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Abstract

We provide the first useful, rigorous analysis of ensemble sampling for the standard linear
bandit setting. In particular, we show that for a d-dimensional linear bandit with an
interaction horizon T , ensemble sampling with an ensemble of size m on the order of d log T
matches the standard regret bound for Thompson sampling up to a multiplicative factor of
order m

√
log T . Ours is the first result in any structured setting not to require the size of

the ensemble to scale linearly with T for near
√
T order regret—which defeats the purpose

of ensemble sampling—and the first that does not require a finite arm set.

1 Introduction

Ensemble sampling, as christened by Lu and Van Roy (2017), is a family of randomised
algorithms for balancing exploration-and-exploitation in sequential decision making. The
premise of the approach is that an ensemble of perturbed models of the value of the available
decisions (actions, arms) is maintained, and the decision taken at each step of intersection is
that which is optimal with respect to a randomly selected ensemble element (model).

Ensemble sampling can be seen as an approximation to the classic Thompson sampling
algorithm (Thompson, 1933), also known as posterior sampling. Whereas Thompson
sampling maintains a posterior distribution over models, and samples a new model from this
distribution at each step, ensemble sampling can be thought to approximate this distribution
with a finite, unweighted ensemble, which is updated incrementally—and in randomly
selecting a model from this ensemble, ensemble sampling can be thought of as Thompson
sampling that periodically reuses previously sampled models.

The advantage of ensemble sampling over Thompson sampling whenever incrementally
updating the ensemble is cheap, but computing a posterior distribution and sampling
from it is expensive. A classic example of this setting is in deep reinforcement learning,
where the models—neural networks—are large, but trained incrementally. Here, ensemble
sampling is used directly under the names of Bootstrapped DQN (Osband et al., 2016) and
Ensemble+ (Osband et al., 2018), and as part of other reinforcement learning algorithms
(say, in Dimakopoulou and Van Roy, 2018; Curi et al., 2020). Ensemble sampling has also
been applied to online recommendation (Lu et al., 2018; Hao et al., 2020; Zhu and Van Roy,
2021), in behavioural sciences (Eckles and Kaptein, 2019) and marketing (Yang et al., 2020).

However, despite the practicality and seemingly simple nature of the ensemble sampling
algorithm, we have no theoretical explanation for its performance. Here, the issue is that
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the dependencies introduced by reusing models between time steps significantly complicate
the analysis. Indeed, Qin et al. (2022) state that:

A lot of work has attempted to analyze ensemble sampling, but none of them has
been successful.

Our contribution is the first successful analysis of ensemble sampling. Our analysis
follows broadly that of Thompson sampling given by Abeille and Lazaric (2017), but does
not recover quite the same regret bound. We leave eliminating the slack (or showing that it
cannot be done) for future work. While a little technical in places, our analysis is conceptually
simple, and can, with a bit of effort, be extended beyond the linear setting. In particular,
immediate extensions include generalised linear bandits (Filippi et al., 2010), kernelised
bandits/Gaussian-process-based Bayesian optimisation (Srinivas et al., 2010), and deep
learning—with the latter via the usual neural tangent kernel approach (Jacot et al., 2018).

2 Problem setting, formalism and notation

We now introduce, in turn, some general notation, the linear stochastic bandit setting that
we consider, the relevant ridge regression estimates and their properties, and the probabilistic
formalism which we shall adopt—the last of these is particularly important, for much of the
difficulty in analysing ensemble sampling lies in having to work with conditional expectations.

General notation We denote by N+ the set of positive natural numbers and for m ∈ N+,
we write [m] = {1, . . . ,m}. For a vectors v, u in Rℓ, we denote by ∥v∥2 the canonical
Euclidean norm of u and by ⟨v, u⟩ the canonical Euclidean inner product between v and u.
Bℓ

2 denotes the closed canonical Euclidean unit ball in Rℓ. Iℓ denotes the identity matrix in
Rℓ×ℓ, and 0ℓ zero element of Rℓ. For a matrix M ∈ Rℓ×k, ∥M∥ denotes its operator norm
from (Rk, ∥ · ∥2) to (Rℓ, ∥ · ∥2); whenever k = ℓ and M is positive definite, ∥v∥M denotes the
M -weighted canonical Euclidean norm, given by ∥v∥2M = ⟨v,Mv⟩. For positive semidefinite
matrices A,B of matching dimensions, A ⪯ B denotes the usual semidefinite order.

