· s

2n

b
,

This completes the proof.

We will use all properties of Gaussian vectors established previously to show that if
the number of strongly correlated pairs associated to E is large, then we can construct an
orthogonal vector to E satisfying none of the assumptions of Theorem 4.1, i.e., a normal
vector to E which is neither very steep nor gradual with many levels.

Lemma 4.10. There exist absolute positive constants C and c4.10 such that the following
holds. Let γ > 0 and Cγ = 2 + max(C, 2/γ). Let E be a fixed subspace of Cn with
m := dimE⊥ ≥ n3/4. Denote

α := exp
(
− Cγ

( n
m

)γ)
, β :=

1

4

(m
4n

)3

, and V = 2n
(m
n

)γ/2
.

Let the sequence (U`)`≥1 be defined as above and p ≤ 2n/m. Suppose that |
⋃p
`=1 U`| > V .

Then there exists a vector w ∈ Cn orthogonal to E such that

∀i ≤ c4.10m : w∗i ≤ 0.9 (n/i)3w∗c4.10m

and for some λ ∈ C,∣∣∣{i ≤ n : |wi − λ| ≤ exp
(
− 2(n/m)γ

)
w∗c4.10m

}∣∣∣ > n
(m
n

)γ/2
.

In other words, there exists a vector z ∈ E⊥, which is neither very steep nor gradual with
many levels in the sense of Theorem 4.1.

Proof. Let as before Y (1), . . . , Y (p) be independent copies of the vector Y and let (u`)`≥1

be the sequence of indices which was defined together with the sequence of subsets (U`)`≥1

at the beginning of Subsection 4.2. For any realization of Y (1), . . . , Y (p), let ξ ∈ R and
x = (x1, . . . , xp) ∈ Cp be such that ‖x‖2 = 1 and

∀` ≤ p :

p∑
k=1

xkY
(k)
u`

= ξ.

The vector x and ξ can be taken as follows: if the matrix M := (Y
(k)
u` )1≤`,k≤p is of full

rank, then take x = y/‖y‖2 and ξ = 1/‖y‖2, where y = M−11, otherwise take any unit
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vector in the kernel of M and set ξ = 0. Denote Z := Y (x) =
p∑

k=1

xkY
(k). Observe that

deterministically
Zu1 = Zu2 = · · · = Zup = ξ.

We then have

P
{
|Zj − Zu1 | ≥ αp for at least half of indices j ∈

p⋃
`=1

U`

}
≤

p∑
`=1

P
{
|Zj − Zu` | ≥ αp for at least half of indices j ∈ U`

}
≤

p∑
`=1

p∑
k=1

P
{
|Y (k)
j − Y (k)

u`
| ≥ α for at least |U`|/(2p) indices j ∈ U`

}
≤

p∑
`=1

p∑
k=1

2p

|U`|
∑
j∈U`

P
{
|Y (k)
j − Y (k)

u`
| ≥ α

}
≤ 2p3 β,

where the first inequality follows by the union bound; the second one by a combination
of the triangle inequality, the fact that ‖x‖2 = 1, the pigeonhole principle, and the union
bound; the third one from Markov’s inequality; and the last one from the definition of
(α, β)-strongly correlated pairs. This together with the assumptions on p and β implies

P
{
∃ λ ∈ C : |Zj − λ| ≤ αp for more than V/2 indices j ∈ [n]

}
≥ 1− 2p3 β ≥ 1/2.

On the other hand, applying Propositions 4.4 and 4.7 we obtain that with probability at
least 1− 9/

√
n one has

Z∗c4.4m ≥ c4.4m/n

and
∀i ≤ m/4 : Z∗i ≤ C4.7p

√
ln(np/i).

Intersecting the previous events we deduce that there exists a realization of Z (which will
give the required vector w) satisfying∣∣∣{i ≤ n : |Zi − λ| ≤

αpn

c4.4m
Z∗c4.4m

}∣∣∣ > V/2 =
(m
n

)γ/2
n

for some λ ∈ C and

∀i ≤ cm : Z∗i ≤
C4.7n p

√
ln(np/i)

c4.4m
Z∗c4.4m ≤ 0.9

(n
i

)3

Z∗c4.4m,

where c > 0 is a small enough absolute constant and where we used that p ≤ 2n/m. To
complete the proof, we choose c4.10 = min(c, c4.4) and note that

αpn

c4.4m
≤ exp

(
− 2
(
n/m

)γ)
for an appropriate choice of the constant C (we may take C = − ln c4.4).
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4.3 Proof of Theorem 4.2

Let d, n, z, γ, I, E,G,An be as in the statement of Theorem 4.2 and Y as above. We
may assume without loss of generality that dimE = |I| a.s., otherwise, we complement
E to form a subspace E0 of dimension |I|. In this case orthogonality to E0 will imply
orthogonality to E, therefore the proof below won’t be affected. Let m = |Ic|. Denote

s =
1

2

(m
n

)3/2

, α = exp
(
− Cγ

( n
m

)γ)
, β =

1

4

(m
4n

)3

, V = 2n
(m
n

)γ/2
,

where Cγ is the constant from Lemma 4.10. Let the sequence (U`)`≥1 be constructed as
above. If |U1| < m/2 set p = 0, otherwise let p be the largest integer such that |Up| ≥ m/2.
Since (|U`|)`≥1 is not increasing, we have p ≤ 2n/m. Notice that (U`)`≥1 and p inherits
randomness only from E. Let

