QUOTIENTS OF FINITE-DIMENSIONAL QUASI-NORMED SPACES

N. J. KALTON AND A.E. LITVAK

ABSTRACT. We study the existence of cubic quotients of finite-dimensional quasi-normed spaces, that is, quotients well isomorphic to ℓ_{∞}^k for some k. We give two results of this nature. The first guarantees a proportional dimensional cubic quotient when the envelope is cubic; the second gives an estimate for the size of a cubic quotient in terms of a measure of non-convexity of the quasi-norm.

1. INTRODUCTION

It is by now well-established that many of the core results in the local theory of Banach spaces extend to quasi-normed spaces (cf. [2], [3], [4], [7], [8], [9], [10], [13], [15], [16], [17] for example). In this note we give two results on the local theory of quasi-normed spaces which are of interest only in the non-convex situation.

Let us introduce some notation. Let X be a real finite-dimensional vector space. Then a p-norm $\|\cdot\|$ on X, $p \in (0, 1]$, is a map $x \mapsto \|x\|$ $(X \mapsto \mathbb{R})$ so that: (i) $\|x\| > 0$ if and only if $x \neq 0$.

(ii) $\|\alpha x\| = |\alpha| \|x\|$ for $\alpha \in \mathbb{R}$ and $x \in X$.

(iii) $||x_1 + x_2||^p \le ||x_1||^p + ||x_2||^p$ for $x_1, x_2 \in X$.

Then $(X, \|\cdot\|)$ is called a *p*-normed space. For the purposes of this paper a quasi-normed space is always assumed to be a *p*-normed space for some $p \in (0, 1]$ (note that by Aoki-Rolewicz theorem on quasi-normed space one can introduce an equivalent *p*-norm ([12], [14], [21])). The set $B_X = \{x : \|x\| \leq 1\}$ is the unit ball of X. The closed convex hull of B_X , denoted by \hat{B}_X , is the unit ball of a norm

¹⁹⁹¹ Mathematics Subject Classification. Primary: 46B07, 46A16.

Key words and phrases. Quasi-normed spaces, quotients.

The first author was supported by NSF grant DMS-9870027 and the second author was supported by a Lady Davis Fellowship.

 $\|\cdot\|_{\hat{X}}$ on X; the corresponding normed space, $\hat{X},$ is called the Banach envelope of X.

The set *B* is called *p*-convex if for every $x, y \in B$ and every positive λ, μ satisfying $\lambda^p + \mu^p = 1$ one has $\lambda x + \mu y \in B$. Clearly, the unit ball of *p*-normed space is a *p*-convex set and, vise versa, a closed centrally-symmetric *p*-convex set is the unit ball of some *p*-norm provided that it is bounded and 0 belongs to its interior.

If X and Y are p-normed spaces (for some p) then the Banach-Mazur distance d(X, Y) is defined as $\inf\{||T|| ||T^{-1}||\}$, where the infimum is taken over all linear isomorphisms $T: X \to Y$. We let $d_{B_X} = d_X = d(X, \ell_2^{\dim X})$ and $\delta_{B_X} = \delta_X = d(X, \hat{X})$. It is clear that δ_X is measure of non-convexity; in fact $\delta_X = \inf\{d(X, Y) : Y \text{ is a Banach space}\}$.

We now describe our main results. In Section 3 we investigate quasi-normed spaces X such that \hat{X} satisfies an estimate $d(\hat{X}, \ell_{\infty}^{\dim X}) \leq C$. It has been known for some time that non-trivial examples of this phenomenon exist [11]. In geometrical terms this means that the convex hull of the unit ball of X is close to a cube. We show using combinatorial results of Alesker, Szarek and Talagrand [1], [20] based on the Sauer-Shelah Theorem [18], [19] that X then has a proportional dimensional quotient E satisfying an estimate $d(E, \ell_{\infty}^{\dim E}) \leq C'$. A much more precise statement is given in Theorem 3.4. We then use this result in Section 4 to prove that a p-normed space X has a quotient E with dim $E \geq c_p \ln \delta_X/(\ln \ln \delta_X)$ and $d(E, \ell_{\infty}^{\dim E}) \leq C_p$ where $0 < c_p, C_p < \infty$ are constants depending on p only. Again a more precise statement is given in Theorem 4.2.

In developing these results, we found it helpful to use the notion of a geometric hull of a subset of \mathbb{R}^n . Thus instead of considering a *p*-convex set B_X we consider an arbitrary compact spanning set S and then compare the absolutely convex hull ΔS with certain subsets $\Gamma_{\theta}S$ which can be obtained from Sby geometrically converging series. Precisely $x \in \Gamma_{\theta}S$, $\theta \in (0, 1)$, if and only if $x = (1 - \theta) \sum_{n=0}^{\infty} \theta^n \lambda_n s_n$ where $s_n \in S$ and $|\lambda_n| \leq 1$. Note that $\Gamma_{\alpha} \subset \frac{1-\alpha}{1-\theta}\Gamma_{\theta}$ for every $0 < \alpha < \theta < 1$. Our results can be stated in terms of estimates for the speed of convergence of $\Gamma_{\theta}S$ to ΔS as $\theta \to 1$. In this way we can derive results which are independent of 0 and then obtain results about*p*-normedspaces as simple Corollaries. We develop the idea of the geometric hull in Section2 and illustrate it by restating the quotient form of Dvoretzky's theorem in thislanguage.

