QUOTIENTS OF FINITE-DIMENSIONAL QUASI-NORMED SPACES

N. J. KALTON AND A.E. LITVAK

Abstract

We study the existence of cubic quotients of finite-dimensional quasi-normed spaces, that is, quotients well isomorphic to ℓ_{∞}^{k} for some k. We give two results of this nature. The first guarantees a proportional dimensional cubic quotient when the envelope is cubic; the second gives an estimate for the size of a cubic quotient in terms of a measure of nonconvexity of the quasi-norm.

1. Introduction

It is by now well-established that many of the core results in the local theory of Banach spaces extend to quasi-normed spaces (cf. [2], [3], [4], [7], [8], [9], [10], [13], [15], [16], [17] for example). In this note we give two results on the local theory of quasi-normed spaces which are of interest only in the non-convex situation.

Let us introduce some notation. Let X be a real finite-dimensional vector space. Then a p-norm $\|\cdot\|$ on $X, p \in(0,1]$, is a map $x \mapsto\|x\|(X \mapsto \mathbb{R})$ so that:
(i) $\|x\|>0$ if and only if $x \neq 0$.
(ii) $\|\alpha x\|=|\alpha|\|x\|$ for $\alpha \in \mathbb{R}$ and $x \in X$.
(iii) $\left\|x_{1}+x_{2}\right\|^{p} \leq\left\|x_{1}\right\|^{p}+\left\|x_{2}\right\|^{p}$ for $x_{1}, x_{2} \in X$.

Then $(X,\|\cdot\|)$ is called a p-normed space. For the purposes of this paper a quasi-normed space is always assumed to be a p-normed space for some $p \in(0,1]$ (note that by Aoki-Rolewicz theorem on quasi-normed space one can introduce an equivalent p-norm ([12], [14], [21])). The set $B_{X}=\{x:\|x\| \leq 1\}$ is the unit ball of X. The closed convex hull of B_{X}, denoted by \hat{B}_{X}, is the unit ball of a norm

[^0]$\|\cdot\|_{\hat{X}}$ on X; the corresponding normed space, \hat{X}, is called the Banach envelope of X.

The set B is called p-convex if for every $x, y \in B$ and every positive λ, μ satisfying $\lambda^{p}+\mu^{p}=1$ one has $\lambda x+\mu y \in B$. Clearly, the unit ball of p-normed space is a p-convex set and, vise versa, a closed centrally-symmetric p-convex set is the unit ball of some p-norm provided that it is bounded and 0 belongs to its interior.

If X and Y are p-normed spaces (for some p) then the Banach-Mazur distance $d(X, Y)$ is defined as $\inf \left\{\|T\|\left\|T^{-1}\right\|\right\}$, where the infimum is taken over all linear isomorphisms $T: X \rightarrow Y$. We let $d_{B_{X}}=d_{X}=d\left(X, \ell_{2}^{\operatorname{dim} X}\right)$ and $\delta_{B_{X}}=\delta_{X}=$ $d(X, \hat{X})$. It is clear that δ_{X} is measure of non-convexity; in fact $\delta_{X}=\inf \{d(X, Y)$: Y is a Banach space $\}$.

We now describe our main results. In Section 3 we investigate quasi-normed spaces X such that \hat{X} satisfies an estimate $d\left(\hat{X}, \ell_{\infty}^{\operatorname{dim} X}\right) \leq C$. It has been known for some time that non-trivial examples of this phenomenon exist [11]. In geometrical terms this means that the convex hull of the unit ball of X is close to a cube. We show using combinatorial results of Alesker, Szarek and Talagrand [1], [20] based on the Sauer-Shelah Theorem [18], [19] that X then has a proportional dimensional quotient E satisfying an estimate $d\left(E, \ell_{\infty}^{\operatorname{dim} E}\right) \leq C^{\prime}$. A much more precise statement is given in Theorem 3.4. We then use this result in Section 4 to prove that a p-normed space X has a quotient E with $\operatorname{dim} E \geq c_{p} \ln \delta_{X} /\left(\ln \ln \delta_{X}\right)$ and $d\left(E, \ell_{\infty}^{\operatorname{dim} E}\right) \leq C_{p}$ where $0<c_{p}, C_{p}<\infty$ are constants depending on p only. Again a more precise statement is given in Theorem 4.2.

In developing these results, we found it helpful to use the notion of a geometric hull of a subset of \mathbb{R}^{n}. Thus instead of considering a p-convex set B_{X} we consider an arbitrary compact spanning set S and then compare the absolutely convex hull ΔS with certain subsets $\Gamma_{\theta} S$ which can be obtained from S by geometrically converging series. Precisely $x \in \Gamma_{\theta} S, \theta \in(0,1)$, if and only if $x=(1-\theta) \sum_{n=0}^{\infty} \theta^{n} \lambda_{n} s_{n}$ where $s_{n} \in S$ and $\left|\lambda_{n}\right| \leq 1$. Note that $\Gamma_{\alpha} \subset \frac{1-\alpha}{1-\theta} \Gamma_{\theta}$ for every $0<\alpha<\theta<1$. Our results can be stated in terms of estimates for the speed of convergence of $\Gamma_{\theta} S$ to ΔS as $\theta \rightarrow 1$. In this way we can derive results which are independent of $0<p<1$ and then obtain results about p-normed spaces as simple Corollaries. We develop the idea of the geometric hull in Section 2 and illustrate it by restating the quotient form of Dvoretzky's theorem in this language.

