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QUOTIENTS OF FINITE-DIMENSIONAL QUASI-NORMED
SPACES

N. J. KALTON AND A.E. LITVAK

ABSTRACT. We study the existence of cubic quotients of finite-dimensional
quasi-normed spaces, that is, quotients well isomorphic to efgo for some k.
We give two results of this nature. The first guarantees a proportional
dimensional cubic quotient when the envelope is cubic; the second gives
an estimate for the size of a cubic quotient in terms of a measure of non-
convexity of the quasi-norm.

1. INTRODUCTION

It is by now well-established that many of the core results in the local theory
of Banach spaces extend to quasi-normed spaces (cf. [2], [3], [4], [7], [8], [9],
[10], [13], [15], [16], [17] for example). In this note we give two results on the
local theory of quasi-normed spaces which are of interest only in the non-convex
situation.

Let us introduce some notation. Let X be a real finite-dimensional vector
space. Then a p-norm || - || on X, p € (0,1], is a map z — ||z|| (X — R) so that:
(i) lz|| > 0 if and only if x # 0.

(ii) |lox|| = |e|||z|| for &« € R and z € X.

(i) |lz1 + 22||? < ||lz1||P + ||2||? for z1, 22 € X.

Then (X, || - ||) is called a p-normed space. For the purposes of this paper a
quasi-normed space is always assumed to be a p-normed space for some p € (0, 1]
(note that by Aoki-Rolewicz theorem on quasi-normed space one can introduce an
equivalent p-norm ([12], [14], [21])). The set Bx = {z : ||z|| < 1} is the unit ball
of X. The closed convex hull of By, denoted by By, is the unit ball of a norm

1991 Mathematics Subject Classification. Primary: 46B07, 46A16.

Key words and phrases. Quasi-normed spaces, quotients.

The first author was supported by NSF grant DMS-9870027 and the second author was
supported by a Lady Davis Fellowship.



2 N.J. KALTON AND A.E. LITVAK

| - |l ¢ on X; the corresponding normed space, X, is called the Banach envelope
of X.

The set B is called p-convex if for every x, y € B and every positive A, u
satisfying A? 4+ uP = 1 one has Az + uy € B. Clearly, the unit ball of p-normed
space is a p-convex set and, vise versa, a closed centrally-symmetric p-convex set
is the unit ball of some p-norm provided that it is bounded and 0 belongs to its
interior.

If X and Y are p-normed spaces (for some p) then the Banach-Mazur distance
d(X,Y) is defined as inf{|T||||T~}||}, where the infimum is taken over all linear
isomorphisms 7 : X — Y. We let dp, = dx = d(X,¢$™¥) and §p, = dx =
d(X, X). It is clear that dx is measure of non-convexity; in fact §x = inf{d(X,Y) :
Y is a Banach space}.

We now describe our main results. In Section 3 we investigate quasi-normed
spaces X such that X satisfies an estimate d(X, #4im X) < C. Tt has been known for
some time that non-trivial examples of this phenomenon exist [11]. In geometrical
terms this means that the convex hull of the unit ball of X is close to a cube.
We show using combinatorial results of Alesker, Szarek and Talagrand [1], [20]
based on the Sauer-Shelah Theorem [18], [19] that X then has a proportional
dimensional quotient E satisfying an estimate d(E, (™) < C’. A much more
precise statement is given in Theorem 3.4. We then use this result in Section 4 to
prove that a p-normed space X has a quotient £ with dimE > ¢,Indx /(Inlndx)
and d(E,(dmF) < C, where 0 < ¢,, C}, < 0o are constants depending on p only.
Again a more precise statement is given in Theorem 4.2.

In developing these results, we found it helpful to use the notion of a geo-
metric hull of a subset of R™. Thus instead of considering a p-convex set By
we consider an arbitrary compact spanning set S and then compare the abso-
lutely convex hull AS with certain subsets I'yS which can be obtained from S
by geometrically converging series. Precisely € I'gS, 6 € (0,1), if and only if
z=(1-0)>,,0"\,s, where s, € S and |A,| < 1. Note that ', C %1—‘9 for
every 0 < a < 6 < 1. Our results can be stated in terms of estimates for the
speed of convergence of I'yS to AS as § — 1. In this way we can derive results
which are independent of 0 < p < 1 and then obtain results about p-normed
spaces as simple Corollaries. We develop the idea of the geometric hull in Section
2 and illustrate it by restating the quotient form of Dvoretzky’s theorem in this
language.
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2. APPROXIMATION OF CONVEX SETS

Let S be a subset of R™. Denote by AS the absolutely convex hull of S and by
S the star-shaped hull of S, i.e. S ={\z: |\ <1, z € S}. For each m € N we
define A,,,S to be the set of all vectors of the form %(Alxl + -+ AmZym) where
M| < 1and ap € Sfor 1 <k <m.If0 <6< 1we define the 0-geometric hull of
S, T'pS to be the set of all vectors of the form (1 —6) >";7 , A\yxs, where |A,| < 0%

and z € S for k=0,1,--- .