Problem setting We consider the standard stochastic linear bandit setting. At each step
t ∈ [T ], for a horizon length T ∈ N+, a learner selects an action Xt from an arm set X , a
closed subset of the d-dimensional Euclidean unit ball Bd

2 , and receives a random reward
Yt ∈ R of the form

Yt = ⟨Xt, θ
⋆⟩+ Zt, (1)

where θ⋆ ∈ Bd
2 is an unknown weight vector and Zt is a zero-mean 1-sub-Gaussian random

variable independent on the past (see ‘probabilistic formalism’ for definition). The aim of
the learner is to minimise its regret over the horizon, the quantity

R(T ) = max
x∈X

T∑
t=1

⟨x−Xt, θ
⋆⟩, (2)

while ours will be to show a high probability bound on R(T ) that holds uniformly over
θ⋆ ∈ Bd

2 when the learner uses the ensemble sampling algorithm, detailed shortly.
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Ridge regression Algorithms we consider will estimate θ⋆ using ridge regression. For a
regularisation parameter λ > 0, ridge regression gives the estimate

θ̂t = V −1
t

t∑
i=1

XiYi where Vt = V0 +

t∑
i=1

XiX
T
i and V0 = λI, (3)

and where we take θ̂0 = 0d. Importantly, the ridge regression gives a good estimator for
θ⋆, in that under our assumptions, for any δ > 0, with probability 1 − δ, for all t ∈ N+,
θ⋆ ∈ Ct(δ), where

Ct(δ) = θ̂t + βtV
−1/2
t Bd

2 with βt =
√
λ+

√
2 log(1/δ) + log(det(Vt)/λd). (4)

The above confidence sets were introduced to the bandit literature by Abbasi-Yadkori et al.
(2011), and their construction relies on the method of Peña et al. (2009) and de la Pena
et al. (2004) (see Chapter 20 of Lattimore and Szepesvári (2020) for an overview of this
construction and result). We will make generous use of the related map

ψt(u) = θ̂t + βtV
−1/2
t u for u ∈ Rd, observing in particular that ψt(B

d
2) = Ct(δ). (5)

Probabilistic formalism We let (Ω,F , (Ft)t∈N,P) be a complete filtered probability
space. We assume the following measurability:

We take each Ft such that Xt, Yt are Ft-measurable—this makes Vt, βt and
θ̂t likewise Ft-measurable. Each Ft will shortly be expanded to contain the
randomisation used by the algorithms.

We will use the shorthands Et = E[· | Ft] and Pt(A) = Et1[A] for A ∈ F , where 1[A] denotes
the characteristic function of A, with inequalities of random variables here and henceforth
understood to hold in an almost sure sense.

For an index set I of the form {t ∈ N : i ≥ t0} for some t0 ∈ N, we say a random
sequence (ξt)t∈I is adapted if each ξt is Ft-measurable. For adapted real-valued sequence
(ξt)t∈N+ and non-negative adapted sequence (σt)t∈N, we say that each ξt+1 is Ft-conditionally
σt-sub-Gaussian if, for each t ∈ N,

Et exp(sξt+1) ≤ exp(s2σ2t /2) holds for all s ∈ R. (6)

If for some constant c > 0, the above holds unconditionally (that is, with E in place of Et)
with σt = c for all t ∈ N, we say that each ξt is c-subGaussian.

Finally, for a suitable set A, we write U(A) for the uniform probability measure on A.
For m ∈ N+, we write Ξ1, . . . ,Ξm ∼ U(A)⊗m to denote that Ξ1, . . . ,Ξm are independent
random variables each with law U(A).

3 Thompson and ensemble sampling algorithms

We now outline versions of Thompson sampling and ensemble sampling for the linear bandit
problem. Our exposition is designed to draw out the similarities of the two methods,
and sacrifices generality for simplicity. For a well-rounded and motivated introduction, see
Chapter 36 of Lattimore and Szepesvári (2020) and, in particular, the notes and bibliographic
remarks therein. Likewise, for introductions to ensemble sampling, see Lu and Van Roy
(2017) and Osband et al. (2019), with the latter in the context of reinforcement learning.
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3.1 Thompson sampling

Our linear Thompson sampling algorithm, presented in Algorithm 1, is extremely simple: at
each step t ∈ [T ], it picks an arm Xt that is optimal according to an estimate θt sampled
uniformly on ψt−1(

√
dBd

2) =
√
dCt−1(δ), a

√
d-inflation of the ridge regression confidence set

(with ψt−1 as defined in Eq. (5)). Here, we treat the confidence parameter δ ∈ (0, 1] as fixed
implicitly.

Algorithm 1 Linear Thompson sampling

for t ∈ N+ do
Sample Ut ∼ U(

√
dBd

2) and compute θt = ψt−1(Ut)
Compute some Xt ∈ argmaxx∈X ⟨x, θt⟩, play arm Xt and receive reward Yt

The algorithm works by balancing exploitation and exploration. The perturbed models
θt are not too far from the estimate θ̂t−1, no more than

√
d-times the confidence width. Yet

this inflation of
√
d allows Thompson sampling to explore sufficiently, and in particular, to

occasionally try models that are optimistic for the true parameter θ⋆, in that their predicted
value is higher than the true value of the optimal arm. These two properties are vital to the
usual regret guarantees for Thompson sampling, as established by Agrawal and Goyal (2012,
2013) and Abeille and Lazaric (2017).