2. Approximation of convex sets

Let S be a subset of \mathbb{R}^{n}. Denote by ΔS the absolutely convex hull of S and by \tilde{S} the star-shaped hull of S, i.e. $\tilde{S}=\{\lambda x:|\lambda| \leq 1, x \in S\}$. For each $m \in \mathbb{N}$ we define $\Delta_{m} S$ to be the set of all vectors of the form $\frac{1}{m}\left(\lambda_{1} x_{1}+\cdots+\lambda_{m} x_{m}\right)$ where $\left|\lambda_{k}\right| \leq 1$ and $x_{k} \in S$ for $1 \leq k \leq m$. If $0<\theta<1$ we define the θ-geometric hull of $S, \Gamma_{\theta} S$ to be the set of all vectors of the form $(1-\theta) \sum_{k=0}^{\infty} \lambda_{k} x_{k}$ where $\left|\lambda_{k}\right| \leq \theta^{k}$ and $x_{k} \in S$ for $k=0,1, \cdots$.

Lemma 2.1. Let S be a p-convex closed set where $0<p<1$. Then for $0<\theta<1$ we have

$$
\Gamma_{\theta} S \subset\left(p^{-1 / p}(1-\theta)^{1-1 / p}\right) S
$$

Proof. This follows easily from:

$$
\frac{1-\theta}{\left(1-\theta^{p}\right)^{1 / p}} \leq p^{-1 / p}(1-\theta)^{1-1 / p}
$$

which in turns from the estimate

$$
\theta^{p} \leq 1-p(1-\theta)
$$

Lemma 2.2. If $\frac{1}{3}<\theta<1$ and $m \in \mathbb{N}$ then

$$
\Gamma_{\theta} \Delta_{m} S \subset \frac{2 \theta}{3 \theta-1} \Gamma_{\theta^{\frac{1}{m}}} S
$$

Proof. Note that

$$
\Delta_{m} S \subset \frac{1}{m} \theta^{\frac{1}{m}-1} \sum_{k=0}^{m-1} \theta^{\frac{k}{m}} \tilde{S}
$$

Hence

$$
\Gamma_{\theta} \Delta_{m} S \subset \frac{1-\theta}{m\left(1-\theta^{\frac{1}{m}}\right)} \theta^{\frac{1}{m}-1} \Gamma_{\theta^{\frac{1}{m}}} S
$$

Now observe

$$
\begin{align*}
\frac{1-\theta}{m\left(1-\theta^{\frac{1}{m}}\right)} \theta^{\frac{1}{m}-1} & =\frac{\theta^{-1}-1}{m\left(\theta^{-\frac{1}{m}}-1\right)} \\
& \leq \frac{\theta^{-1}-1}{|\ln \theta|} \tag{2.1}\\
& \leq \frac{2}{3-\theta^{-1}}
\end{align*}
$$

This completes the proof.

In this section, we make a few simple observations on the geometric hulls $\Gamma_{\theta} S$. Let us suppose that S is compact and spanning so that ΔS coincides with the unit ball B_{X} of a Banach space $X,\|\cdot\|_{X}$. Given $q \in[1,2]$ let $T_{q}=T_{q}(X)$ denote the equal-norm type q constant, i.e. the smallest constant satisfying

$$
\underset{\epsilon_{k}= \pm 1}{\operatorname{Ave}}\left\|\sum_{k=1}^{N} \epsilon_{k} x_{k}\right\|_{X} \leq T_{q} N^{1 / q} \max _{1 \leq k \leq N}\left\|x_{k}\right\|
$$

for every N. Given an integer N let b_{N} denote the least constant so that

$$
\inf _{\epsilon_{k}= \pm 1}\left\|\sum_{k=1}^{N} \epsilon_{k} x_{k}\right\|_{X} \leq b_{N} N \max _{1 \leq k \leq N}\left\|x_{k}\right\|
$$

Given a set A by $|A|$ we denote the cardinality of A.
The following Lemma abstracts the idea of [7], Lemma 2.
Lemma 2.3. Suppose $\frac{1}{3}<\theta<1$, and let $m=m(S)$ be an integer such that $\sum_{k=1}^{\infty} b_{2^{k} m} \leq \theta$. Then

$$
\Delta S \subset \frac{2 \theta}{(3 \theta-1)(1-\theta)} \Gamma_{\theta^{\frac{1}{m}}} S
$$

Proof. Suppose $N \in \mathbb{N}$ and suppose $u \in \Delta_{2 N} S$. Then $u=\frac{1}{2 N}\left(x_{1}+\cdots+x_{2 N}\right)$ where $x_{k} \in \tilde{S}$. Hence there is a choice of signs $\epsilon_{k}= \pm 1$ with $\left|\left\{\epsilon_{k}=-1\right\}\right| \leq N$ and

$$
\left\|\sum_{k=1}^{2 N} \epsilon_{k} x_{k}\right\|_{X} \leq 2 N b_{2 N}
$$

Let $v=\frac{1}{N}\left(\sum_{\epsilon_{k}=1} x_{k}\right)$. Then $\|u-v\|_{X} \leq b_{2 N}$. Hence $\Delta_{2 N} S \subset \Delta_{N} S+b_{2 N} \Delta S$. Iterating we get

$$
\Delta_{2^{k} m} S \subset \Delta_{m} S+\sum_{j=1}^{k} b_{2^{j} m} \Delta S
$$

which leads to

$$
\Delta S \subset \Delta_{m} S+\theta \Delta S
$$

which implies

$$
\Delta S \subset(1-\theta)^{-1} \Gamma_{\theta} \Delta_{m} S \subset \frac{2 \theta}{(3 \theta-1)(1-\theta)} \Gamma_{\theta^{\frac{1}{m}}} S
$$