2. Approximation of convex sets

Let S be a subset of \mathbb{R}^n . Denote by ΔS the absolutely convex hull of S and by \tilde{S} the star-shaped hull of S, i.e. $\tilde{S} = \{\lambda x : |\lambda| \leq 1, x \in S\}$. For each $m \in \mathbb{N}$ we define $\Delta_m S$ to be the set of all vectors of the form $\frac{1}{m}(\lambda_1 x_1 + \cdots + \lambda_m x_m)$ where $|\lambda_k| \leq 1$ and $x_k \in S$ for $1 \leq k \leq m$. If $0 < \theta < 1$ we define the θ -geometric hull of $S, \Gamma_{\theta}S$ to be the set of all vectors of the form $(1-\theta)\sum_{k=0}^{\infty}\lambda_k x_k$ where $|\lambda_k| \leq \theta^k$ and $x_k \in S$ for $k = 0, 1, \cdots$.

Lemma 2.1. Let S be a p-convex closed set where $0 . Then for <math>0 < \theta < 1$ we have

$$\Gamma_{\theta}S \subset \left(p^{-1/p}(1-\theta)^{1-1/p}\right)S.$$

PROOF. This follows easily from:

$$\frac{1-\theta}{(1-\theta^p)^{1/p}} \le p^{-1/p} (1-\theta)^{1-1/p}$$

which in turns from the estimate

$$\theta^p \le 1 - p(1 - \theta).$$

Lemma 2.2. If $\frac{1}{3} < \theta < 1$ and $m \in \mathbb{N}$ then

$$\Gamma_{\theta} \Delta_m S \subset \frac{2\theta}{3\theta - 1} \Gamma_{\theta^{\frac{1}{m}}} S.$$

PROOF. Note that

$$\Delta_m S \subset \frac{1}{m} \theta^{\frac{1}{m}-1} \sum_{k=0}^{m-1} \theta^{\frac{k}{m}} \tilde{S}.$$

Hence

$$\Gamma_{\theta} \Delta_m S \subset \frac{1-\theta}{m(1-\theta^{\frac{1}{m}})} \theta^{\frac{1}{m}-1} \Gamma_{\theta^{\frac{1}{m}}} S.$$

Now observe

(2.1)
$$\frac{1-\theta}{m(1-\theta^{\frac{1}{m}})}\theta^{\frac{1}{m}-1} = \frac{\theta^{-1}-1}{m(\theta^{-\frac{1}{m}}-1)}$$
$$\leq \frac{\theta^{-1}-1}{|\ln\theta|}$$
$$\leq \frac{2}{3-\theta^{-1}}.$$

0

This completes the proof.

In this section, we make a few simple observations on the geometric hulls $\Gamma_{\theta}S$. Let us suppose that S is compact and spanning so that ΔS coincides with the unit ball B_X of a Banach space X, $\|\cdot\|_X$. Given $q \in [1,2]$ let $T_q = T_q(X)$ denote the equal-norm type q constant, i.e. the smallest constant satisfying

$$\operatorname{Ave}_{\epsilon_{k}=\pm 1} \left\| \sum_{k=1}^{N} \epsilon_{k} x_{k} \right\|_{X} \leq T_{q} N^{1/q} \max_{1 \leq k \leq N} \|x_{k}\|$$

for every N. Given an integer N let b_N denote the least constant so that

$$\inf_{\epsilon_k=\pm 1} \left\| \sum_{k=1}^N \epsilon_k x_k \right\|_X \le b_N N \max_{1 \le k \le N} \|x_k\|.$$

Given a set A by |A| we denote the cardinality of A.

The following Lemma abstracts the idea of [7], Lemma 2.

Lemma 2.3. Suppose $\frac{1}{3} < \theta < 1$, and let m = m(S) be an integer such that $\sum_{k=1}^{\infty} b_{2^k m} \leq \theta$. Then

$$\Delta S \subset \frac{2\theta}{(3\theta-1)(1-\theta)} \Gamma_{\theta^{\frac{1}{m}}} S.$$

PROOF. Suppose $N \in \mathbb{N}$ and suppose $u \in \Delta_{2N}S$. Then $u = \frac{1}{2N}(x_1 + \cdots + x_{2N})$ where $x_k \in \tilde{S}$. Hence there is a choice of signs $\epsilon_k = \pm 1$ with $|\{\epsilon_k = -1\}| \leq N$ and

$$\left\|\sum_{k=1}^{2N} \epsilon_k x_k\right\|_X \le 2Nb_{2N}.$$

Let $v = \frac{1}{N} (\sum_{\epsilon_k=1} x_k)$. Then $||u - v||_X \leq b_{2N}$. Hence $\Delta_{2N} S \subset \Delta_N S + b_{2N} \Delta S$. Iterating we get

$$\Delta_{2^k m} S \subset \Delta_m S + \sum_{j=1}^k b_{2^j m} \Delta S$$

which leads to

$$\Delta S \subset \Delta_m S + \theta \Delta S$$

which implies

$$\Delta S \subset (1-\theta)^{-1} \Gamma_{\theta} \Delta_m S \subset \frac{2\theta}{(3\theta-1)(1-\theta)} \Gamma_{\theta^{\frac{1}{m}}} S.$$