Lemma 2.1. Let S be a p-convex closed set where 0 < p < 1. Then for0 <6 <1
we have
TS C (pfl/m - 0)1*1/1’) 3
PRroOOF. This follows easily from:
1-6 <
1—_or)i/e =P
which in turns from the estimate

0 <1—p(1-26).

“Up(1—g)t-/e

Lemma 2.2. If% <0 <1andm €N then

20
ProOOF. Note that
m—1
1 1 k =~
A8 C —fmL %35
mSC —fmt Y 6w
k=0
Hence L
_ 1,
TyA,,S C me FQ# S.

Now observe

-1 _
(2.1) L0 -1

This completes the proof. O
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In this section, we make a few simple observations on the geometric hulls I'yS.
Let us suppose that S is compact and spanning so that AS coincides with the
unit ball Bx of a Banach space X, |- || x. Given ¢ € [1,2] let T;, = T,,(X) denote
the equal-norm type ¢ constant, i.e. the smallest constant satisfying

N

E €LTk

Ave
ep==%1
k=1

< T N4
< TN/ max k|

X
for every N. Given an integer N let by denote the least constant so that

N

§ €k

k=1

inf < byN .
<OnN max |z

X

Given a set A by |A| we denote the cardinality of A.
The following Lemma abstracts the idea of [7], Lemma 2.

Lemma 2.3. Suppose + < 0 < 1, and let m = m(S) be an integer such that

3
Yoy boky, < 6. Then
20

ASc——2 1,
SCBI— a0 en”

PRrROOF. Suppose N € N and suppose u € AynS. Then u = ﬁ(ml + -+ 29n)
where z), € S. Hence there is a choice of signs e, = +1 with |[{e, = —1}| < N and

2N

E kL

k=1

< 2Nban.
X

Let v = %(Zek:l zk). Then |lu — v||x < bony. Hence AonS C AnS + banAS.
Tterating we get

k
ApiryS C ApS + ) boinAS
j=1
which leads to
AS C A,,S +0AS

which implies
20

A 1-60)"'TyA,, ———— T .8
SCc(1-60)""Ty SC(39—1)(1—6) PR
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Proposition 2.4. (i) Suppose 1 < ¢ < 2 and ¢’ be such that 1/q+ 1/q¢ = 1.
Then for

we have AS C 12I'yS.
(i) There exists constant C' < oo so that if m is the largest integer such that X
has a subspace Y of dimension m with d(Y,¢7*) < 2 then AS C 89S for

0=1— 1 (Cm)—Clog log(Cm) .

Remark. We conjecture that the sharp estimate in (ii) is § = 1 — ¢/m.

PROOF. (i) Observe that by < TqN%_l. Hence
o0
_a
D by ST,N 7 (207 — 1)~
k=1

Let N be the largest integer so that the right-hand side is at most % Applying
Lemma 2.3 with 6 = 1/2 we obtain

AS C4T5-1/n S.

The result follows, since

/ (1/

1 ol/d" _q 1 11—«
—< < d T, r
N( oT, ) =N-1 ™ 19

for a < 6.

In (ii) we note first by a result of Elton [5] (see also [22] for a sharper version)
there exist universal constants 1/2 < ¢y < 1 and C' > 1 so that by, < cg for some
No < Cm.

Recall simple properties of the numbers b. Clearly, for every k, [ one has by, <
bib; and (k4 1)bgyy < kb +1b;. Thus if by < cg < 1thend <c=(14+c¢))/2< 1
for every k <1 < 2k. Therefore we may suppose that Ny is a power of two, say
No =29 g >1, and by, < c < 1. Since b; <1 for every [, we get bN(.;l < ¢ for
every integers s > 1, I > 0. Then, taking N = V] for some r > 1 we have

o0 o0 rq oo
S oy = 30 e €103 < 2 <172
k=1 §=01=1 j=1

provided 7 > ¢q In ¢ with appropriate absolute constant c;.
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Now take 7 to be smallest integer larger than c; Ing = ¢; Inlogy Ny. Then by
Lemma 2.3 we obtain