J :=

p⋃
`=1

U` ⊂ [n]

(if p = 0 then J = ∅). Consider the event E := {|J | > V } (depending only on E).
Lemma 4.10 implies that E ⊂ Ec1 , where E1 denotes the event appearing in Theorem 4.1.
Denoting by E2 the event of Theorem 4.2 and applying Theorem 4.1, we get

P(E2) ≤ P(E2 ∩ Ec) + P(E) ≤ P(E2 ∩ Ec) + 1/n.

Now note that once in Ec, we have |J | ≤ V . Therefore, observing that J c :=
⋃n
`=p+1 U`,

we have

P(E2 ∩ Ec) ≤ P
{
∃λ ∈ C :

∣∣{j ∈ J c : |Yj − λ| ≤ exp
(
− C(n/m)γ

)
}
∣∣ ≥ m

}
.

Since n/m ≥ d3 and d is large enough, there exists a sufficiently large absolute constant
C satisfying

exp
(
− C(n/m)γ

)
≤ α s/

√
4 ln(1/β).

Applying Lemma 4.9 with k = p+ 1 and b = m/2 (then Uk ≤ b), we obtain

P(E2 ∩ Ec) ≤ P
{
∃λ ∈ C :

∣∣{j ∈ J c : |Yj − λ| ≤ α s/
√

4 ln(1/β)}
∣∣ ≥ m

}
≤ (sn)2

2(m/2)2
=
m

2n
.

Since 1/n ≤ m/(2n) this completes the proof.

5 Intermediate singular values

The goal of this section is to establish the bounds on the intermediate singular values
stated in the introduction (see Theorem 1.6). We first briefly show how to derive the
estimates on the singular values far from the lower edge of the spectrum. As mentioned
in the introduction, these follow from the work of Cook [12]. The majority of the section
is devoted to the complementary regime, that is, to bounding the singular values closer
to the edge.
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5.1 Higher end of the spectrum

Following the comparison strategy described in the introduction, the following proposition
was proved by Cook [12, Proposition 7.3].

Proposition 5.1 (Anti-concentration of the spectrum). Assume d = o(
√
n) and d→∞

with n. Then with probability at least 1− C0 exp(−n) for all η ∈ (0, 1] one has

νBz([0, η]) < C0(η + d−1/48),

where C0 is an absolute positive constant.

Based on this, it is easy to derive Proposition 1.5.

Proof of Proposition 1.5. For k ≤ n − 2C ′ nd−1/48, set ηk := (n − k)/(2C ′n) ≥ d−1/48.
Proposition 5.1 applied with η = ηk implies that with probability 1 − exp(−n), for any
k ≤ n − 2C0 nd

−1/48 the number of singular values smaller than ηk is less than 2C0ηkn.
This yields that sk = sn−2C0ηin ≥ ηk. Setting C = 2C ′ and c = 1/(2C0) we complete the
proof.

Remark 5.2. Proposition 5.1 is Proposition 7.3 from [12] stated there for d ≥ ln4 n.
Let us indicate the changes needed to cover our range of interest, that is, d = o(

√
n)

and d → ∞ with n (without the restriction d ≥ ln4 n). The proof of Proposition 7.3 in
[12] combines three lemmas – Lemmas 8.1, 8.2, and 8.4 there. Lemma 8.4 establishes
bounds on the intermediate singular values for shifts of Gaussian matrices and does not
demand d to be polylogarithmic in n. Lemma 8.2 compares the expectation of the Stieltjes
transforms of the Bernoulli model (with parameter d/n) with its Gaussian counterpart.
Here as well, no restriction on d is required and one only needs that d→∞ with n for the
approximation to be effective. The last piece of the procedure, Lemma 8.1, compares the
uniform d-regular model with the Bernoulli matrix. Its proof uses a general concentration
inequality for linear eigenvalue statistics of Hermitian random matrices [12, Lemma 9.1]
and an estimate of the probability that a Bernoulli matrix with parameter d/n is d-regular
[12, Lemma 9.2]. The latter indeed requires d ≥ ln4 n as stated, since it covers also large
values of d. Since in our regime we suppose that d = o(

√
n), we could replace the estimate

of Lemma 9.2 by a bound proved by McKay and Wang [30], which is also mentioned in
[12, Remark 9.3]. This implies the validity of Lemma 8.1 for any d = o(

√
n) with the

term exp(−O(d2/3n lnn)) in the probability bound replaced with exp(−O(n ln d)). This
affects the proof of Proposition 7.3 in a trivial way, as one would change the choice of ε
there to be (ln d/d)1/4 and carries the remaining part of the proof in exactly the same way
as before. Note that the same change in Lemma 8.1 is sufficient to extend the proof of
Proposition 7.2 in [12] to our range of d, which gives our Proposition 1.3.