	_	_	_	
. 1				

Proposition 2.4. (i) Suppose $1 < q \le 2$ and q' be such that 1/q + 1/q' = 1. Then for

$$\theta=1-\frac{1}{4}\left(\frac{2^{1/q'}-1}{2T_q}\right)^{q'}$$

we have $\Delta S \subset 12\Gamma_{\theta}S$.

(ii) There exists constant $C < \infty$ so that if m is the largest integer such that X has a subspace Y of dimension m with $d(Y, \ell_1^m) \leq 2$ then $\Delta S \subset 8\Gamma_{\theta}S$ for

$$\theta = 1 - \frac{1}{2} \left(Cm \right)^{-C \log \log(Cm)}$$

Remark. We conjecture that the sharp estimate in (ii) is $\theta = 1 - c/m$.

PROOF. (i) Observe that $b_N \leq T_q N^{\frac{1}{q}-1}$. Hence

$$\sum_{k=1}^{\infty} b_{2^k N} \le T_q N^{-\frac{1}{q'}} (2^{\frac{1}{q'}} - 1)^{-1}.$$

Let N be the largest integer so that the right-hand side is at most $\frac{1}{2}$. Applying Lemma 2.3 with $\theta_0 = 1/2$ we obtain

$$\Delta S \subset 4\Gamma_{2^{-1/N}}S.$$

The result follows, since

$$\frac{1}{N} \le \left(\frac{2^{1/q'} - 1}{2T_q}\right)^q \le \frac{1}{N - 1} \quad \text{and} \quad \Gamma_\alpha \subset \frac{1 - \alpha}{1 - \theta} \Gamma_\theta$$

for $\alpha < \theta$.

In (ii) we note first by a result of Elton [5] (see also [22] for a sharper version) there exist universal constants $1/2 \le c_0 < 1$ and $C \ge 1$ so that $b_{N_0} < c_0$ for some $N_0 \le Cm$.

Recall simple properties of the numbers b_k . Clearly, for every k, l one has $b_{kl} \leq b_k b_l$ and $(k+l)b_{k+l} \leq kb_k + lb_l$. Thus if $b_k \leq c_0 < 1$ then $b_l \leq c = (1+c_0)/2 < 1$ for every $k \leq l \leq 2k$. Therefore we may suppose that N_0 is a power of two, say $N_0 = 2^q, q \geq 1$, and $b_{N_0} \leq c < 1$. Since $b_l \leq 1$ for every l, we get $b_{N_0^s l} \leq c^s$ for every integers $s \geq 1, l \geq 0$. Then, taking $N = N_0^r$ for some $r \geq 1$ we have

$$\sum_{k=1}^{\infty} b_{2^k N} = \sum_{j=0}^{\infty} \sum_{l=1}^{rq} b_{2^{rq+jrq+l}} \le rq \sum_{j=1}^{\infty} c^{jr} \le 2rqc^r \le 1/2$$

provided $r \ge c_1 \ln q$ with appropriate absolute constant c_1 .

Now take r to be smallest integer larger than $c_1 \ln q = c_1 \ln \log_2 N_0$. Then by Lemma 2.3 we obtain

$$\Delta S \subset 4\Gamma_{2^{-1/N}}S$$

for $N \sim (C'm)^{C' \log \log(C'm)}$ and the result follows.

Corollary 2.5. There are absolute constants c, C > 0 so that if X is a p-normed space then there exists a subspace Y in the envelope \hat{X} such that dimension of Y is

$$m \ge cp \exp\left\{\frac{\ln A}{\ln\ln A}\right\}$$

where $A = C(\delta_X)^{p/(1-p)}$, and

$$d\left(Y, \ell_1^m\right) \le 2.$$

PROOF. Let $S = B_X$ and let *m* be as in Proposition 2.4. Then by the proposition we have $\Delta B_X \subset 8\Gamma_{\theta}B_X$ with

$$\theta = 1 - \frac{1}{2} \left(Cm \right)^{-C \log \log(Cm)}.$$

Thus by Lemma 2.1 we obtain

$$\Delta B_X \subset 8p^{-1/p} 2^{-1+1/p} (Cm)^{-(1-1/p)C \log \log(Cm)} B_X$$

i.e.

$$\delta_X \le \left(C'm/p\right)^{-(1-1/p)C\log\log(Cm)}$$

That implies the result.

Let us conclude this section with a very simple form of Dvoretzky's theorem recast in this language:

Theorem 2.6. Let $\eta < 1/3$. There is an absolute constant c > 0 so that if S is a compact spanning subset of \mathbb{R}^n then there is a projection P of rank at least $c\eta^2 \log n$ such that

$$d_{\Gamma_{\theta}PS} \le \frac{1+\eta}{1-\theta}$$

for every $\sqrt{3\eta} \le \theta < 1$.