AS C 4].—‘271/1\15
for N ~ (C"m)C"logloa(C’m) and the result follows. O

Corollary 2.5. There are absolute constants ¢, C > 0 so that if X is a p-normed
space then there exists a subspace Y in the envelope X such that dimension of Y

is
S InA
M= PP A [

where A = C(6x)P/3=P) and

d (Y, ) < 2.
PRrROOF. Let S = Bx and let m be as in Proposition 2.4. Then by the proposition
we have ABx C 8T'9Bx with

1 _
0—=1— 5 (C’m) C'log log(Cm) )

Thus by Lemma 2.1 we obtain
AByx C 8p—1/p2—1+1/p (Cm)f(lfl/p)Clog]og(Cm) By,

ie.
ox < (C/m/p)*(171/p)Clog10g(cm) .

That implies the result. O

Let us conclude this section with a very simple form of Dvoretzky’s theorem
recast in this language:

Theorem 2.6. Let n < 1/3. There is an absolute constant ¢ > 0 so that if S

is a compact spanning subset of R™ then there is a projection P of rank at least

en?logn such that

1+n

d < —
TePS = T ¢

for every /3n <6 < 1.

Remark 1. Let € < 6/7. Setting § = /3n = ¢/2 we observe that there is an
absolute constant ¢ > 0 so that if S is a compact spanning subset of R™ then
there is a projection P of rank at least ce* log n such that

ng/2PS <l+e.
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Remark 2. The “quotient form” of Dvoretzky’s theorem for quasi-normed spaces
is essentially known and follows very easily from results in [7] (see e.g. [8] for the
details).

PROOF. By the sharp form of Dvoretzky’s Theorem (Theorem 2.9 in [6]) there
is a projection P of rank at least cn?logn so that dapsy < 1+n. Let Y = PR"
and introduce an inner-product norm || - || on Y so that £ C A(PS) C (1+n)E
where £ = {y: (y,y) < 1}. If y € € with ||y|| = 1 there exists u € PS U (—PS)
with (y,u) > 1. Since [|ul| < 1+ we obtain ||y —u|| < (2n+7?)*/2 < /35. Hence

£C PSU(=PS) +/31 €
which implies, for any 6 > /37,
(1-60)E CTyPS C (1+n)E.

Hence 1
+n
d < —
ToPS = T

which proves the theorem. O

3. APPROXIMATING THE CUBE

Let n be an integer. By [n] we denote the set {1,...,n}. The n-dimensional
cube we denote by B® = B3°. D, denotes the extreme points of the cube, i.e.
the set {1,—1}". Given a set o C [n] by P, we denote the coordinate projection
of R™ onto R?, and we denote BS° := P,BS°, D, := P,D,,. As above |A| denotes
the cardinality of a set A. As usual || - |2 and || - ||oo denote the norm in ¢ and
{+ correspondingly.

Theorem 3.1. There are constants ¢ > 0 and 0 < C' < oo so that for every e > 0,
if S C Dy, with |S| > 2"1=¢9) then there is a subset o of [n] with |o| > (1 — €)n
so that

D, C Ce 'P,(ANS)
for some N < Ce™2.

ProOF. We will follow Alesker’s argument in [1], which is itself a refinement of
Szarek-Talagrand [20]. Alesker shows that for a suitable choice of ¢, if € = 27%
then one can find an increasing sequence of subsets (0y);_, so that Py, (S) = Dy,
los| > (1 —2€)n and if 7, = o \ ok—1 for k =1,2,..., s then there exists « € D,,
so that

P, (SNP;* (P, ,a))=D,,.

Ok—1

It follows that if @ € D,, there exists z € AyS with P,

Ok—1

() =0and Py, (z) = a.
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We now argue by induction that D,, C apP,, A, S where a; = ok+1 _ 1
and by, = 2Fa;, = 2 - 4% — 2% This clearly holds if £ = 0. Assume it is true for
k=j—1, where 1 < j < s. Then if a € D(,j we can observe that there exists
r1 € aj1Ay,_, S with Py, _ w1 = P,;_,a. Clearly,

Prj-Tl € a’j—lAbj_lDTj'
Hence there exists zo € aj_109, ,S with P,,_ w0 = 0 and Prxe = —Pp 71.
Finally pick 23 € AyS so that Py, (x3) = 0 and Py, (23) = Pr,a. Then Py, (x1 +
Z9 + 23) = a and
1+ T +2x3 € aj_lAbj_lS + aj_lAij_ls + AQS

aj—1
2bj_1
This establishes the induction.