Proposition 2.4. (i) Suppose $1<q \leq 2$ and q^{\prime} be such that $1 / q+1 / q^{\prime}=1$. Then for

$$
\theta=1-\frac{1}{4}\left(\frac{2^{1 / q^{\prime}}-1}{2 T_{q}}\right)^{q^{\prime}}
$$

we have $\Delta S \subset 12 \Gamma_{\theta} S$.
(ii) There exists constant $C<\infty$ so that if m is the largest integer such that X has a subspace Y of dimension m with $d\left(Y, \ell_{1}^{m}\right) \leq 2$ then $\Delta S \subset 8 \Gamma_{\theta} S$ for

$$
\theta=1-\frac{1}{2}(C m)^{-C \log \log (C m)} .
$$

Remark. We conjecture that the sharp estimate in (ii) is $\theta=1-c / m$.
Proof. (i) Observe that $b_{N} \leq T_{q} N^{\frac{1}{q}-1}$. Hence

$$
\sum_{k=1}^{\infty} b_{2^{k} N} \leq T_{q} N^{-\frac{1}{q^{\prime}}}\left(2^{\frac{1}{q^{\prime}}}-1\right)^{-1}
$$

Let N be the largest integer so that the right-hand side is at most $\frac{1}{2}$. Applying Lemma 2.3 with $\theta_{0}=1 / 2$ we obtain

$$
\Delta S \subset 4 \Gamma_{2^{-1 / N}} S
$$

The result follows, since

$$
\frac{1}{N} \leq\left(\frac{2^{1 / q^{\prime}}-1}{2 T_{q}}\right)^{q^{\prime}} \leq \frac{1}{N-1} \quad \text { and } \quad \Gamma_{\alpha} \subset \frac{1-\alpha}{1-\theta} \Gamma_{\theta}
$$

for $\alpha<\theta$.
In (ii) we note first by a result of Elton [5] (see also [22] for a sharper version) there exist universal constants $1 / 2 \leq c_{0}<1$ and $C \geq 1$ so that $b_{N_{0}}<c_{0}$ for some $N_{0} \leq C m$.

Recall simple properties of the numbers b_{k}. Clearly, for every k, l one has $b_{k l} \leq$ $b_{k} b_{l}$ and $(k+l) b_{k+l} \leq k b_{k}+l b_{l}$. Thus if $b_{k} \leq c_{0}<1$ then $b_{l} \leq c=\left(1+c_{0}\right) / 2<1$ for every $k \leq l \leq 2 k$. Therefore we may suppose that N_{0} is a power of two, say $N_{0}=2^{q}, q \geq 1$, and $b_{N_{0}} \leq c<1$. Since $b_{l} \leq 1$ for every l, we get $b_{N_{0}^{s} l} \leq c^{s}$ for every integers $s \geq 1, l \geq 0$. Then, taking $N=N_{0}^{r}$ for some $r \geq 1$ we have

$$
\sum_{k=1}^{\infty} b_{2^{k} N}=\sum_{j=0}^{\infty} \sum_{l=1}^{r q} b_{2^{r q+j r q+l}} \leq r q \sum_{j=1}^{\infty} c^{j r} \leq 2 r q c^{r} \leq 1 / 2
$$

provided $r \geq c_{1} \ln q$ with appropriate absolute constant c_{1}.

Now take r to be smallest integer larger than $c_{1} \ln q=c_{1} \ln \log _{2} N_{0}$. Then by Lemma 2.3 we obtain

$$
\Delta S \subset 4 \Gamma_{2^{-1 / N}} S
$$

for $N \sim\left(C^{\prime} m\right)^{C^{\prime} \log \log \left(C^{\prime} m\right)}$ and the result follows.
Corollary 2.5. There are absolute constants $c, C>0$ so that if X is a p-normed space then there exists a subspace Y in the envelope \hat{X} such that dimension of Y is

$$
m \geq c p \exp \left\{\frac{\ln A}{\ln \ln A}\right\}
$$

where $A=C\left(\delta_{X}\right)^{p /(1-p)}$, and

$$
d\left(Y, \ell_{1}^{m}\right) \leq 2
$$

Proof. Let $S=B_{X}$ and let m be as in Proposition 2.4. Then by the proposition we have $\Delta B_{X} \subset 8 \Gamma_{\theta} B_{X}$ with

$$
\theta=1-\frac{1}{2}(C m)^{-C \log \log (C m)}
$$

Thus by Lemma 2.1 we obtain

$$
\Delta B_{X} \subset 8 p^{-1 / p} 2^{-1+1 / p}(C m)^{-(1-1 / p) C \log \log (C m)} B_{X}
$$

i.e.

$$
\delta_{X} \leq\left(C^{\prime} m / p\right)^{-(1-1 / p) C \log \log (C m)} .
$$

That implies the result.
Let us conclude this section with a very simple form of Dvoretzky's theorem recast in this language:

Theorem 2.6. Let $\eta<1 / 3$. There is an absolute constant $c>0$ so that if S is a compact spanning subset of \mathbb{R}^{n} then there is a projection P of rank at least $c \eta^{2} \log n$ such that

$$
d_{\Gamma_{\theta} P S} \leq \frac{1+\eta}{1-\theta}
$$

for every $\sqrt{3 \eta} \leq \theta<1$.
Remark 1. Let $\epsilon \leq 6 / 7$. Setting $\theta=\sqrt{3 \eta}=\epsilon / 2$ we observe that there is an absolute constant $c>0$ so that if S is a compact spanning subset of \mathbb{R}^{n} then there is a projection P of rank at least $c \epsilon^{4} \log n$ such that

$$
d_{\Gamma_{\epsilon / 2} P S} \leq 1+\epsilon .
$$

Remark 2. The "quotient form" of Dvoretzky's theorem for quasi-normed spaces is essentially known and follows very easily from results in [7] (see e.g. [8] for the details).