Remark 1. Let $\epsilon \leq 6/7$. Setting $\theta = \sqrt{3\eta} = \epsilon/2$ we observe that there is an absolute constant c > 0 so that if S is a compact spanning subset of \mathbb{R}^n then there is a projection P of rank at least $c\epsilon^4 \log n$ such that

$$d_{\Gamma_{\epsilon/2}PS} \le 1 + \epsilon$$

Remark 2. The "quotient form" of Dvoretzky's theorem for quasi-normed spaces is essentially known and follows very easily from results in [7] (see e.g. [8] for the details).

PROOF. By the sharp form of Dvoretzky's Theorem (Theorem 2.9 in [6]) there is a projection P of rank at least $c\eta^2 \log n$ so that $d_{\Delta(PS)} \leq 1 + \eta$. Let $Y = P\mathbb{R}^n$ and introduce an inner-product norm $\|\cdot\|$ on Y so that $\mathcal{E} \subset \Delta(PS) \subset (1+\eta)\mathcal{E}$ where $\mathcal{E} = \{y : (y, y) \leq 1\}$. If $y \in \mathcal{E}$ with $\|y\| = 1$ there exists $u \in PS \cup (-PS)$ with $(y, u) \geq 1$. Since $\|u\| \leq 1 + \eta$ we obtain $\|y - u\| \leq (2\eta + \eta^2)^{1/2} \leq \sqrt{3\eta}$. Hence

$$\mathcal{E} \subset PS \cup (-PS) + \sqrt{3\eta} \mathcal{E}$$

which implies, for any $\theta \ge \sqrt{3\eta}$,

$$(1-\theta)\mathcal{E} \subset \Gamma_{\theta}PS \subset (1+\eta)\mathcal{E}.$$

Hence

$$d_{\Gamma_{\theta}PS} \le \frac{1+\eta}{1-\theta}$$

which proves the theorem.

3. Approximating the cube

Let *n* be an integer. By [n] we denote the set $\{1, ..., n\}$. The *n*-dimensional cube we denote by $B^{\infty} = B_n^{\infty}$. D_n denotes the extreme points of the cube, i.e. the set $\{1, -1\}^n$. Given a set $\sigma \subset [n]$ by P_{σ} we denote the coordinate projection of \mathbb{R}^n onto \mathbb{R}^{σ} , and we denote $B_{\sigma}^{\infty} := P_{\sigma}B_n^{\infty}$, $D_{\sigma} := P_{\sigma}D_n$. As above |A| denotes the cardinality of a set A. As usual $\|\cdot\|_2$ and $\|\cdot\|_{\infty}$ denote the norm in ℓ_2 and ℓ_{∞} correspondingly.

Theorem 3.1. There are constants c > 0 and $0 < C < \infty$ so that for every $\epsilon > 0$, if $S \subset D_n$ with $|S| \ge 2^{n(1-c\epsilon)}$ then there is a subset σ of [n] with $|\sigma| \ge (1-\epsilon)n$ so that

$$D_{\sigma} \subset C\epsilon^{-1} P_{\sigma}(\Delta_N S)$$

for some $N \leq C\epsilon^{-2}$.

PROOF. We will follow Alesker's argument in [1], which is itself a refinement of Szarek-Talagrand [20]. Alesker shows that for a suitable choice of c, if $\epsilon = 2^{-s}$ then one can find an increasing sequence of subsets $(\sigma_k)_{k=0}^s$ so that $P_{\sigma_0}(S) = D_{\sigma_0}$, $|\sigma_s| \ge (1-2\epsilon)n$ and if $\tau_k = \sigma_k \setminus \sigma_{k-1}$ for $k = 1, 2, \ldots, s$ then there exists $\alpha \in D_n$ so that

$$P_{\tau_k}(S \cap P_{\sigma_{k-1}}^{-1}(P_{\sigma_{k-1}}\alpha)) = D_{\tau_k}$$

It follows that if $a \in D_{\tau_k}$ there exists $x \in \Delta_2 S$ with $P_{\sigma_{k-1}}(x) = 0$ and $P_{\tau_k}(x) = a$.

We now argue by induction that $D_{\sigma_k} \subset a_k P_{\sigma_k} \Delta_{b_k} S$ where $a_k = 2^{k+1} - 1$ and $b_k = 2^k a_k = 2 \cdot 4^k - 2^k$. This clearly holds if k = 0. Assume it is true for k = j - 1, where $1 \leq j \leq s$. Then if $a \in D_{\sigma_j}$ we can observe that there exists $x_1 \in a_{j-1} \Delta_{b_{j-1}} S$ with $P_{\sigma_{j-1}} x_1 = P_{\sigma_{j-1}} a$. Clearly,

$$P_{\tau_j} x_1 \in a_{j-1} \Delta_{b_{j-1}} D_{\tau_j}.$$

Hence there exists $x_2 \in a_{j-1}\Delta_{2b_{j-1}}S$ with $P_{\sigma_{j-1}}x_2 = 0$ and $P_{\tau_j}x_2 = -P_{\tau_j}x_1$. Finally pick $x_3 \in \Delta_2 S$ so that $P_{\sigma_{j-1}}(x_3) = 0$ and $P_{\tau_j}(x_3) = P_{\tau_j}a$. Then $P_{\sigma_j}(x_1 + x_2 + x_3) = a$ and

$$x_1 + x_2 + x_3 \in a_{j-1}\Delta_{b_{j-1}}S + a_{j-1}\Delta_{2b_{j-1}}S + \Delta_2S$$
$$\subset \frac{a_{j-1}}{2b_{j-1}} \left(4b_{j-1} + 2^j\right)\Delta_{4b_{j-1}+2^j}S = a_j\Delta_{b_j}S.$$