Remark 1. Our use of the uniform distribution to generate perturbed parameters is purely
for the sake of a clean exposition. After all, the usual analysis for the Gaussian (or sub-
Gaussian) case begins by restricting to a high-probability event where each θt lands within
some scaled version of the corresponding

√
dCt(δ) (as in Abeille and Lazaric, 2017).

We call the sequence of uniform random variables U1, U2, . . . the random noises used by
Thompson sampling. For the purposes of our analysis, we will assume the following:

The sequence U1, U2, . . . is adapted, and each element of this sequence has been
sampled independently before any interaction begins.

3.2 Ensemble sampling

We begin with a little formalism around the random quantities that feature in the upcoming
Algorithm 2, ensemble sampling:

Our ensemble sampling algorithm uses at each step t ∈ N+ the random variables
U1
t , . . . , U

m
t and ξt, Jt. We take each Ft to be such that these are Ft-measurable,

and assume that all these random variables for all t ∈ N+ are sampled indepen-
dently of one another before any interaction begins.

With that in place, let us examine Algorithm 2. The algorithm is a lot simpler than it
might seem. In particular, observe that if we fit a ridge regression estimate on the fake data
(X1, U

j
1 ), . . . , (Xt−1, U

j
t−1), we get the estimate θ̃jt−1 = V −1

t−1S
j
t−1. We fit m such estimates

on the m independent streams of targets (U j
t : t ∈ N+)j∈[m], and select Xt as optimal with

respect to
θt = θ̂t−1 + r0ξtθ̃

Jt
t−1.

4
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That is to say, ensemble sampling acts optimally with respect to the estimate θ̂t−1 perturbed
additively by r0ξtθ̃

Jt
t−1, which is the parameter of one of the m-many ensemble elements,

chosen uniformly at random (by the index Jt ∈ [m]), symmetrised (by ξt ∈ {−1, 1}) and
rescaled (by r0 > 0), where each ensemble element is, effectively, a random estimate of 0d.

Algorithm 2 Linear ensemble sampling

Input noise scale r0 > 0, ensemble size m ∈ N+

Sample (Xj
0)j∈[m] ∼ U(

√
dSd−1)⊗m and let Sj

0 = λXj
0 for each j ∈ [m]

for t ∈ N+ do
Sample (ξt, Jt) ∼ U({±1} × [m]) and let θt = ψt−1(r0ξtV

−1/2
t−1 SJt

t−1)
Compute some Xt ∈ argmaxx∈X ⟨x, θt⟩, play arm Xt and observe reward Yt
Sample (U j

t )j∈[m] ∼ U([−1, 1])⊗m and let Sj
t = Sj

t−1 +XtU
j
t for each j ∈ [m]

The reader may well suspect that the random variables r0ξ1V
−1/2
0 SJ1

0 , r0ξ2V
−1/2
1 SJ2

1 , . . .
will serve the same function as the noises U1, U2, . . . used within Thompson sampling.
Indeed, our approach will be to show a regret bound for randomised algorithms where each
θt = ψt−1(Ξt) for any sequence of noises Ξ1,Ξ2, . . . that satisfy certain properties, and then
show that those used by Thompson sampling and ensemble sampling do just that.

First, however, a couple remarks.

Remark 2. The random sequence of targets used to fit the ensembles in our ensemble
sampling algorithm is based on uniform random variables, as opposed to Gaussian random
variables, as in the prior literature. Like in the case of Thompson sampling (see Remark 1),
this serves only to simplify the proof. In this case, the simplification is quite significant. In
the upcoming Remark 13, we point out where this specific form of the targets was used, and
sketch how to make our proof go through with suitable sub-Gaussian targets.

Remark 3. The symmetrisation of the noises by the Rademacher random variables ξ1, ξ2, . . .
does not feature within the previous formulations of ensemble sampling. This symmetrisation
again makes the proof much more convenient—we point out in Remark 10 where and how
it is used. While the result almost certainly goes through without this symmetrisation, the
proof would become significantly more complex. We will not attempt it.