Proof. By the sharp form of Dvoretzky's Theorem (Theorem 2.9 in [6]) there is a projection P of rank at least $c \eta^{2} \log n$ so that $d_{\Delta(P S)} \leq 1+\eta$. Let $Y=P \mathbb{R}^{n}$ and introduce an inner-product norm $\|\cdot\|$ on Y so that $\mathcal{E} \subset \Delta(P S) \subset(1+\eta) \mathcal{E}$ where $\mathcal{E}=\{y:(y, y) \leq 1\}$. If $y \in \mathcal{E}$ with $\|y\|=1$ there exists $u \in P S \cup(-P S)$ with $(y, u) \geq 1$. Since $\|u\| \leq 1+\eta$ we obtain $\|y-u\| \leq\left(2 \eta+\eta^{2}\right)^{1 / 2} \leq \sqrt{3 \eta}$. Hence

$$
\mathcal{E} \subset P S \cup(-P S)+\sqrt{3 \eta} \mathcal{E}
$$

which implies, for any $\theta \geq \sqrt{3 \eta}$,

$$
(1-\theta) \mathcal{E} \subset \Gamma_{\theta} P S \subset(1+\eta) \mathcal{E}
$$

Hence

$$
d_{\Gamma_{\theta} P S} \leq \frac{1+\eta}{1-\theta}
$$

which proves the theorem.

3. Approximating the cube

Let n be an integer. By $[n]$ we denote the set $\{1, \ldots, n\}$. The n-dimensional cube we denote by $B^{\infty}=B_{n}^{\infty}$. D_{n} denotes the extreme points of the cube, i.e. the set $\{1,-1\}^{n}$. Given a set $\sigma \subset[n]$ by P_{σ} we denote the coordinate projection of \mathbb{R}^{n} onto \mathbb{R}^{σ}, and we denote $B_{\sigma}^{\infty}:=P_{\sigma} B_{n}^{\infty}, D_{\sigma}:=P_{\sigma} D_{n}$. As above $|A|$ denotes the cardinality of a set A. As usual $\|\cdot\|_{2}$ and $\|\cdot\|_{\infty}$ denote the norm in ℓ_{2} and ℓ_{∞} correspondingly.

Theorem 3.1. There are constants $c>0$ and $0<C<\infty$ so that for every $\epsilon>0$, if $S \subset D_{n}$ with $|S| \geq 2^{n(1-c \epsilon)}$ then there is a subset σ of $[n]$ with $|\sigma| \geq(1-\epsilon) n$ so that

$$
D_{\sigma} \subset C \epsilon^{-1} P_{\sigma}\left(\Delta_{N} S\right)
$$

for some $N \leq C \epsilon^{-2}$.
Proof. We will follow Alesker's argument in [1], which is itself a refinement of Szarek-Talagrand [20]. Alesker shows that for a suitable choice of c, if $\epsilon=2^{-s}$ then one can find an increasing sequence of subsets $\left(\sigma_{k}\right)_{k=0}^{s}$ so that $P_{\sigma_{0}}(S)=D_{\sigma_{0}}$, $\left|\sigma_{s}\right| \geq(1-2 \epsilon) n$ and if $\tau_{k}=\sigma_{k} \backslash \sigma_{k-1}$ for $k=1,2, \ldots, s$ then there exists $\alpha \in D_{n}$ so that

$$
P_{\tau_{k}}\left(S \cap P_{\sigma_{k-1}}^{-1}\left(P_{\sigma_{k-1}} \alpha\right)\right)=D_{\tau_{k}} .
$$

It follows that if $a \in D_{\tau_{k}}$ there exists $x \in \Delta_{2} S$ with $P_{\sigma_{k-1}}(x)=0$ and $P_{\tau_{k}}(x)=a$.

We now argue by induction that $D_{\sigma_{k}} \subset a_{k} P_{\sigma_{k}} \Delta_{b_{k}} S$ where $a_{k}=2^{k+1}-1$ and $b_{k}=2^{k} a_{k}=2 \cdot 4^{k}-2^{k}$. This clearly holds if $k=0$. Assume it is true for $k=j-1$, where $1 \leq j \leq s$. Then if $a \in D_{\sigma_{j}}$ we can observe that there exists $x_{1} \in a_{j-1} \Delta_{b_{j-1}} S$ with $P_{\sigma_{j-1}} x_{1}=P_{\sigma_{j-1}} a$. Clearly,

$$
P_{\tau_{j}} x_{1} \in a_{j-1} \Delta_{b_{j-1}} D_{\tau_{j}}
$$

Hence there exists $x_{2} \in a_{j-1} \Delta_{2 b_{j-1}} S$ with $P_{\sigma_{j-1}} x_{2}=0$ and $P_{\tau_{j}} x_{2}=-P_{\tau_{j}} x_{1}$. Finally pick $x_{3} \in \Delta_{2} S$ so that $P_{\sigma_{j-1}}\left(x_{3}\right)=0$ and $P_{\tau_{j}}\left(x_{3}\right)=P_{\tau_{j}} a$. Then $P_{\sigma_{j}}\left(x_{1}+\right.$ $\left.x_{2}+x_{3}\right)=a$ and

$$
\begin{gathered}
x_{1}+x_{2}+x_{3} \in a_{j-1} \Delta_{b_{j-1}} S+a_{j-1} \Delta_{2 b_{j-1}} S+\Delta_{2} S \\
\subset \frac{a_{j-1}}{2 b_{j-1}}\left(4 b_{j-1}+2^{j}\right) \Delta_{4 b_{j-1}+2^{j}} S=a_{j} \Delta_{b_{j}} S
\end{gathered}
$$