5.2 Lower end of the spectrum. Proof of Theorem 1.6

We first relate the intermediate singular values to separation estimates between the rows
of the matrix. As an important technical ingredient, we use the so-called negative second
moment identity, which was employed earlier in papers on the circular law (see [39, 12]).
We note that one could also use the restricted invertibility principle instead (see [31]).
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Lemma 5.3. Let B be an n × n complex random matrix with a distribution invariant
under permutation of rows. Let m ≤ n be positive integers and ρ, δ > 0 be such that

P
{

dist
(
Rm(B), span j≤m−1{Rj(B)}

)
< ρ
}
≤ δ.

Then for every 1 ≤ L ≤ 1
2δ

one has

P
{
s(1−2Lδ)m(B) ≥ ρ

√
L δ
}
≥ 1− 1

L
.

Proof. For each i ≤ m, let χi be the characteristic function of the event{
dist
(
Ri(B), span j∈[m]\{i}{Rj(B)}

)
< ρ
}
.

By the conditions of the lemma (including the permutation invariance), we have Eχi ≤ δ,
hence, by Markov’s inequality, the event

E :=
{ m∑

i=1

χi > Lδm
}

has probability at most 1/L. Conditioning on the complement Ec, we can find a set of
indices I ⊂ [m] of cardinality at least m− L δm such that for every i ∈ I one has

dist
(
Ri(B), span j∈[m]\{i}{Rj(B)}

)
≥ ρ.

Passing to the |I|×n submatrix B′ with rows Rj(B), j ∈ I, we obviously have for i ≤ |I|,

dist
(
Ri(B

′), span j 6=i{Rj(B
′)}
)
≥ ρ.

Applying the negative second moment identity (see, e.g., [39, Lemma A.4]), we obtain

|I|∑
i=1

si(B
′)−2 =

|I|∑
i=1

dist
(
Ri(B

′), span j 6=i{Rj(B
′)}
)−2 ≤ |I|ρ−2.

Therefore,

L δmsm−2Lδm(B′)−2 ≤
m−Lδm∑

j=m−2Lδm

sj(B
′)−2 ≤

|I|∑
j=1

sj(B
′)−2 ≤ mρ−2,

which implies
sm−2Lδm(B′) ≥ ρ

√
L δ.

Clearly, we deterministically have

sm−2Lδm(B) ≥ sm−2Lδm(B′).

Thus, sm−2Lδm(B) ≥ ρ
√
L δ everywhere on Ec, which yields the desired result.

We now provide bounds on the distances under consideration.
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Lemma 5.4. Let d, n be large enough integers such that d ≤ ln96 n, z ∈ C be such
that |z| ≤

√
d ln d, γ = 1/288. Let σn denote the uniform random permutation on [n]

independent of An and, as before, Bz = d−1/2An − zId. Then for every i satisfying

2n/ ln1/γ n ≤ n− i ≤ d−3n

one has

P
{

dist
(
Rσn(i)(Bz), span j≤i−1

{
Rσn(j)(Bz)

})
< exp

(
− C

( n

n− i

)γ)}
≤ C

n− i
n

,

where C is a positive universal constant.

Since the proof of Lemma 5.4 requires developing certain anti-concentration tools, we
postpone its proof and turn to the proof of Theorem 1.6.

Proof of Theorem 1.6. Let i satisfies 2n/ ln1/γ n ≤ n − i ≤ d−3n and let σn, Bz, C be as
in Lemma 5.4. Denote ε = (n− i)/n. Then we have

P
{

dist
(
Rσn(i)(Bz), span j≤i−1

{
Rσn(i)(Bz)

})
< exp

(
−Cε−γ

)}
≤ C ε.

Let the matrix B be obtained from the matrix Bz by permuting its rows according to σn.
Then B has the same singular values as Bz and the distribution of B is invariant under
permutation of rows. Therefore applying Lemma 5.3 with

ρ = ρ(ε) = exp
(
−Cε−γ

)
, δ = δ(ε) = C ε and L =

1

2
√
Cδ

(then (1−
√
ε)i ≤ (1− 2Lδ)i), we obtain

P
{
s(1−

√
ε)i(B) ≥ (ε/4)1/4 exp

(
−Cε−γ

)}
≥ 1− 2C

√
ε.

Using that (1−
√
ε)i ≥ (1− 2

√
ε)n and that (ε/4)1/4 ≥ exp(ε−γ) when d is large enough

(recall, i ≥ n− n/d3), we deduce that for an appropriate absolute constant C1 > 0,

P
{
s(1−2

√
ε)n(B) ≥ exp

(
−C1ε

−γ)} ≥ 1− 2C
√
ε.

Writing k = (1 − 2
√
ε)n (with slight adjustment to make it integer), so that ε = (n−k)2

(2n)2
,

we clearly have
n− 2d−3/2n ≤ k ≤ n− 2

√
2n/ ln144 n.