We finally conclude that D,, C 2(2571 —1)P, As4sS and this gives the result,
as the case of general € follows easily. O

C (4bj,1 + 2]> A4bj,1+2-7S = ajAbjS.

Remark. Slightly changing the proof one can show that D, C Ce “P,(AnS)
for N < Ce @, where a = log, 3.

Lemma 3.2. There exist absolute constants ¢, C > 0 with the following property.
Suppose 0 < € < 1 and 0 < k < n are natural numbers with k/n > 1 — ce(1 —
Ine)~t. Let S be a subset of R" so that if a € D,, there exists v € S with
{i : ©; = a;}| > k. Then there is a subset o of [n] with |o] > (1 — €)n and
D, C Ce *ANP,S for some N < Ce™2.

PROOF. Suppose 0 < k < n and 1 — k/n = te(1 — Ine)~!. We shall show that
if ¢ is small enough we obtain the conclusion of the lemma. First pick a map
a — o(a) from D, — 2 so that for each a, |o(a)| = k and there exists z € S
with z; = a; for i € o(a). Then, by a simple counting argument we have the
existence of 7 € 2["! so that |7| = k and if

T={aeD,: Ja€D,, ola) =7, Pra=a}

then o
Ty

We can estimate
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Hence for t < 1/2 we have

n nte eln(e/e)
< < — .
log, (k‘) S 2o ln< c ) < 3kte (2 —Int)

It follows that

7| > 281,
where C; = 3t (2 —Int). Choosing ¢ such that C; < ¢/2, where ¢ is the constant

from Theorem 3.1, and applying this theorem, we obtain the existence of ¢ C T,
lo| > (1 —e€/2)k > (1 — €)n, with desired property. O

Theorem 3.3. There are absolute constants ¢,C > 0 such that if ¢ > 0 and S
is a subset of R™ with B> C AS C dB® then there is a subset o of [n] with
lo| > n(1 —€) such that

C (C/e)TyP,S
for=1—cd265(1 —Ine)~?

PROOF. Let § = cie¢ and m be the smallest integer greater than cad?e 3(1 —Ine),
where c¢1, co will be chosen later.

Suppose first that a € D,,. Then we can find N € N, N > m, and x1,...,zx €
S U (—S5) so that

1
a— ~—(r1+--+2aN)
2 m

N

Let Q be the space of all m-subsets of [N] and let p be normalized counting
(probability) measure on Q. If (&)Y, denote the indicator functions &(w) = 1 if
1 € w and 0 otherwise then

B(&) = B() = 5. BE&) =

N—1)
if i # j. Thus
m  m?
E(& — E(ﬁi))z = N N2
and 1)
B(& B ~B6) = F—T ~
if i £ .

Let y = % (@1 + -+ + an) so that y = E(L ZZJ\LI &ix;). Then working in the
lo-norm we have

1
Hm;&xi—y

2 2

sz

Z I3 -
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Hence
2
N
1 nd>?
E ™ Z&Iz -y < e
=1 2
Since [ly — a3 < ”Wdz we have
2
N
1 nd?
1= 2

We now suppose that for each w € Q we have [{j : |- Zf\; &xi(g) —a(g)| >
§}| > 4d?n/(méd?). Then we get an immediate contradiction. We conclude that
for each a € D,, there exists xz, € A,,S such that |z,(j) — a(j)| < J for at least
n(1 — 2¢;%¢; te(1 —loge)™!) choices of j. Let y,(j) = a(j) if |zq(j) — a(j)| < 6
and y,(7) = 24(j) otherwise so that ||y, — 4|lee < 6.

Now suppose ¢ is chosen as a function of ¢; so that we can apply Lemma 3.2
to obtain the existence of a set ¢ C [n] with || > n(1 — €) and so that

D, C Ce 'P,AN{ya :a € D,}
where C' is an absolute constant, and N < Ce~2. Then
D, C Ce *Py ANy S + Ce 6B,

Recall that Ce= 16 = Cey so that if we choose ¢; such that Cep = % we have
1
D, C K+ 13;@

where K := Ce 'P, AN, S. Now suppose x € BS°. Let a1,a2 € D, be defined by
a1(j) = 1if z(j) > 1 and a1(j) = —1 otherwise, while as(j) = 1 if z(j) > —3
and as(j) = —1 otherwise. Then

1( ) <1
r— (a1 +ta —.
2 ! 2 -2

Thus

3 3
B> C AoK + ZB;;O =Ce 1P, AonmS + ZB;O.