This establishes the induction.

We finally conclude that $D_{\sigma_s} \subset 2(2^{s+1}-1)P_{\sigma_s}\Delta_{2\cdot 4^s}S$ and this gives the result, as the case of general ϵ follows easily. \Box

Remark. Slightly changing the proof one can show that $D_{\sigma} \subset C\epsilon^{-\alpha}P_{\sigma}(\Delta_N S)$ for $N \leq C\epsilon^{-\alpha}$, where $\alpha = \log_2 3$.

Lemma 3.2. There exist absolute constants c, C > 0 with the following property. Suppose $0 < \epsilon < 1$ and 0 < k < n are natural numbers with $k/n \ge 1 - c\epsilon(1 - \ln \epsilon)^{-1}$. Let S be a subset of \mathbb{R}^n so that if $a \in D_n$ there exists $x \in S$ with $|\{i : x_i = a_i\}| \ge k$. Then there is a subset σ of [n] with $|\sigma| \ge (1 - \epsilon)n$ and $D_{\sigma} \subset C\epsilon^{-1}\Delta_N P_{\sigma}S$ for some $N \le C\epsilon^{-2}$.

PROOF. Suppose 0 < k < n and $1 - k/n = t\epsilon(1 - \ln \epsilon)^{-1}$. We shall show that if t is small enough we obtain the conclusion of the lemma. First pick a map $a \to \sigma(a)$ from $D_n \to 2^{[n]}$ so that for each a, $|\sigma(a)| = k$ and there exists $x \in S$ with $x_i = a_i$ for $i \in \sigma(a)$. Then, by a simple counting argument we have the existence of $\tau \in 2^{[n]}$ so that $|\tau| = k$ and if

$$T = \{ \alpha \in D_{\tau} : \exists a \in D_n, \ \sigma(a) = \tau, \ P_{\tau}a = \alpha \}$$

then

$$|T| \ge \frac{2^n}{2^{n-k} \binom{n}{k}}.$$

We can estimate

$$\binom{n}{k} \le \left(\frac{n}{k}\right)^k \left(\frac{n}{n-k}\right)^{n-k} \le \left(\frac{ne}{n-k}\right)^{n-k}.$$

Hence for $t \leq 1/2$ we have

$$\log_2 \binom{n}{k} \le \frac{nt\epsilon}{\ln 2\left(1 - \ln \epsilon\right)} \ln\left(\frac{e\ln(e/\epsilon)}{t\epsilon}\right) \le 3kt\epsilon \left(2 - \ln t\right).$$

It follows that

 $|T| \ge 2^{k(1-C_t\epsilon)},$

where $C_t = 3t (2 - \ln t)$. Choosing t such that $C_t \leq c/2$, where c is the constant from Theorem 3.1, and applying this theorem, we obtain the existence of $\sigma \subset \tau$, $|\sigma| \ge (1 - \epsilon/2)k \ge (1 - \epsilon)n$, with desired property.

Theorem 3.3. There are absolute constants c, C > 0 such that if $\epsilon > 0$ and S is a subset of \mathbb{R}^n with $B^{\infty} \subset \Delta S \subset dB^{\infty}$ then there is a subset σ of [n] with $|\sigma| \geq n(1-\epsilon)$ such that

$$B^{\infty}_{\sigma} \subset (C/\epsilon) \, \Gamma_{\theta} P_{\sigma} S$$

for $\theta = 1 - cd^{-2}\epsilon^5 (1 - \ln \epsilon)^{-1}$.

PROOF. Let $\delta = c_1 \epsilon$ and m be the smallest integer greater than $c_2 d^2 \epsilon^{-3} (1 - \ln \epsilon)$, where c_1, c_2 will be chosen later.

Suppose first that $a \in D_n$. Then we can find $N \in \mathbb{N}$, $N \ge m$, and $x_1, \ldots, x_N \in$ $S \cup (-S)$ so that

$$\left\|a - \frac{1}{N}(x_1 + \dots + x_N)\right\|_2^2 \le \frac{nd^2}{m}.$$

Let Ω be the space of all *m*-subsets of [N] and let μ be normalized counting (probability) measure on Ω . If $(\xi_i)_{i=1}^N$ denote the indicator functions $\xi(\omega) = 1$ if $i \in \omega$ and 0 otherwise then

$$\mathbf{E}(\xi_i) = \mathbf{E}(\xi_i^2) = \frac{m}{N}, \ \mathbf{E}(\xi_i\xi_j) = \frac{m(m-1)}{N(N-1)}$$

if $i \neq j$. Thus

$$\mathbf{E}(\xi_i - \mathbf{E}(\xi_i))^2 = \frac{m}{N} - \frac{m^2}{N^2}$$

and

$$\mathbf{E}((\xi_i - \mathbf{E}(\xi_i))(\xi_j - \mathbf{E}(\xi_j))) = \frac{m(m-1)}{N(N-1)} - \frac{m^2}{N^2}$$

if $i \neq j$.