Using that σn is independent of An, B and Bz have the same singular values, and that
(si)i is increasing, we obtain the desired result.
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5.3 Anti-concentration

To state the main result of the subsection, we need to define a special distribution on
the set of n-dimensional 0/1 vectors. For any matrix M ∈ Mn,d and for any non-empty
subset K ⊂ [n] denote

MM,K :=
{
M ′ ∈Mn,d : Ri(M

′) = Ri(M) for all i /∈ K
}
.

Now, fix J ⊂ [n] of cardinality at least n/2. In this section, we denote by I = I(J) a
uniform random subset of J with cardinality bn1/4c. Next, fix an index u ∈ [n] \ J and a
matrix M ∈Mn,d and define a random vector XM,J,u via its conditional distribution with
respect to I; namely, we postulate that, conditioned on a realization I0 of the set I, the
vector XM,J,u takes values in the set

QM,J,u := {Ru(M
′) : M ′ ∈MM,I0∪{u}}

and

∀x ∈ QM,J,u : P
{
XM,J,u = x | I = I0

}
=
|{M ′ ∈MM,I0∪{u} : Ru(M

′) = x}|
|MM,I0∪{u}|

.

Proposition 5.5. Let d, n be large enough positive integers such that d ≤ n1/8. Let J be
a subset of [n] of cardinality at least n/2, u ∈ [n]\J , and let M be a fixed matrix inMn,d.

Further, let δ, ρ > 0, y be a fixed vector in Cn such that for some subset J̃ ⊂ [n] we have

∀λ ∈ C :
∣∣{j ∈ [n] \ J̃ : |yj − λ| ≤ ρ

}∣∣ ≤ δn.

Then,

∀λ ∈ C : P
{
|〈y,XM,J,u〉 − λ| ≤ ρ/4

}
≤
(
8|J̃ |/n

)d
+ 144δ + n−1/10.

To prove this proposition we need several lemmas.

Lemma 5.6. Let d, n be large enough positive integers such that d ≤ n1/8 and M ∈Mn,d

be a fixed matrix. Further, let J ⊂ [n] be a fixed subset of cardinality at least n/2, u ∈ [n]\J
and I = I(J). Then with probability at least 1− 2n−1/4 the supports of the rows Ri(M),
i ∈ I ∪ {u}, are pairwise disjoint.

Proof. Denote by Q ⊂ (J ∪ {u})× (J ∪ {u}) the subset of all pairs (i, j) such that

suppRi(M) ∩ suppRj(M) 6= ∅.

By d-regularity we observe that for any i ∈ J ∪ {u} there are less than d2 indices j with
(i, j) ∈ Q. Thus, |Q| ≤ d2(|J |+ 1). On the other hand, an easy computation shows that
for any pair (i1, i2) ∈ Q with i1 6= i2, the probability that both i1 and i2 belong to I, is
equal to (

|J |+ 1− 2

bn1/4c − 2

)(
|J |+ 1

bn1/4c

)−1

=
bn1/4c (bn1/4c − 1)

|J |(|J |+ 1)
.

Hence,

P{I contains a disjoint pair in Q} ≤ |Q|
√
n/(|J |(|J |+ 1)) ≤ d2

√
n/|J |.

The assumptions on |J | and d imply the result.
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Lemma 5.7. Let d ≤ n be large enough positive integers and M ∈Mn,d be a fixed matrix.
Further, let J ⊂ [n] be a subset of cardinality at least n/2, and let I = I(J). Then for
every subset L ⊂ [n] with probability at least 1− 1/n2 we have∣∣∣(⋃

i∈I

suppRi(M)
)
∩ L
∣∣∣ ≤ 14d2 lnn+ 4dn−3/4|L|.

Proof. Without loss of generality we assume that |L| ≥ d2. Fix a partition (Lk)
d2

k=1 of L
such that for every k ≤ d2 and for every i 6= j ∈ Lk there is no row of M such that i, j are
simultaneously contained in its support. Such a partition can be constructed as follows:
take a graph Γ on L without loops such that i 6= j ∈ L are connected by an edge whenever
there is a row of M whose support contains both i and j. The d-regularity immediately
implies that the maximum vertex degree of this graph is strictly less than d2 (in fact, not
greater than d(d − 1)). Therefore, by Brook’s theorem, the chromatic number of Γ does
not exceed d2, which justifies the number of sets in the required partition of L.

Further, let Ĩ be a random subset of J , such that each index i ∈ J is included into Ĩ
with probability bn1/4c/|J | independently of the others. Fix for a moment k ≤ d2. For
any i ∈ Lk, let ηki be the indicator function of the event that

i ∈
⋃
j∈Ĩ

suppRj(M).

Note that by our construction (ηki )i∈Lk
are jointly independent and that for all i ∈ Lk

E ηki = E (ηki )2 = P{ηki = 1} ≤ dn1/4/|J | := δ.

Applying Bernstein’s inequality with t = δ|Lk|+ 14 lnn, we obtain

P
{∣∣∣Lk ∩⋃

j∈Ĩ

suppRj(M)
∣∣∣ ≥ 2δ|Lk|+ 14 lnn

}
≤ P

{∑
i∈Lk

(ηki − E ηki ) ≥ t
}

≤ exp
(
− 3t2

2(t+ 3δ|Lk|)

)
≤ exp

(
− 3t

8

)
≤ n−5.