. . . _ 3
This implies for § = ¥,
B C 4Ce TP, AonmS
Letting ¢ = 6'/(N™) and applying Lemma 2.2 we obtain
6

FQAQNWS C BFWS
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Note that (2)1/CNm) ~ 1 — (2Nm)~'In(4/3) <1 — cd 2€>(1 — Ine)~! for some
¢ > 0 so that the result follows. O

Theorem 3.4. There is an absolute C > 0 such that if € > 0 and X is a p-normed
quasi-Banach space with dim X = n and d(X,¢%) < d then X has a quotient Y
with dimY > n(l — €) and

d(Y,65mY) < Cp e 5 (1 —Ine)r 'dv

Remark. In [11] examples are constructed of finite-dimensional p-normed spaces
X, (with 0 < p < 1 fixed) so that d(X,,¢dmX») is uniformly bounded but

ns oo
limy, o0 dx, = 00.

Proor. We can assume B* C By C dB*°. Then by Theorem 3.3 we can find o
with |o| > n(1 — €) so that

ceB* C T'yP,Bx
where § = 1 — cd=2€5(1 — Ine)~1. Let Y be the space of dimension |o| with unit
ball By = P,Byx. Since By is p-convex we have (Lemma 2.1)

I'yBy C pié(cd_265(1 —log e)_l)k%By.
Finally observe that for a suitable ¢ > 0:
cp%d%%e%*‘l(l - loge)b%Bg" C By C dB°.

The result then follows. O

4. CUBIC QUOTIENTS

We start this section with the following lemma, which is in fact a corollary of
Theorem 3.3.

Lemma 4.1. Let S be a compact spanning of R™ and X be the Banach space with
unit ball Bx = AS. Let m be the largest integer such that X has a subspace Y of
dimension m with d(Y,07") < 2. Then for every integer k satisfying 22¥=1 < m
there exists a rank k projection w, so that for some cube QQ one has Q C I'ynS C
CQ, where 0 < b < 1 is an absolute constant.

PROOF. Let Y be a subspace of X of dimension m so that d(Y,¢7*) < 2. Then
if 22k=1 < 'm there is a linear operator T : Y — (2% with |T|| < 1 and T(By) D
1BS%. T can then be extended to a norm-one operator on X and so X has a
quotient Z of dimension 2k so that d(Z,(?*) < 2. Tt follows immediately from
Theorem 3.3 with € = % that there is a further quotient W of Z with dimW > k
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and for some cube Qg in W, and fixed constants 0 < b < 1 and 1 < C < oo, we
have Qg C I'yrw S C CQq where myy is the quotient map onto W. O

Theorem 4.2. There is an absolute constant ¢ > 0 so that if X is a finite-
dimensional p-normed space, then X has a quotient E with d(E, (5™ F) < (¢p)~1/P
and dim E > cIn A/(Inln A), where A = (p'/P6x /4)P/O=P) (assuming that 5x is
large enough).

Remark. Take X = (7 so that dx = n~1t1/P Then if X has a quotient E of
dimension k with d(E,¢%) < C, then X = ¢} also has such a quotient which
implies k£ < c¢Cplnn = cCpln ((51;(/ (1-p )>. We conjecture that this estimate is
optimal up to an absolute constant, i.e. that every p-normed space has a cubical
quotient of such dimension. As one can see from the proof below we could obtain
such an estimate (up to constant depending on p only) if we were able to prove
the inclusion with § =1 — ¢(mInm)~! in Proposition 2.4.

PROOF. Let S = Bx and m be the largest integer such that X has a subspace Y
of dimension m with d(Y, ¢7*) < 2.

Assume first m < 22¥. By Proposition 2.4 (and its proof) we have ABx C
4TyBx for § = 27Y/Ne where N}, = (Ck)¢™I(Ck) " Then, by Lemma 2.1, we
obtain

ABx C 4p—1/p(2Nk)—1+1/p
which implies
ox < 4p_1/p(2Nk>_1+1/p.
Therefore 2N, > A = (pl/péx/él)p/(l_p). Finally we obtain k > C’'In A/(Inln A)
(of course we may assume that A > e?).

Suppose now k < C’In A/(Inln A). By above we have m > 22, So Lemma 4.1
implies the existence of absolute constants b, C; and a rank %k projection 7 such
that Q C T'ymBx C C1Q for some cube ). By Lemma 2.1 we obtain

IyrBx Cp Y7 (1—b)' P 2By
so that we have (if E = X/71(0)),
d(E,05) < Cip~ /P (1 —b)'YP.
This implies the theorem. (]

Acknowledgment. The work on this paper was started during the visit of the
second named author to University of Missouri, Columbia.
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