Remark 4. In the linear setting, ensemble sampling is less computationally efficient than
Thompson sampling: incrementally updating the m+ 1 ridge regression estimators, for the
m that our upcoming regret analysis necessities (and which is likely not improvable) is more
expensive than producing a single sample from the posterior of, say, a conjugate Gaussian
linear model—the classic instantiation of Thompson sampling. Obtaining a posterior sample
directly, however, uses d2 memory, whereas ensemble sampling requires only order d memory.
Memory cost may be of particular importance when the linear model is the linearisation of
a neural network, as it often is in the literature (Antorán et al., 2022; Ash et al., 2022;
Mackay, 1992), where a d2 memory requirement is simply prohibitive. Either way, this is
only an aside from the perspective of this work: our aim is a regret bound; we leave the
relative advantages of the methods for others to settle.
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4 A general regret bound for optimistic randomised algorithms

Our analysis of ensemble sampling—and randomised algorithms more generally—will rely
on the usual principle of optimism. To make this precise, consider some fixed instance
parameters θ⋆ ∈ Rd. Then, writing J(θ) = maxx∈X ⟨x, θ⟩, we call

ΘOPT = {θ ∈ Rd : J(θ) ≥ J(θ⋆)} (7)

the set of parameters optimistic for θ⋆. With this in place, our regret bound, a generalisation
of that given for Thompson sampling by Abeille and Lazaric (2017), follows.

Theorem 1. Fix T ∈ N+ ∪ {+∞} and δ ∈ (0, 1]. Suppose X1, . . . , XT are such that for
each t ∈ [T ],

Xt ∈ argmaxx∈X ⟨x, θt⟩ (8)

for some adapted sequence (θt)t∈N. Let (bt)t∈N be an adapted non-negative sequence and let

Θt = ψt(btB
d
2) for each t ∈ N. (9)

Suppose that

E =

T⋂
t=1

{
θ⋆, θt ∈ Θt−1

}
satisfies P(E) ≥ 1− δ. (10)

Also, let
pt−1 = P(θt ∈ ΘOPT ∩Θt−1 | Ft−1) for each t ∈ N+. (11)

Then, the probability that there exists a τ ∈ [T ] such that

R(τ) > 2
√
2max

i∈[τ ]

bi−1

pi−1
βi−1

√dτ log (1 + τ

dλ

)
+

√√√√(τ + 1)

λ
log

(√
4τ/λ+ 1

δ

) (12)

does not exceed 2δ.

We defer the proof of Theorem 1 to Appendix A.
Evidently, the key to establishing a regret bound for a randomised algorithm using the

above theorem is to control the ratios b0/p0, . . . , bT−1/pT−1. As a warm-up for our analysis
of ensemble sampling, we now briefly state and prove such a bound for Thompson sampling.

Claim 2. For Algorithm 1, Thompson sampling,

bt−1

pt−1
≤ 16

√
3dπ for all t ∈ N+. (13)

Corollary 1. Fix δ ∈ (0, 1]. A learner using Algorithm 1, Thompson sampling, incurs regret
that is, with probability 1− δ, bounded as

R(τ) = O
(√
d(d log τ +

√
d log τ log 1/δ + log 1/δ)

√
τ
)

for all τ ∈ N+ .

Remark 5. The above corollary recovers the same regret bound for linear Thompson sampling
as established in Agrawal and Goyal (2013) and Abeille and Lazaric (2017). It might look
tighter in terms of the logarithmic τ factors—that is as we present it for uniform rather than
Gaussian noises, which yield a tighter result.
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To prove the aforementioned claim, we will need the following technical lemma, given as
proposition 5 in Abeille and Lazaric (2017) (we provide a much cleaner proof in Appendix B).

Lemma 3. Fix t ∈ N. Then, for any measure Q over Rd and b > 0,

Q(ΘOPT ∩ ψt(bB
d
2)) ≥ inf

u∈Sd−1
Q(ψt(Hu ∩ bBd

2)), (14)

where Hu denotes the closed halfspace {v ∈ Rd : ⟨v, u⟩ ≥ 1}.

Proof of Claim 2 Since each Ut is in
√
dBd

2 , taking bt−1 =
√
d for all t ∈ N+, leads to

θt ∈ Θt−1 almost surely for all t ∈ N+. Also, since bt ≥ 1, Ct−1 ⊂ Θt−1 for each t ∈ N+, and
thus E holds with the prescribed probability. Now apply Lemma 3 with Q(A) = Pt−1(θt ∈ A),
and note that the right hand side of the inequality therein is the probability that Ut is within
a spherical cap of the form Hu ∩

√
dBd

2 for some u ∈ Sd−1. By the rotational invariance of
Ut, we may consider just u = 1. This probability is then just the ratio of the volume of this
spherical cap to the volume of the the ball

√
dBd

2 . A simple geometric argument shows that
this is lower bounded by 1/(16

√
3π), independently of d.

We thus have a generic way of obtaining high probability regret bounds for randomised
algorithms that recovers the usual result for Thompson sampling. What has changed from
the result of Abeille and Lazaric (2017)?

1. We removed the assumption that the distribution of each θt is absolutely continuous
with respect to the Lebesgue measure.

2. We allow the probabilities of optimism p0, p1, . . . to be an adapted sequence of random
variables, rather than asking for the probability of optimism to be lower bounded by
some fixed real number p ∈ (0, 1], with high probability, a priori.