Then the union bound implies that with probability at least 1− d2n−5 one has∣∣∣L ∩⋃
j∈Ĩ

suppRj(M)
∣∣∣ ≤ d2∑

k=1

(
14 lnn+

2dn1/4|Lk|
|J |

)
= 14d2 lnn+

2dn1/4|L|
|J |

.

Finally note that the cardinality of Ĩ equals exactly m := bn1/4c with probability(
|J |
m

)( m
|J |

)m (
1− m

|J |

)|J |−m
≥
(

1− m

|J |

)|J |
≥ exp(−2m) ≥ n−1/4.

Therefore

P
{∣∣∣L ∩⋃

j∈Ĩ

suppRj(M)
∣∣∣ ≤ 14d2 lnn+

2dn1/4|L|
|J |

∣∣∣ |Ĩ| = bn1/4c
}
≥ 1− d2n−4 ≥ 1− 1

n2
,

which implies the desired result, since |J | ≥ n/2.
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Lemma 5.8. Let d < n be positive integers. Let M ∈Mn,d be a fixed matrix, J ⊂ [n] be a
subset of cardinality at least n/2, and I = I(J). Let u ∈ [n] \ J and I0 ⊂ J of size bn1/4c
be such that the supports of the rows Ri(M), i ∈ I0 ∪ {u}, are pairwise disjoint. Then,
conditioned on I = I0, the support of the random vector XM,J,u is a uniformly distributed
d-subset of

S :=
⋃

i∈I0∪{u}

suppRi(M).

Proof. We first show that for any two 0/1 vectors x, y satisfying

suppx, supp y ⊂ S, |suppx| = |supp y| = d, and |suppx \ supp y| = 1,

the sets

Sx :=
{
M ′ ∈MM,I0∪{u}, Ru(M

′) = x
}

and Sy :=
{
M ′′ ∈MM,I0∪{u}, Ru(M

′′) = y
}

have the same cardinality. Without loss of generality, assume that x1 = y2 = 1 and
x2 = y1 = 0. Then {1, 2} ⊂ S. For every matrix M ′ ∈ Sx we construct a matrix M ′′ ∈ Sy
as follows. Since {1, 2} ⊂ S and the rows indexed by I0 ∪ {u} are pairwise disjoint, there
exists a unique index i = i(M ′) ∈ I0 ∪ {u} such that M ′

i,1 = 0 and M ′
i,2 = 1. Let M ′′

be obtained by performing the simple switching operation on M ′ which interchanges the
entries M ′

u,1 and M ′
u,2 with M ′

i,1 and M ′
i,2 respectively. Clearly M ′′ ∈ Sy, moreover, it

is not difficult to see that the constructed mapping is injective. Therefore, |Sx| ≤ |Sy|.
Reversing the argument, we get that |Sx| = |Sy|. Since for every 0/1 vector z satisfying
supp z ⊂ S and |supp z| = d one can construct a sequence of vectors x0 = x, x1, . . . , xk = z
with suppxi ⊂ S, |suppxi| = d, and such that two vectors xi−1, xi differ on exactly two
coordinates for every 1 < i ≤ k, we obtain |Sx| = |Sz|. Thus

P
{
XM,J,u = x | I = I0

}
= P

{
XM,J,u = z | I = I0

}
,

which means that, conditioned on I = I0, the support of the random vector XM,J,u is
uniformly distributed on the set of d-subsets of S.

Lemma 5.9 (Coupling). Let d, n be large enough positive integers such that d ≤ n1/8

and M ∈ Mn,d be a fixed matrix. Let J ⊂ [n] be a subset of cardinality at least n/2 and
I = I(J). Assume that u ∈ [n] \ J and let I0 ⊂ J be of size bn1/4c and such that the
supports of rows Ri(M), i ∈ I0∪{u}, are pairwise disjoint. Let ξ1, . . . , ξd be i.i.d. random
variables uniformly distributed on

S :=
⋃

i∈I0∪{u}

suppRi(M), and set Yξ :=
d∑
i=1

eξi .

Then there is a coupling (X, Yξ), with X distributed as XM,J,u, such that, conditioned on
I = I0, we have

P
{
X = Yξ | I = I0

}
≥ 1− n−1/8.
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Proof. Note that, conditioned on the event

E := {∀i 6= j one has ξi 6= ξj},

the random set X := {ξ1, . . . , ξd} is a uniformly distributed d-subset of S. Therefore, by
Lemma 5.8, the distribution of XM,J,u conditioned on I = I0 agrees with the distribution of
Yξ conditioned on E . Since Ri(M), i ∈ I0∪{u}, are pairwise disjoint, we have |S| ≥ dn1/4,
hence

P{ξi = ξj for some i 6= j} ≤ d2 P{ξ1 = ξ2} ≤ d2/|S| ≤ n−1/8.

This implies the desired result.

Lemma 5.10. Let δ, ρ > 0, J̃ ⊂ [n], and y be a fixed vector in Cn such that

∀λ ∈ C :
∣∣{j ∈ [n] \ J̃ : |yj − λ| ≤ ρ

}∣∣ ≤ δn.