Let $y = \frac{1}{N}(x_1 + \dots + x_N)$ so that $y = \mathbf{E}(\frac{1}{m}\sum_{i=1}^N \xi_i x_i)$. Then working in the ℓ_2 -norm we have

$$\mathbf{E}\left(\left\|\frac{1}{m}\sum_{i=1}^{N}\xi_{i}x_{i}-y\right\|_{2}^{2}\right)=\frac{N-m}{mN(N-1)}\sum_{i=1}^{N}\|x_{i}\|_{2}^{2}-\frac{N-m}{mN^{2}(N-1)}\left\|\sum_{i=1}^{N}x_{i}\right\|_{2}^{2}$$

Hence

$$\mathbf{E}\left(\left\|\frac{1}{m}\sum_{i=1}^{N}\xi_{i}x_{i}-y\right\|_{2}^{2}\right) \leq \frac{nd^{2}}{m}$$

Since $||y - a||_2^2 \le \frac{nd^2}{m}$ we have

$$\mathbf{E}\left(\left\|\frac{1}{m}\sum_{i=1}^{N}\xi_{i}x_{i}-a\right\|_{2}^{2}\right) \leq 4\frac{nd^{2}}{m}$$

We now suppose that for each $\omega \in \Omega$ we have $|\{j : |\frac{1}{m} \sum_{i=1}^{N} \xi_i x_i(j) - a(j)| > \delta\}| > 4d^2n/(m\delta^2)$. Then we get an immediate contradiction. We conclude that for each $a \in D_n$ there exists $x_a \in \Delta_m S$ such that $|x_a(j) - a(j)| \le \delta$ for at least $n(1 - 2c_1^{-2}c_2^{-1}\epsilon(1 - \log \epsilon)^{-1})$ choices of j. Let $y_a(j) = a(j)$ if $|x_a(j) - a(j)| \le \delta$ and $y_a(j) = x_a(j)$ otherwise so that $||y_a - x_a||_{\infty} \le \delta$.

Now suppose c_2 is chosen as a function of c_1 so that we can apply Lemma 3.2 to obtain the existence of a set $\sigma \subset [n]$ with $|\sigma| \geq n(1-\epsilon)$ and so that

$$D_{\sigma} \subset C\epsilon^{-1} P_{\sigma} \Delta_N \{ y_a : a \in D_n \}$$

where C is an absolute constant, and $N \leq C\epsilon^{-2}$. Then

$$D_{\sigma} \subset C\epsilon^{-1} P_{\sigma} \Delta_{Nm} S + C\epsilon^{-1} \delta B_{\sigma}^{\infty}$$

Recall that $C\epsilon^{-1}\delta = Cc_1$ so that if we choose c_1 such that $Cc_1 = \frac{1}{4}$ we have

$$D_{\sigma} \subset K + \frac{1}{4} B_{\sigma}^{\infty}$$

where $K := C\epsilon^{-1}P_{\sigma}\Delta_{Nm}S$. Now suppose $x \in B_{\sigma}^{\infty}$. Let $a_1, a_2 \in D_{\sigma}$ be defined by $a_1(j) = 1$ if $x(j) \geq \frac{1}{2}$ and $a_1(j) = -1$ otherwise, while $a_2(j) = 1$ if $x(j) \geq -\frac{1}{2}$ and $a_2(j) = -1$ otherwise. Then

$$\left\|x - \frac{1}{2}(a_1 + a_2)\right\|_{\infty} \le \frac{1}{2}$$

Thus

$$B^{\infty}_{\sigma} \subset \Delta_2 K + \frac{3}{4} B^{\infty}_{\sigma} = C \epsilon^{-1} P_{\sigma} \Delta_{2Nm} S + \frac{3}{4} B^{\infty}_{\sigma}.$$

This implies for $\theta = \frac{3}{4}$,

$$B^{\infty}_{\sigma} \subset 4C\epsilon^{-1}\Gamma_{\theta}P_{\sigma}\Delta_{2Nm}S$$

Letting $\varphi = \theta^{1/(2Nm)}$ and applying Lemma 2.2 we obtain

$$\Gamma_{\theta} \Delta_{2Nm} S \subset \frac{6}{5} \Gamma_{\varphi} S.$$

Note that $(\frac{3}{4})^{1/(2Nm)} \sim 1 - (2Nm)^{-1} \ln(4/3) \leq 1 - cd^{-2}\epsilon^5 (1 - \ln \epsilon)^{-1}$ for some c > 0 so that the result follows.