This establishes the induction.
We finally conclude that $D_{\sigma_{s}} \subset 2\left(2^{s+1}-1\right) P_{\sigma_{s}} \Delta_{2 \cdot 4^{s}} S$ and this gives the result, as the case of general ϵ follows easily.

Remark. Slightly changing the proof one can show that $D_{\sigma} \subset C \epsilon^{-\alpha} P_{\sigma}\left(\Delta_{N} S\right)$ for $N \leq C \epsilon^{-\alpha}$, where $\alpha=\log _{2} 3$.

Lemma 3.2. There exist absolute constants $c, C>0$ with the following property. Suppose $0<\epsilon<1$ and $0<k<n$ are natural numbers with $k / n \geq 1-c \epsilon(1-$ $\ln \epsilon)^{-1}$. Let S be a subset of \mathbb{R}^{n} so that if $a \in D_{n}$ there exists $x \in S$ with $\left|\left\{i: x_{i}=a_{i}\right\}\right| \geq k$. Then there is a subset σ of $[n]$ with $|\sigma| \geq(1-\epsilon) n$ and $D_{\sigma} \subset C \epsilon^{-1} \Delta_{N} P_{\sigma} S$ for some $N \leq C \epsilon^{-2}$.
Proof. Suppose $0<k<n$ and $1-k / n=t \epsilon(1-\ln \epsilon)^{-1}$. We shall show that if t is small enough we obtain the conclusion of the lemma. First pick a map $a \rightarrow \sigma(a)$ from $D_{n} \rightarrow 2^{[n]}$ so that for each $a,|\sigma(a)|=k$ and there exists $x \in S$ with $x_{i}=a_{i}$ for $i \in \sigma(a)$. Then, by a simple counting argument we have the existence of $\tau \in 2^{[n]}$ so that $|\tau|=k$ and if

$$
T=\left\{\alpha \in D_{\tau}: \exists a \in D_{n}, \sigma(a)=\tau, P_{\tau} a=\alpha\right\}
$$

then

$$
|T| \geq \frac{2^{n}}{2^{n-k}\binom{n}{k}}
$$

We can estimate

$$
\binom{n}{k} \leq\left(\frac{n}{k}\right)^{k}\left(\frac{n}{n-k}\right)^{n-k} \leq\left(\frac{n e}{n-k}\right)^{n-k}
$$

Hence for $t \leq 1 / 2$ we have

$$
\log _{2}\binom{n}{k} \leq \frac{n t \epsilon}{\ln 2(1-\ln \epsilon)} \ln \left(\frac{e \ln (e / \epsilon)}{t \epsilon}\right) \leq 3 k t \epsilon(2-\ln t)
$$

It follows that

$$
|T| \geq 2^{k\left(1-C_{t} \epsilon\right)}
$$

where $C_{t}=3 t(2-\ln t)$. Choosing t such that $C_{t} \leq c / 2$, where c is the constant from Theorem 3.1, and applying this theorem, we obtain the existence of $\sigma \subset \tau$, $|\sigma| \geq(1-\epsilon / 2) k \geq(1-\epsilon) n$, with desired property.

Theorem 3.3. There are absolute constants $c, C>0$ such that if $\epsilon>0$ and S is a subset of \mathbb{R}^{n} with $B^{\infty} \subset \Delta S \subset d B^{\infty}$ then there is a subset σ of $[n]$ with $|\sigma| \geq n(1-\epsilon)$ such that

$$
B_{\sigma}^{\infty} \subset(C / \epsilon) \Gamma_{\theta} P_{\sigma} S
$$

for $\theta=1-c d^{-2} \epsilon^{5}(1-\ln \epsilon)^{-1}$.
Proof. Let $\delta=c_{1} \epsilon$ and m be the smallest integer greater than $c_{2} d^{2} \epsilon^{-3}(1-\ln \epsilon)$, where c_{1}, c_{2} will be chosen later.

Suppose first that $a \in D_{n}$. Then we can find $N \in \mathbb{N}, N \geq m$, and $x_{1}, \ldots, x_{N} \in$ $S \cup(-S)$ so that

$$
\left\|a-\frac{1}{N}\left(x_{1}+\cdots+x_{N}\right)\right\|_{2}^{2} \leq \frac{n d^{2}}{m} .
$$