The above two changes are vital for ensemble sampling, where the distribution of θt,
conditioned on Ft−1, is finitely supported, and where we have to deal with dependencies
between time-steps. While at it, we also made the result anytime—recall that the regret
bound for Thompson sampling in Corollary 1 holds uniformly over τ ∈ N+.

5 Analysis of ensemble sampling

Our advertised result is captured by the following claim and its corollary.

Claim 4. Fix δ ∈ (0, 1]. Take r0 = 7, λ ≥ 5 and m ≥ 400 log(2NT/δ) for N =
(134

√
1 + T/λ)d. Then, for Algorithm 2, linear ensemble sampling, we have that

bt−1

pt−1
≤ 20

√
2m3/2 for all t ∈ [T ]. (15)

Corollary 2. Fix δ ∈ (0, 1] and T ∈ N+. Take r0 = 7, λ ≥ 5 and m = O(d log T/δ). Then
the regret incurred by a learner using Algorithm 2 with those parameters is, with probability
at least 1− δ, bounded as

R(T ) = O
(
(d log T/δ)3/2(d log τ +

√
d log τ log 1/δ + log 1/δ)

√
τ
)

for all τ ∈ [T ] .

7
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With regard to the assumptions within the above result, we have the following remarks:

Remark 6. It suffices that λ > 1, but then terms dependent on λ appear, exploding as λ ↓ 1.

Remark 7. Our ensemble sampling algorithm requires the ensemble size m to be fixed in
advance, and as m depends (logarithmically) on the horizon T , the method only provides
guarantees for a fixed, finite horizon T , and its regret has direct dependence on T . One
could envisage online schemes for constructing new ensemble elements as needed—this would,
however, likely require us to store past observations, and the method would no longer be a
streaming algorithm.

Recall also Remarks 2 and 3 regarding the relationship between our ensemble sampling
algorithm and that of, say, Lu et al. (2018) and Qin et al. (2022). The following two remarks
compare our result to the aforementioned prior work.

Remark 8. The seminal work of Lu and Van Roy (2017) makes strong claims on the
frequentist regret of linear ensemble sampling. Their argument is, however, flawed.1

Remark 9. The only correct result on the regret of linear ensemble sampling is by Qin et al.
(2022), where for a d dimensional linear bandit with an arm set X of cardinality K, they
bound the Bayesian regret incurred as

BR(T ) ≤
√
dT logK + T

√
K log(Tm)

m
(d ∧ logK) ,

where Bayesian regret here denotes that averaged over θ⋆ ∼ N (0, Id). Observe that this bound
necessities an ensemble size linear in T in order to recover Bayesian regret that scales as

√
T

(up to constant and polylogarithmic factors), which largely defeats the purpose of ensemble
sampling. Furthermore, the ensemble size m needs to scale linearly with K to get a logK
overall dependence on K. If we want to tackle a bandit with X = Bd

2 , order e
d−1-many arms

would be needed to discretise it, and so an ensemble size m exponential in d.

In light of the above remarks, our result is the only result for ensemble sampling that
justifies its effectiveness.

5.1 Proof of Claim 4

To establish 4, we need to, for each t ∈ [T ], control properties of the Ft−1-conditional

distributions of r0ξtV
−1/2
t−1 SJt

t−1. Observe that this is a uniform distribution supported on

St−1 =
{
±r0V −1/2

t−1 S1
t−1, . . . ,±r0V

−1/2
t−1 Sm

t−1

}
,

a set of 2m-many elements. What we will show is that there exists a high probability event on
which, at every t ∈ [T ], there exists at least one w ∈ St−1 such that θt = ψt−1(w) is optimistic
for θ⋆, yielding that pt−1 ≥ 1/(2m), and that the set St−1 is not too large—specifically, that
for all u ∈ St−1, ∥w∥ is on the order of

√
m, and thus that bt−1 on the order of

√
m suffices.

1. As confirmed by the authors.
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To formalise this argument, let Γ0,Γ1, . . . be the sequence of positive definite matrices

in Rd×m with columns Γj
t = V

−1/2
t Sj

t , j ∈ [m]. Consider the smallest and largest singular
values of each Γt. These are

sd(Γt) = min
u∈Sd−1

∥ΓT
t u∥2 = min

u∈Sd−1

( m∑
j=1

⟨Γj
t , u⟩2

) 1
2

and s1(Γt) = ∥ΓT
t ∥ = max

u∈Sd−1
∥ΓT

t u∥2 ,

and are bounded as follows:

Theorem 5. For λ ≥ 5, m ≥ 400 log(3 + T ) ∨ 1750d, N = (134
√

1 + T/λ)d and r0 = 7,

P
(
∀t ∈ [T ],

√
m ≤ sd(r0Γt−1) ≤ s1(r0Γt−1) ≤ 10

√
m
)
≥ 1−NTe−

m
400 . (16)

Theorem 5 will be proven after Claim 4.