Then there exists a partition (Uij)i≤9, j≤n of [n]\J̃ such that |Uij| ≤ δn for all i ≤ 9, j ≤ n,
and

∀i ≤ 9 ∀j 6= j′ ∈ [n] ∀s ∈ Uij ∀s′ ∈ Uij′ |ys − ys′| ≥ ρ.

Proof. We identify C with R2. Consider the following nine points

a1 = (0, 0), a2 = (1, 0), a3 = (2, 0), a4 = (0, 1), a5 = (0, 2),

a6 = (1, 1), a7 = (2, 1), a8 = (1, 2), a9 = (2, 2).

For i ≤ 9, set
Vi := ρ(ai + 3Z× 3Z).

Note that any two points in Vi are at distance at least 3ρ and that the union of Vi’s is C.
We first construct a partition (Vij)i≤9, j∈Z2 of the complex plane as follows. First, set V1j’s
to be the Euclidean balls of radius ρ centered at ρ(a1 + 3j) ∈ V1. Observe that the balls
are necessarily pairwise disjoint. Further, assuming that V`j, ` < i, j ∈ Z2 are constructed
(for some 1 < i ≤ 9), define Vij as the set difference of the Euclidean ball of radius ρ
centered at ρ(ai + 3j) ∈ Vi, and the union of V`j′ , ` < i, j′ ∈ Z2. Then (Vij)i≤9, j∈Z2 is a
partition and moreover, for any i ≤ 9 and any j 6= j′ ∈ Z2, one has |x − x′| ≥ ρ for any
x ∈ Vij, x′ ∈ Vij′ . Indeed, this follows by an application of the triangle inequality together
with the fact that the centers of these two balls are at distance at least 3ρ. Therefore, one
can partition the coordinates of y by intersecting the above partition of C with {yi}i≤n.

This naturally defines a partition of [n] \ J̃ by setting the sets of the partition to be the
indices of the corresponding coordinates of y. The assumption on y implies that each set
in the partition contains at most δn elements.

Proof of Proposition 5.5. Fix λ ∈ C. Then

P
{
|〈y,XM,J,u〉 − λ| ≤ ρ/4

}
≤

∑
I0⊂J,

|I0|=bn1/4c

P
{
|〈y,XM,J,u〉 − λ| ≤ ρ/4 | I = I0

}
P
{
I = I0

}
.
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Let (Uij)i≤9, j≤n be the partition of [n] \ J̃ given by Lemma 5.10, in particular |Uij| ≤ δn
for all i, j. Let T be the collection of all subsets I0 of J of cardinality bn1/4c satisfying
the following three conditions:

the rows Ri(M), for i ∈ I0 ∪ {u} are pairwise disjoint; (7)∣∣∣J̃ ∩ ⋃
i∈I0

suppRi(M)
∣∣∣ ≤ 14d2 lnn+ 4dn−3/4|J̃ |; (8)

∣∣∣Uij ∩ ⋃
i∈I0

suppRi(M)
∣∣∣ ≤ 14d2 lnn+ 4δdn1/4. (9)

By Lemmas 5.6, 5.7 and the union bound, the event {I ∈ T} has probability at least
1− 3n−1/4. Thus, we have

P
{
|〈y,XM,J,u〉 − λ| ≤

ρ

4

}
≤
∑
I0∈T

P
{
|〈y,XM,J,u〉 − λ| ≤

ρ

4

∣∣ I = I0

}
P
{
I = I0

}
+

3

n1/4
.

Further, fix any I0 in T . Let S, ξ1, . . . , ξd, and Yξ be defined in Lemma 5.9. Note that by
(7), |S| ≥ dn1/4. Lemma 5.9 implies

P
{
|〈y,XM,J,u〉 − λ| ≤ ρ/4

∣∣ I = I0

}
≤ P

{
|〈y, Yξ〉 − λ| ≤ ρ/4

}
+ n−1/8.

Denote

S0 :=
⋃
i∈I0

suppRi(M) \ J̃ , S1 :=
(
J̃ ∩

⋃
i∈I0

suppRi(M)
)
∪ suppRu(M),

and ξ = {ξ1, . . . , ξd}. Note that by properties (7) and (8) and assuming that |J̃ | ≤ n/8
(otherwise the bound for the probability in Proposition 5.5 is trivial), one has

|S| ≥ dn1/4,
|S1|
|S|
≤ 15d lnn

n1/4
+

4|J̃ |
n
≤ 3

4
, and

|S0|
|S|

= 1− |S1|
|S|
≥ 1

4
. (10)

Consider two events

E1 := {ξ ∩ S0 = ∅} = {ξ ⊂ S1} and E2 := {ξ ∩ S0 6= ∅}.

Using property (10) and independence of ξi’s, we clearly have

P(E1) = (|S1|/|S|)d ≤
(30d lnn

n1/4

)d
+
(8|J̃ |
n

)d
.