Let Ω be the space of all m-subsets of $[N]$ and let μ be normalized counting (probability) measure on Ω. If $\left(\xi_{i}\right)_{i=1}^{N}$ denote the indicator functions $\xi(\omega)=1$ if $i \in \omega$ and 0 otherwise then

$$
\mathbf{E}\left(\xi_{i}\right)=\mathbf{E}\left(\xi_{i}^{2}\right)=\frac{m}{N}, \mathbf{E}\left(\xi_{i} \xi_{j}\right)=\frac{m(m-1)}{N(N-1)}
$$

if $i \neq j$. Thus

$$
\mathbf{E}\left(\xi_{i}-\mathbf{E}\left(\xi_{i}\right)\right)^{2}=\frac{m}{N}-\frac{m^{2}}{N^{2}}
$$

and

$$
\mathbf{E}\left(\left(\xi_{i}-\mathbf{E}\left(\xi_{i}\right)\right)\left(\xi_{j}-\mathbf{E}\left(\xi_{j}\right)\right)=\frac{m(m-1)}{N(N-1)}-\frac{m^{2}}{N^{2}}\right.
$$

if $i \neq j$.
Let $y=\frac{1}{N}\left(x_{1}+\cdots+x_{N}\right)$ so that $y=\mathbf{E}\left(\frac{1}{m} \sum_{i=1}^{N} \xi_{i} x_{i}\right)$. Then working in the ℓ_{2}-norm we have

$$
\mathbf{E}\left(\left\|\frac{1}{m} \sum_{i=1}^{N} \xi_{i} x_{i}-y\right\|_{2}^{2}\right)=\frac{N-m}{m N(N-1)} \sum_{i=1}^{N}\left\|x_{i}\right\|_{2}^{2}-\frac{N-m}{m N^{2}(N-1)}\left\|\sum_{i=1}^{N} x_{i}\right\|_{2}^{2} .
$$

Hence

$$
\mathbf{E}\left(\left\|\frac{1}{m} \sum_{i=1}^{N} \xi_{i} x_{i}-y\right\|_{2}^{2}\right) \leq \frac{n d^{2}}{m}
$$

Since $\|y-a\|_{2}^{2} \leq \frac{n d^{2}}{m}$ we have

$$
\mathbf{E}\left(\left\|\frac{1}{m} \sum_{i=1}^{N} \xi_{i} x_{i}-a\right\|_{2}^{2}\right) \leq 4 \frac{n d^{2}}{m}
$$

We now suppose that for each $\omega \in \Omega$ we have $\left\lvert\,\left\{j:\left|\frac{1}{m} \sum_{i=1}^{N} \xi_{i} x_{i}(j)-a(j)\right|>\right.\right.$ $\delta\} \mid>4 d^{2} n /\left(m \delta^{2}\right)$. Then we get an immediate contradiction. We conclude that for each $a \in D_{n}$ there exists $x_{a} \in \Delta_{m} S$ such that $\left|x_{a}(j)-a(j)\right| \leq \delta$ for at least $n\left(1-2 c_{1}^{-2} c_{2}^{-1} \epsilon(1-\log \epsilon)^{-1}\right)$ choices of j. Let $y_{a}(j)=a(j)$ if $\left|x_{a}(j)-a(j)\right| \leq \delta$ and $y_{a}(j)=x_{a}(j)$ otherwise so that $\left\|y_{a}-x_{a}\right\|_{\infty} \leq \delta$.

Now suppose c_{2} is chosen as a function of c_{1} so that we can apply Lemma 3.2 to obtain the existence of a set $\sigma \subset[n]$ with $|\sigma| \geq n(1-\epsilon)$ and so that

$$
D_{\sigma} \subset C \epsilon^{-1} P_{\sigma} \Delta_{N}\left\{y_{a}: a \in D_{n}\right\}
$$

where C is an absolute constant, and $N \leq C \epsilon^{-2}$. Then

$$
D_{\sigma} \subset C \epsilon^{-1} P_{\sigma} \Delta_{N m} S+C \epsilon^{-1} \delta B_{\sigma}^{\infty}
$$

Recall that $C \epsilon^{-1} \delta=C c_{1}$ so that if we choose c_{1} such that $C c_{1}=\frac{1}{4}$ we have

$$
D_{\sigma} \subset K+\frac{1}{4} B_{\sigma}^{\infty}
$$

where $K:=C \epsilon^{-1} P_{\sigma} \Delta_{N m} S$. Now suppose $x \in B_{\sigma}^{\infty}$. Let $a_{1}, a_{2} \in D_{\sigma}$ be defined by $a_{1}(j)=1$ if $x(j) \geq \frac{1}{2}$ and $a_{1}(j)=-1$ otherwise, while $a_{2}(j)=1$ if $x(j) \geq-\frac{1}{2}$ and $a_{2}(j)=-1$ otherwise. Then

$$
\left\|x-\frac{1}{2}\left(a_{1}+a_{2}\right)\right\|_{\infty} \leq \frac{1}{2}
$$

Thus

$$
B_{\sigma}^{\infty} \subset \Delta_{2} K+\frac{3}{4} B_{\sigma}^{\infty}=C \epsilon^{-1} P_{\sigma} \Delta_{2 N m} S+\frac{3}{4} B_{\sigma}^{\infty}
$$

This implies for $\theta=\frac{3}{4}$,

$$
B_{\sigma}^{\infty} \subset 4 C \epsilon^{-1} \Gamma_{\theta} P_{\sigma} \Delta_{2 N m} S
$$

Letting $\varphi=\theta^{1 /(2 N m)}$ and applying Lemma 2.2 we obtain

$$
\Gamma_{\theta} \Delta_{2 N m} S \subset \frac{6}{5} \Gamma_{\varphi} S
$$

Note that $\left(\frac{3}{4}\right)^{1 /(2 N m)} \sim 1-(2 N m)^{-1} \ln (4 / 3) \leq 1-c d^{-2} \epsilon^{5}(1-\ln \epsilon)^{-1}$ for some $c>0$ so that the result follows.