Proof of Claim 4 Observe that our choice of m satisfies m ≥ 400 log(3 + T ) ∨ 1750d and,
writing E ′ for the event of Theorem 5, yields P(E ′) ≥ 1− δ/2. Let E⋆ denote the event that
{∀t ≥ 0, θ⋆ ∈ Ct}. Then, choosing (βt)t∈N with δ/2 in place of δ, P(E⋆) ≥ 1 − δ/2. Thus
P(E ′ ∩ E⋆) ≥ 1− δ. Now, since on E ′,

∥r0ξtΓJt
t−1∥2 ≤ maxj∥r0Γj

t−1∥2 ≤ s1(r0Γt−1) ≤ 10
√
m, ∀t ∈ [T ] , (17)

taking bt−1 = 10
√
m for all t ∈ N+, we have that for the event E of Theorem 1, E ′ ∩ E⋆ ⊂ E ,

and so P(E) ≥ 1− δ. Therefore, we can apply Theorem 1.

It remains to lower bound p0, . . . , pT−1. Using Lemma 3 with Q(A) = Pt−1(θt ∈ A), we
have that for all t ∈ N+

pt−1 ≥ inf
u∈Sd−1

Pt−1(ψt−1(r0ξtΓ
Jt
t−1) ∈ ψt−1(Hu ∩ bt−1B

d
2))

= inf
u∈Sd−1

Pt−1(r0ξtΓ
Jt
t−1 ∈ Hu ∩ bt−1B

d
2) .

Now, since we assumed E ′ holds, for all t ∈ [T ], we have the bound

1 ≤
s2d(r0Γt−1)

m
= min

u∈Sd−1

1

m

m∑
j=1

⟨r0Γj
t−1, u⟩

2 ≤ min
u∈Sd−1

max
j

⟨r0Γj
t−1, u⟩

2 . (18)

Thus, for any u ∈ Sd−1 there exists a pair (s, j) ∈ {±1}×[m] such that r0sΓ
j
t−1 ∈ Hu∩bt−1B

d
2 ,

and therefore

inf
u∈Sd−1

Pt−1(r0ξtΓ
Jt
t−1 ∈ Hu ∩ bt−1B

d
2) = inf

u∈Sd−1

1

2m

∑
(s,j)

1[r0sΓ
j
t−1 ∈ Hu ∩ bt−1B

d
2 ] ≥

1

2m
,

where the summation runs over all (s, j) ∈ {±1} × [m].

This establishes the claim (with the
√
2 factor present in the claimed ratio there to

account for using δ/2 in place of δ in the definition of each βt).

9
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Remark 10 (On symmetrisation). In proving Claim 4, we use the symmetrisation by the
Rademacher random variable ξt in order to move from statements on minimum singular
values, which are used to show the existence of at least one r0Γ

j
t−1 in a given symmetrised

half-space Hu ∪H−u, to the probability that r0ξtΓ
j
t−1 is in either of the half spaces, Hu or

H−u. Else, for any u, Eq. (18), the middle sum would need to consider only the Γj
t−1 such

that ⟨Γj
t−1, u⟩ ≥ 0, breaking the correspondence with the minimum singular value σd(Γt−1).

Remark 11 (Can we improve the bound?). Our argument is that, for any u ∈ Sd−1, we
lower bound the maximum maxj⟨r0Γj

t−1, u⟩2 by the average 1
m

∑m
j=1⟨r0Γ

j
t−1, u⟩2, which we

show exceeds 1. Lower bounding the maximum gets us the 1/(2m) lower bound for pt−1,
by showing the existence of at least one element of St−1 in Hu. To lower bound pt−1 by a
constant, we would want to show that a constant proportion of the elements of St−1 lies in
Hu, or, equivalently, lower bound the γm-order statistic of ⟨r0Γ1

t−1, u⟩2, . . . , ⟨r0Γm
t−1, u⟩2 for

some constant γ ∈ (0, 1). While order statistics are relatively well-studied for independent
random variables (see, for example, Litvak and Tikhomirov (2018) and Gordon et al. (2012)
and the references therein), order statistics of singular values corresponding to sequences of
random matrices with the kind of dependencies inherent to our problem are virgin territory.

5.2 Proving Theorem 5, bound on singular values

Theorem 5 for t = 0 follows by classical results on sub-Gaussian matrices with independent
rows. Indeed, we show the following in Appendix D.

Lemma 6. Whenever m ≥ 1750d, P
(
1
2

√
m ≤ sd(Γ0) ≤ s1(Γ0) ≤ 3

2

√
m
)
≥ 1− e−

m
400 .