To estimate the remaining probability we split E2 into disjoint union of events

EW := {ξi ∈ S0 for all i ∈ W and ξi /∈ S0 for all i /∈ W},

where W runs over all non-empty subsets of [d]. Then

P{|〈y, Yξ〉 − λ| ≤ ρ/4
∣∣ E2} ≤ sup

W
P{|〈y, Yξ〉 − λ| ≤ ρ/4

∣∣ EW}.
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Fix a non-empty W ⊂ [d] and m ∈ W . Using that ξi’s are i.i.d. we observe that

P{|〈y, Yξ〉 − λ| ≤ ρ/4
∣∣ EW} ≤ sup

λ̃∈C
P
{
|〈y, eξ1〉 − λ̃| ≤ ρ/4

∣∣ ξm ∈ S0

}
= sup

λ̃∈C
P
{
|〈y, eξ1〉 − λ̃| ≤ ρ/4

∣∣ ξ1 ∈ S0

}
.

This implies

p0 := P
{
E2 and |〈y, Yξ〉 − λ| ≤ ρ/4

}
≤ sup

λ̃∈C
P
{
|〈y, eξ1〉 − λ̃| ≤ ρ/4

∣∣ ξ1 ∈ S0

}
.

Fix λ̃ ∈ C. By Lemma 5.10 for every i ≤ 9 there exists at most one j(i) ≤ n such that

ξ1 ∈ S0 and |〈y, eξ1〉 − λ̃| ≤ ρ/4 implies ξ1 ∈ S0 ∩
9⋃
i=1

Uij(i).

Using this, (9) and (10), we observe

p0 ≤
1

P (ξ1 ∈ S0)

9∑
i=1

P
{
ξ1 ∈ S0 ∩ Uij(i)

}
≤ |S|
|S0|

9∑
i=1

|S0 ∩ Uij(i)|
|S|

≤ 540 d lnn

n1/4
+ 144δ.

Since P
{
|〈y, Yξ〉−λ| ≤ ρ/4

}
≤ P(E1) +p0, d ≤ n1/8, and n is large enough, this completes

the proof.

5.4 Distances estimates. Proof of Lemma 5.4

The goal of this subsection is to prove Lemma 5.4.
Fix z ∈ C, γ = 1/(288), and i ∈ [n] satisfying n/ ln1/γ n ≤ n − i ≤ d−3n. Recall

that σn denotes the uniform random permutation on [n] independent of An and Bz =
d−1/2An − zId. Denote Ei := E(Bz, σ([i− 1]), i.e., the random subspace spanned by the
rows Rσn(j)(Bz), j ≤ i− 1.

We now define a random triple (An, A
′
n, σn) in the following way (the choice of notation

will be justified after construction). For each matrix M ∈Mn,d and a permutation σ ∈ Πn

let

MM,σ :=
{
M ′ ∈Mn,d : Rσ(j)(M

′) = Rσ(j)(M) for all j 6∈ [i− bn1/4c, i]
}
.

Define the set
U :=

⋃
σ∈Πn

⋃
M∈Mn,d

{
(M,M ′, σ) : M ′ ∈MM,σ

}
.

Further, define a probability measure η on U by

∀(M,M ′, σ) ∈ U : η
({

(M,M ′, σ)
})

=
1

n! |Mn,d|
1

|MM,σ|
.

We postulate that the triple (An, A
′
n, σn) takes values in U and is distributed according

to the measure η. It is not difficult to see that (individual) marginal distributions of An
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and A′n are uniform on Mn,d, and that σn is uniformly distributed on Πn. Moreover, An
and σn are independent, as well as A′n and σn. This justifies our choice of notation for An
and σn (which otherwise would come into conflict with our “old” notions of An and σn).
As usual, below we assume that G is independent from the triple (An, A

′
n, σn) and that

all random variables are defined on the same probability space.
Fix a matrix M ∈Mn,d, a subset J ⊂ [n] of cardinality i− 1 and an index u ∈ [n] \J .

Define the event

EM,J,u :=
{
An = M, {σn(r) : r ≤ i− 1} = J, σn(i) = u

}
.

Observe that, conditioned on EM,J,u, the set

W := {σn(j) : j = i− bn1/4c, . . . , i− 1}

is a uniform random bn1/4c-subset of J . Let W0 ⊂ J be any realization of W and set

EM,J,u,W0 := EM,J,u ∩
{
W = W0

}
.

Conditioned on EM,J,u,W0 , A
′
n takes values in the set of matrices MM,W0∪{u} defined the

same way as in Section 5.3, and the u-th row of A′n has conditional distribution defined
by

P
{
Ru(A

′
n) = x | EM,J,u,W0

}
=
|{M ′ ∈MM,W0∪{u} : Ru(M

′) = x}|
|MM,W0∪{u}|

.