Theorem 3.4. There is an absolute $C>0$ such that if $\epsilon>0$ and X is a p-normed quasi-Banach space with $\operatorname{dim} X=n$ and $d\left(\hat{X}, \ell_{\infty}^{n}\right) \leq d$ then X has a quotient Y with $\operatorname{dim} Y \geq n(1-\epsilon)$ and

$$
d\left(Y, \ell_{\infty}^{\operatorname{dim} Y}\right) \leq C p^{-\frac{1}{p}} \epsilon^{4-\frac{5}{p}}(1-\ln \epsilon)^{\frac{1}{p}-1} d^{\frac{2}{p}-1}
$$

Remark. In [11] examples are constructed of finite-dimensional p-normed spaces X_{n} (with $0<p<1$ fixed) so that $d\left(\hat{X}_{n}, \ell_{\infty}^{\operatorname{dim} X_{n}}\right)$ is uniformly bounded but $\lim _{n \rightarrow \infty} \delta_{X_{n}}=\infty$.

Proof. We can assume $B^{\infty} \subset B_{\hat{X}} \subset d B^{\infty}$. Then by Theorem 3.3 we can find σ with $|\sigma| \geq n(1-\epsilon)$ so that

$$
c \epsilon B_{\sigma}^{\infty} \subset \Gamma_{\theta} P_{\sigma} B_{X}
$$

where $\theta=1-c d^{-2} \epsilon^{5}(1-\ln \epsilon)^{-1}$. Let Y be the space of dimension $|\sigma|$ with unit ball $B_{Y}=P_{\sigma} B_{X}$. Since B_{Y} is p-convex we have (Lemma 2.1)

$$
\Gamma_{\theta} B_{Y} \subset p^{-\frac{1}{p}}\left(c d^{-2} \epsilon^{5}(1-\log \epsilon)^{-1}\right)^{1-\frac{1}{p}} B_{Y}
$$

Finally observe that for a suitable $c>0$:

$$
c p^{\frac{1}{p}} d^{2-\frac{2}{p}} \epsilon^{\frac{5}{p}-4}(1-\log \epsilon)^{1-\frac{1}{p}} B_{\sigma}^{\infty} \subset B_{Y} \subset d B_{\sigma}^{\infty}
$$

The result then follows.

4. Cubic quotients

We start this section with the following lemma, which is in fact a corollary of Theorem 3.3.

Lemma 4.1. Let S be a compact spanning of \mathbb{R}^{n} and X be the Banach space with unit ball $B_{X}=\Delta S$. Let m be the largest integer such that X has a subspace Y of dimension m with $d\left(Y, \ell_{1}^{m}\right) \leq 2$. Then for every integer k satisfying $2^{2 k-1} \leq m$ there exists a rank k projection π, so that for some cube Q one has $Q \subset \Gamma_{b} \pi S \subset$ $C Q$, where $0<b<1$ is an absolute constant.

Proof. Let Y be a subspace of X of dimension m so that $d\left(Y, \ell_{1}^{m}\right) \leq 2$. Then if $2^{2 k-1} \leq m$ there is a linear operator $T: Y \rightarrow \ell_{\infty}^{2 k}$ with $\|T\| \leq 1$ and $T\left(B_{Y}\right) \supset$ $\frac{1}{2} B_{2 k}^{\infty} . T$ can then be extended to a norm-one operator on X and so X has a quotient Z of dimension $2 k$ so that $d\left(Z, \ell_{\infty}^{2 k}\right) \leq 2$. It follows immediately from Theorem 3.3 with $\epsilon=\frac{1}{2}$ that there is a further quotient W of Z with $\operatorname{dim} W \geq k$
and for some cube Q_{0} in W, and fixed constants $0<b<1$ and $1<C<\infty$, we have $Q_{0} \subset \Gamma_{b} \pi_{W} S \subset C Q_{0}$ where π_{W} is the quotient map onto W.

Theorem 4.2. There is an absolute constant $c>0$ so that if X is a finitedimensional p-normed space, then X has a quotient E with $d\left(E, \ell_{\infty}^{\operatorname{dim} E}\right) \leq(c p)^{-1 / p}$ and $\operatorname{dim} E \geq c \ln A /(\ln \ln A)$, where $A=\left(p^{1 / p} \delta_{X} / 4\right)^{p /(1-p)}$ (assuming that δ_{X} is large enough).

Remark. Take $X=\ell_{p}^{n}$ so that $\delta_{X}=n^{-1+1 / p}$. Then if X has a quotient E of dimension k with $d\left(E, \ell_{\infty}^{k}\right) \leq C_{p}$ then $\hat{X}=\ell_{1}^{n}$ also has such a quotient which implies $k \leq c C_{p} \ln n=c C_{p} \ln \left(\delta_{X}^{p /(1-p)}\right)$. We conjecture that this estimate is optimal up to an absolute constant, i.e. that every p-normed space has a cubical quotient of such dimension. As one can see from the proof below we could obtain such an estimate (up to constant depending on p only) if we were able to prove the inclusion with $\theta=1-c(m \ln m)^{-1}$ in Proposition 2.4.

Proof. Let $S=B_{X}$ and m be the largest integer such that X has a subspace Y of dimension m with $d\left(Y, \ell_{1}^{m}\right) \leq 2$.