To extend the result to t > 0, we will consider the processes Rj(u) and R(u) defined for
u ∈ Rd by

Rj
t (u) =

⟨u, Sj
t ⟩2

∥u∥2Vt

and Rt(u) =
1

m

∑
j

Rj
t (u). (19)

Note that for v = V 1/2u ̸= 0 one has Rj
t (u) = ⟨v,Γj

t ⟩2/∥v∥2. Since Vt is positive-definite
(and hence a bijection) we observe the following relations.

Claim 7. For all t ≥ 0, j ≤ m,

sup
u̸=0

Rj
t (u) = sup

v ̸=0

⟨v,Γj
t ⟩2

∥v∥2
= ∥Γj

t∥2 and inf
u̸=0

Rt(u) = inf
v ̸=0

∥ΓT
t v∥2

m∥v∥2
=
s2d(Γt)

m
. (20)

With that, Theorem 5 will follow from the following bounds on Rt(u) for a fixed u ∈ Sd−1,
together with a covering argument.

Lemma 8. Fix u ∈ Sd−1 and λ ≥ 5. Suppose that 1
2 ≤ R0(u) ≤ 3

2 and that m ≥
400 log(3 + 2T ). Then,

P
{
∀t ∈ [T ],

9

100
≤ Rt(u) ≤

5

3

}
≥ 1− Te−

m
400 . (21)

The above lemma will be proven after Theorem 5. We will, of course, need the following
well known bound on epsilon-nets (see, for example, Lemma 4.10 in (Pisier, 1999)).

10
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Lemma 9. For all δ in (0, 1], there exists an δ-net N of Sd−1 with |N | ≤
(
1 + 2

δ

)d
.

Proof of Theorem 5 For some δ ∈ (0, 1), the value of which shall be determined shortly,
let Nδ be a δ-net of Sd−1. Consider the event of Lemma 6: on that event, and with
m ≥ 400 log(3 + T ) ∨ 1750d, the conditions of Lemma 8 are satisfied for all u ∈ Sd−1. Let

Eδ =
{
∀v ∈ Nδ, ∀t ∈ [T ],

9

100
≤ Rt(v) ≤

5

3

}
. (22)

By a union bound over the aforementioned events, P(Eδ) ≥ 1− (|Nδ|+ 1)Te−
m
400 . We will

now use a covering argument to show that for δ sufficiently small, Eδ is a subset of the event
given in the theorem.

For this, note that for every u ̸= 0 and z = V
1/2
t u,

Rt(u) =
1

m

m∑
j=1

Rj
t =

1

m

m∑
j=1

⟨z,Γj
t ⟩2

∥z∥2
=

∥Γtz∥2

m∥z∥2
, (23)

and that for all non-negative a, b, A,B with b ≥ a > 0,∣∣∣∣A2

a2
− B2

b2

∣∣∣∣ = ∣∣∣∣A2(b2 − a2) + (A2 −B2)a2

a2b2

∣∣∣∣ ≤ 2A2

a2
|b− a|
b

+
|A−B|(A+B)

b2
. (24)

Let u ∈ Sd−1, v ∈ N be such that ∥u − v∥ ≤ δ and z = V
1/2
t u, w = V

1/2
t v. Denote

A = ∥Γtz∥, B = ∥Γtw∥, a = ∥z∥, b = ∥w∥. Assume without loss of generality that b ≥ a.
Since v ∈ Sd−1, b ≥

√
λ. Then,

2
A2

a2
|b− a|
b

≤ 2∥Γt∥2∥z − w∥√
λ

≤ 2∥Γt∥2
∥V 1/2

t ∥√
λ

δ (25)

and likewise
|A−B|(A+B)

b2
≤ 2∥Γt∥∥Γt(z − w)∥√

λ
≤ 2∥Γt∥2

∥V 1/2
t ∥√
λ

δ, (26)

and so we choose δ =
√
λ/(132∥V 1/2

t ∥), such that

|Rt(u)−Rt(v)| ≤
4∥Γt∥2∥V 1/2

t ∥
m
√
λ

δ ≤ ∥Γt∥2

33m
. (27)

Then by Claim 7, on Eδ, for our choice of δ,

∥Γt∥2 = m sup
u̸=0

Rt(u) ≤ m sup
v∈Nδ

Rt(u) +
∥Γt∥2

51
and so ∥Γt∥2 ≤

55

32
m, (28)

and so, by the same argument, on Eδ, we have that

s2d(Γt) ≥ m inf
v∈N

Rt(u)−
∥Γt∥2

33
≥ 11

400
m. (29)

Now examine the event in the statement of the theorem: clearly, Eδ is contained within.
And since ∥Vt∥ ≤ t+ λ, by Lemma 9, |Nδ|+ 1 ≤ N .

11
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5.3 Proof of Lemma 8

Finally, we prove Lemma 8. We will need the following de la Peña-type concentration result,
established in Appendix C.