In other words, conditioned on EM,J,u, the u-th row of A′n is distributed exactly the same
way as the random vector XM,J,u defined in Section 5.3. Now, let E ′M,J,u ⊂ EM,J,u be the
event that the uniform random normal PE⊥i G satisfies the following condition:

∃J̃ ⊂ [n] with |J̃ | ≤ 2
(n− i

n

)γ/2
n such that

∀λ ∈ C :
∣∣∣{j ∈ n \ J̃ : |〈PE⊥i G, ej〉 − λ| ≤ exp

(
− C0

( n

n− i

)γ)}∣∣∣ ≤ n− i,

where C0 is the constant from Theorem 4.2. Note that conditioned on the event EM,J,u

the subspace Ei is completely determined by M and J , in particular it is fixed within
the event EM,J,u. Therefore, by the independence of G from the triple (An, A

′
n, σn), we

have that PE⊥i G and the u-th row of A′n are independent conditioned on EM,J,u. Then,
conditioning on the event E ′M,J,u and denoting

B′z := d−1/2A′n − zId

we apply Proposition 5.5 with y = PE⊥i G and λ = d1/2〈y,Ru(zId)〉, which gives that

P
{
|〈PE⊥i G,Ru(B

′
z)〉| ≤ (16d)−1/2 exp

(
− C0

( n

n− i

)γ) ∣∣ E ′M,J,u

}
≤ 144

n− i
n

+
(

16
(n− i

n

)γ/2)d
+ n−1/10 ≤ 145

n− i
n

, (11)
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provided that d is large enough. For convenience, we denote q := i − bn1/4c. Define
another (the last) auxiliary event

ẼM,J,u := EM,J,u ∩
{

ln(n/(n− i))
∥∥PE⊥q Ru(B

′
z)
∥∥

2
≥ |〈Ru(B

′
z), PE⊥i G〉|

}
.

Using the deterministic relation∥∥PE⊥i Ru(B
′
z)
∥∥

2
≤
∥∥PE⊥q Ru(B

′
z)
∥∥

2
,

the independence of Ru(A
′
n) and PE⊥i G conditioned on EM,J,u and (5) applied with t =

ln(n/(n− i)), we obtain

P(ẼM,J,u | EM,J,u) ≥ 1− n− i
n

,

and thus

P(ẼcM,J,u | E ′M,J,u) ≤
P(EcM,J,u ∩ EM,J,u)

P(E ′M,J,u)
≤ n− i

n
· P(EM,J,u)

P(E ′M,J,u)
.

Together with (11) and using that

4
√
d ln(n/(n− i)) ≤ exp

(( n

n− i

)γ)
for sufficiently large d, we get for an appropriate choice of the constant C̃ that

P
{∥∥PE⊥q Rσn(i)(B

′
z)
∥∥

2
≤ exp

(
− C̃

( n

n− i

)γ) ∣∣ E ′M,J,u

}
≤ P

{
|〈PE⊥i G,Ru(B

′
z)〉| ≤ c d−1/2 exp

(
− C0

( n

n− i

)γ) ∣∣ E ′M,J,u

}
+ P(ẼcM,J,u

∣∣ E ′M,J,u)

≤ n− i
n

(
145 +

P(EM,J,u)

P(E ′M,J,u)

)
≤ 146

n− i
n

P(EM,J,u)

P(E ′M,J,u)
.

Using the independence G and (An, A
′
n, σn) and applying Theorem 4.2 with I = Ei, which

is fixed within the event EM,J,u, we observe

P
( ⋃
M,J,u

E ′M,J,u

)
≥ 1− n− i

n
.

Note also that the events EM,J,u are pairwise disjoint, so that
∑

M,J,u P(EM,J,u) ≤ 1. There-
fore, using that E ′M,J,u ⊂ EM,J,u we obtain

P
{∥∥PE⊥q Rσn(i)(B

′
z)
∥∥

2
≤ exp

(
− C̃

( n

n− i

)γ)}
≤
∑
M,J,u

P
{∥∥PE⊥q Rσn(i)(B

′
z)
∥∥

2
≤ exp

(
− C̃

( n

n− i

)γ) ∣∣ E ′M,J,u

}
P
{
E ′M,J,u

}
+ P

([ ⋃
M,J,u

E ′M,J,u

]c)
≤
(

146
n− i
n

) ∑
M,J,u

P(EM,J,u) +
n− i
n
≤ 147

n− i
n

.
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Note that for any realization (M,M ′, σ) of (An, A
′
n, σn) we have Rσ(j)(M

′) = Rσ(j)(M)
for all j < q, therefore

Eq = span {Rσn(j)(Bz)}j<q = span {Rσn(j)(B
′
z)}j<q.

Thus

P
{

dist
(
Rσn(i)(B

′
z), span j<q{Rσn(j)(B

′
z)}) ≤ exp

(
− C̃

( n

n− i

)γ)}
≤ 147

n− i
n

.

In view of the independence of σn and A′n, we can replace the row Rσn(i)(B
′
z) in the above

formula with Rσn(q)(B
′
z) with no change to the probability estimates. Since A′n and An

are equidistributed we can also replace Rσn(q)(B
′
z) and Rσn(j)(B

′
z) with Rσn(q)(Bz) and

Rσn(j)(Bz). Finally note that in our range of i, n−i
n

is equivalent to n−q
n

up to constant 2

and that n−n/d3 ≤ q ≤ n−n/ ln1/γ n−n1/4. This completes the proof of Lemma 5.4.
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