Assume first $m \leq 2^{2 k}$. By Proposition 2.4 (and its proof) we have $\Delta B_{X} \subset$ $4 \Gamma_{\theta} B_{X}$ for $\theta=2^{-1 / N_{k}}$, where $N_{k}=(C k)^{C \ln \ln (C k)}$. Then, by Lemma 2.1, we obtain

$$
\Delta B_{X} \subset 4 p^{-1 / p}\left(2 N_{k}\right)^{-1+1 / p}
$$

which implies

$$
\delta_{X} \leq 4 p^{-1 / p}\left(2 N_{k}\right)^{-1+1 / p} .
$$

Therefore $2 N_{k} \geq A:=\left(p^{1 / p} \delta_{X} / 4\right)^{p /(1-p)}$. Finally we obtain $k \geq C^{\prime} \ln A /(\ln \ln A)$ (of course we may assume that $A>e^{2}$).

Suppose now $k \leq C^{\prime} \ln A /(\ln \ln A)$. By above we have $m \geq 2^{2 k}$. So Lemma 4.1 implies the existence of absolute constants b, C_{1} and a rank k projection π such that $Q \subset \Gamma_{b} \pi B_{X} \subset C_{1} Q$ for some cube Q. By Lemma 2.1 we obtain

$$
\Gamma_{b} \pi B_{X} \subset p^{-1 / p}(1-b)^{1-1 / p} \pi B_{X}
$$

so that we have (if $E=X / \pi^{-1}(0)$),

$$
d\left(E, \ell_{\infty}^{k}\right) \leq C_{1} p^{-1 / p}(1-b)^{1-1 / p}
$$

This implies the theorem.

Acknowledgment. The work on this paper was started during the visit of the second named author to University of Missouri, Columbia.

References

[1] S. Alesker, A remark on the Szarek-Talagrand theorem, Combin. Probab. Comput. 6 (1997), 139-144.
[2] J. Bastero, J. Bernués and A Peña, An extension of Milman's reverse Brunn-Minkowski inequality. Geom. Funct. Anal. 5 (1995), 572-581.
[3] J. Bastero, J. Bernués and A. Peña, The theorems of Caratheodory and Gluskin for $0<p<1$, Proc. Amer. Math. 123 (1995), 141-144.
[4] S.J. Dilworth, The dimension of Euclidean subspaces of quasi-normed spaces, Math. Proc. Camb. Phil. Soc., 97 (1985), 311-320.
[5] J. Elton, Sign-embeddings of l_{1}^{n}, Trans. Amer. Math. Soc. 279 (1983), 113-124.
[6] Y. Gordon, Some inequalities for Gaussian processes and applications, Israel J. Math. 50 (1985), 265-289.
[7] Y. Gordon and N.J. Kalton, Local structure theory for quasi-normed spaces, Bull. Sci. Math., 118 (1994), 441-453.
[8] O. Guédon, A.E. Litvak, Euclidean projections of p-convex body, GAFA, Lecture Notes in Math., Springer, Berlin-New York., to appear.
[9] N.J. Kalton, The convexity type of a quasi-Banach space, unpublished note, 1977.
[10] N.J. Kalton, Convexity, type and the three space problem, Studia Math., Vol. 69 (1981), 247-287.
[11] N. J. Kalton, Banach envelopes of non-locally convex spaces, Can. J. Math. 38 (1986) 65-86.
[12] N.J. Kalton, N.T. Peck and J.W. Roberts An F-space sampler. London Mathematical Society Lecture Note Series, 89, Cambridge University Press, Cambridge-New-York, 1984.
[13] N. Kalton and Sik-Chung Tam, Factorization theorems for quasi-normed spaces, Houston J. Math., 19 (1993), 301-317.
[14] H. König, Eigenvalue distribution of compact operators. Operator Theory: Advances and Applications, 16. Birkhäuser Verlag, Basel-Boston, Mass., 1986.
[15] A.E. Litvak, Kahane-Khinchin's inequality for the quasi-norms, Canad. Math. Bull., 43 (2000), no. 3, 368-379.
[16] A.E. Litvak, V.D. Milman and A. Pajor, The covering numbers and "low M^{*}-estimate" for quasi-convex bodies, Proc. Amer. Math. Soc., 127 (1999), 1499-1507.
[17] V.D. Milman, Isomorphic Euclidean regularization of quasi-norms in R, C. R. Acad. Sci. Paris, 321 (1996), 879-884.
[18] N. Sauer, On the density of families of sets, J. Comb. Theory, Ser A. 13 (1972) 145-147.
[19] S. Shelah, A combinatorial theorem: stability and order for models and theories in infinitary languages, Pacific J. Math. 41 (1972) 247-261.
[20] S.J. Szarek and M. Talagrand, An "isomorphic" version of the Sauer-Shelah lemma and the Banach-Mazur distance to the cube, Geometric aspects of functional analysis (1987-88), 105-112, Lecture Notes in Math., 1376, Springer, Berlin-New York, 1989.
[21] S. Rolewicz, Metric linear spaces. Monografie Matematyczne, Tom. 56. [Mathematical Monographs, Vol. 56] PWN-Polish Scientific Publishers, Warsaw, 1972.
[22] M. Talagrand, Type, infratype and the Elton-Pajor theorem, Invent. Math. 107 (1992), 41-59.
(N.J. Kalton) Department of Mathematics, University of Missouri-Columbia, Columbia, MO 65211

E-mail address: nigel@math.missouri.edu
(A.E. Litvak) Department of Mathematics, Technion, Haifa, Israel, 32000,

E-mail address: alex@math.technion.ac.il

[^0]: 1991 Mathematics Subject Classification. Primary: 46B07, 46A16.
 Key words and phrases. Quasi-normed spaces, quotients.
 The first author was supported by NSF grant DMS-9870027 and the second author was supported by a Lady Davis Fellowship.