Theorem 3.4. There is an absolute C > 0 such that if $\epsilon > 0$ and X is a p-normed quasi-Banach space with dim X = n and $d(\hat{X}, \ell_{\infty}^n) \leq d$ then X has a quotient Y with dim $Y \geq n(1 - \epsilon)$ and

$$d(Y, \ell_{\infty}^{\dim Y}) \le Cp^{-\frac{1}{p}} \epsilon^{4-\frac{5}{p}} (1-\ln \epsilon)^{\frac{1}{p}-1} d^{\frac{2}{p}-1}.$$

Remark. In [11] examples are constructed of finite-dimensional *p*-normed spaces X_n (with $0 fixed) so that <math>d(\hat{X}_n, \ell_{\infty}^{\dim X_n})$ is uniformly bounded but $\lim_{n\to\infty} \delta_{X_n} = \infty$.

PROOF. We can assume $B^{\infty} \subset B_{\hat{X}} \subset dB^{\infty}$. Then by Theorem 3.3 we can find σ with $|\sigma| \geq n(1-\epsilon)$ so that

$$c \epsilon B^{\infty}_{\sigma} \subset \Gamma_{\theta} P_{\sigma} B_X$$

where $\theta = 1 - cd^{-2}\epsilon^5(1 - \ln \epsilon)^{-1}$. Let Y be the space of dimension $|\sigma|$ with unit ball $B_Y = P_{\sigma}B_X$. Since B_Y is p-convex we have (Lemma 2.1)

$$\Gamma_{\theta}B_Y \subset p^{-\frac{1}{p}} (cd^{-2}\epsilon^5 (1 - \log \epsilon)^{-1})^{1 - \frac{1}{p}} B_Y.$$

Finally observe that for a suitable c > 0:

$$cp^{\frac{1}{p}}d^{2-\frac{2}{p}}\epsilon^{\frac{5}{p}-4}(1-\log\epsilon)^{1-\frac{1}{p}}B^{\infty}_{\sigma} \subset B_Y \subset dB^{\infty}_{\sigma}.$$

The result then follows.

4. Cubic quotients

We start this section with the following lemma, which is in fact a corollary of Theorem 3.3.

Lemma 4.1. Let S be a compact spanning of \mathbb{R}^n and X be the Banach space with unit ball $B_X = \Delta S$. Let m be the largest integer such that X has a subspace Y of dimension m with $d(Y, \ell_1^m) \leq 2$. Then for every integer k satisfying $2^{2k-1} \leq m$ there exists a rank k projection π , so that for some cube Q one has $Q \subset \Gamma_b \pi S \subset$ CQ, where 0 < b < 1 is an absolute constant.

PROOF. Let Y be a subspace of X of dimension m so that $d(Y, \ell_1^m) \leq 2$. Then if $2^{2k-1} \leq m$ there is a linear operator $T: Y \to \ell_{\infty}^{2k}$ with $||T|| \leq 1$ and $T(B_Y) \supset \frac{1}{2}B_{2k}^{\infty}$. T can then be extended to a norm-one operator on X and so X has a quotient Z of dimension 2k so that $d(Z, \ell_{\infty}^{2k}) \leq 2$. It follows immediately from Theorem 3.3 with $\epsilon = \frac{1}{2}$ that there is a further quotient W of Z with dim $W \geq k$

and for some cube Q_0 in W, and fixed constants 0 < b < 1 and $1 < C < \infty$, we have $Q_0 \subset \Gamma_b \pi_W S \subset CQ_0$ where π_W is the quotient map onto W.

Theorem 4.2. There is an absolute constant c > 0 so that if X is a finitedimensional p-normed space, then X has a quotient E with $d(E, \ell_{\infty}^{\dim E}) \leq (cp)^{-1/p}$ and $\dim E \geq c \ln A/(\ln \ln A)$, where $A = (p^{1/p}\delta_X/4)^{p/(1-p)}$ (assuming that δ_X is large enough).

Remark. Take $X = \ell_p^n$ so that $\delta_X = n^{-1+1/p}$. Then if X has a quotient E of dimension k with $d(E, \ell_{\infty}^k) \leq C_p$ then $\hat{X} = \ell_1^n$ also has such a quotient which implies $k \leq cC_p \ln n = cC_p \ln \left(\delta_X^{p/(1-p)}\right)$. We conjecture that this estimate is optimal up to an absolute constant, i.e. that every p-normed space has a cubical quotient of such dimension. As one can see from the proof below we could obtain such an estimate (up to constant depending on p only) if we were able to prove the inclusion with $\theta = 1 - c(m \ln m)^{-1}$ in Proposition 2.4.

PROOF. Let $S = B_X$ and m be the largest integer such that X has a subspace Y of dimension m with $d(Y, \ell_1^m) \leq 2$.

Assume first $m \leq 2^{2k}$. By Proposition 2.4 (and its proof) we have $\Delta B_X \subset 4\Gamma_{\theta}B_X$ for $\theta = 2^{-1/N_k}$, where $N_k = (Ck)^{C\ln\ln(Ck)}$. Then, by Lemma 2.1, we obtain

$$\Delta B_X \subset 4p^{-1/p} (2N_k)^{-1+1/p}$$

which implies

$$\delta_X \le 4p^{-1/p} (2N_k)^{-1+1/p}$$

Therefore $2N_k \ge A := (p^{1/p} \delta_X / 4)^{p/(1-p)}$. Finally we obtain $k \ge C' \ln A / (\ln \ln A)$ (of course we may assume that $A > e^2$).

Suppose now $k \leq C' \ln A/(\ln \ln A)$. By above we have $m \geq 2^{2k}$. So Lemma 4.1 implies the existence of absolute constants b, C_1 and a rank k projection π such that $Q \subset \Gamma_b \pi B_X \subset C_1 Q$ for some cube Q. By Lemma 2.1 we obtain

$$\Gamma_b \pi B_X \subset p^{-1/p} \left(1 - b\right)^{1 - 1/p} \pi B_X$$

so that we have (if $E = X/\pi^{-1}(0)$),

$$d(E, \ell_{\infty}^{k}) \leq C_{1} p^{-1/p} (1-b)^{1-1/p}.$$

This implies the theorem.

Acknowledgment. The work on this paper was started during the visit of the second named author to University of Missouri, Columbia.

References

- [1] S. Alesker, A remark on the Szarek-Talagrand theorem, Combin. Probab. Comput. 6 (1997), 139–144.
- [2] J. Bastero, J. Bernués and A Peña, An extension of Milman's reverse Brunn-Minkowski inequality. Geom. Funct. Anal. 5 (1995), 572–581.
- [3] J. Bastero, J. Bernués and A. Peña, The theorems of Caratheodory and Gluskin for 0
- [4] S.J. Dilworth, The dimension of Euclidean subspaces of quasi-normed spaces, Math. Proc. Camb. Phil. Soc., 97 (1985), 311–320.
- [5] J. Elton, Sign-embeddings of l_1^n , Trans. Amer. Math. Soc. 279 (1983), 113–124.
- [6] Y. Gordon, Some inequalities for Gaussian processes and applications, Israel J. Math. 50 (1985), 265–289.
- Y. Gordon and N.J. Kalton, Local structure theory for quasi-normed spaces, Bull. Sci. Math., 118 (1994), 441–453.
- [8] O. Guédon, A.E. Litvak, Euclidean projections of p-convex body, GAFA, Lecture Notes in Math., Springer, Berlin-New York., to appear.
- [9] N.J. Kalton, The convexity type of a quasi-Banach space, unpublished note, 1977.
- [10] N.J. Kalton, Convexity, type and the three space problem, Studia Math., Vol. 69 (1981), 247-287.
- [11] N. J. Kalton, Banach envelopes of non-locally convex spaces, Can. J. Math. 38 (1986) $65{-}86.$
- [12] N.J. Kalton, N.T. Peck and J.W. Roberts An F-space sampler. London Mathematical Society Lecture Note Series, 89, Cambridge University Press, Cambridge–New-York, 1984.
- [13] N. Kalton and Sik-Chung Tam, Factorization theorems for quasi-normed spaces, Houston J. Math., 19 (1993), 301-317.
- [14] H. König, Eigenvalue distribution of compact operators. Operator Theory: Advances and Applications, 16. Birkhäuser Verlag, Basel-Boston, Mass., 1986.
- [15] A.E. Litvak, Kahane-Khinchin's inequality for the quasi-norms, Canad. Math. Bull., 43 (2000), no. 3, 368–379.
- [16] A.E. Litvak, V.D. Milman and A. Pajor, The covering numbers and "low M*-estimate" for quasi-convex bodies, Proc. Amer. Math. Soc., 127 (1999), 1499–1507.
- [17] V.D. Milman, Isomorphic Euclidean regularization of quasi-norms in R, C. R. Acad. Sci. Paris, 321 (1996), 879–884.
- [18] N. Sauer, On the density of families of sets, J. Comb. Theory, Ser A. 13 (1972) 145–147.
- [19] S. Shelah, A combinatorial theorem: stability and order for models and theories in infinitary languages, Pacific J. Math. 41 (1972) 247–261.
- [20] S.J. Szarek and M. Talagrand, An "isomorphic" version of the Sauer-Shelah lemma and the Banach-Mazur distance to the cube, Geometric aspects of functional analysis (1987–88), 105–112, Lecture Notes in Math., 1376, Springer, Berlin-New York, 1989.
- [21] S. Rolewicz, Metric linear spaces. Monografie Matematyczne, Tom. 56. [Mathematical Monographs, Vol. 56] PWN-Polish Scientific Publishers, Warsaw, 1972.
- [22] M. Talagrand, Type, infratype and the Elton-Pajor theorem, Invent. Math. 107 (1992), 41–59.

(N.J. Kalton) Department of Mathematics, University of Missouri-Columbia, Columbia, MO 65211

 $E\text{-}mail\ address: \texttt{nigelQmath.missouri.edu}$

(A.E. Litvak) DEPARTMENT OF MATHEMATICS, TECHNION, HAIFA, ISRAEL, 32000, *E-mail address:* alex@math.technion.ac.il