Lemma 10. Let (At)t∈N+ be an adapted real-valued sequence and (σt)t∈N an nonnegative,
adapted sequence. Suppose that for some fixed m > 0, each At+1 is Ft-conditionally σt/

√
m-

sub-Gaussian. Then, for any n ∈ N+, and all α > 0 satisfying α2m ≥ 2 log
(
1 +

∑n
i=1 σ

2
i

)
,

P
{
∃τ ∈ [n] :

∣∣∣∣ τ∑
i=1

Ai

∣∣∣∣ > α

( τ∑
i=1

σ2i + 1

)}
≤ e−α2m/4. (30)

Since we now consider a fixed u ∈ Sd−1, we will write Rj
t := Rj

t (u) and Rt := Rt(u). Let

Dt = EtRt+1 −Rt and Wt+1 = Rt+1 − EtRt+1 (31)

be respectively the drift and the noise of the process (Rt)t∈N. Also let

Qt = ⟨u,Xt+1⟩2/∥u∥2Vt+1
and σ2t = 2Q2

t +QtRt. (32)

In Appendix E, we verify that the above defined quantities satisfy the following claims:

Claim 11. Dt = (23 −Rt)Qt for all t ∈ N.

Claim 12. Each Wt+1 is conditionally σt-subGaussian.

Claim 13. For any 0 ≤ τ ≤ t < T , we have that

t∑
i=τ

σ2i + 1 ≤ 3 +

t∑
i=τ

QiRi, (33)

and if, furthermore, R0 ≤ 2, we also have the bound

t∑
i=τ

σ2i + 1 ≤ (3 + 2T )2. (34)

Proof of Lemma 8 Let (τ, t) be a pair of time-steps satisfying 0 ≤ τ ≤ t < T . By
Lemma 10, Claim 12 and Claim 13, for any α > 0 such that α2m ≥ 4 log(3 + T ), the event

Eτ (α) =
{
∃t ≥ τ :

∣∣∣∣ t∑
i=τ

Wi+1

∣∣∣∣ > α

(
3+

t∑
i=τ

QiRi

)}
satisfies P(Eτ (α)) ≤ e−α2m/4 . (35)

Now, we decompose Rt+1 as

Rt+1 = Rt+1 − EtRt+1 + EtRt+1 −Rt +Rt =Wt+1 +Dt +Rt, (36)

which unrolled back to τ , together with Claim 11, gives

Rt+1 =
t∑

i=τ

Wi+1 +
t∑

i=τ

(
2

3
−Ri

)
Qi +Rτ . (37)

12
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Observe from the above that R0, R1, . . . is a process that drifts towards 2
3 , with the strength

of the drift proportional to the current level of deviation. We will now argue that, if Rt

drifts sufficiently far from 2
3 , the drift will overwhelm the effect of the noises (Wt+1).

Lower bound. Let 0 ≤ τ ≤ s < T be such that Rτ ≥ 1
2 > Rt+1 for all t ∈ {τ, . . . , s} and

s is maximal (since we have assumed R0 ≥ 1
2 , if no such τ exists, we are done). Then, for

any t ∈ {τ, . . . , s}, if the complement of Eτ (α) holds for some α ≤ 1/10, then

Rt+1 ≥
t∑

i=τ+1

(
(1− α)Ri −

2

3

)
Qi + (1− (1 + α)Qτ )Rτ +

2

3
Qτ − 3α ≥ 9

100
. (38)

where we used that ((1−α)Ri−1)Qi ≥ 0 for all i ∈ {τ+1, . . . , t} for our choice of α and that
Qτ ≤ 1

λ ≤ 1
5 . The lower bound thus holds on the complement of E0(1/10)∪ · · · ∪ ET−1(1/10),

the probability of which is no less than 1− Te−
m
400 .

Upper bound. The upper bound follows near-verbatim, taking τ with Rτ ≤ 3
2 < Rτ+1.

Remark 12. The lower bound of Lemma 8 was, of course, the difficult direction. Indeed,
the upper bound follows rather easily from standard bounds, say Theorem 20.4 in Lattimore
and Szepesvári (2020)—the same de la Peña-style result used to establish the confidence sets
used here for ridge regression.

Remark 13 (On the use of uniform noise). The proof of Lemma 8 was where we used that
the targets (U j

t ) are uniform—or, in particular, that they are bounded random variables—for
each Wt+1 features (U j

t )
2 terms, and might otherwise be only sub-exponential. Of course,

in that case, we would simply use a truncation argument: pick some truncation level a > 0,
set W ′

t+1 = Wt+1 ∧ a for each t ∈ N+ and work with the process given by the recursion
R′

t+1 =W ′
t+1 +Dt +R′

t. Then, Rt ≥ R′
t for all t ∈ N, and the truncated noises (W ′

t+1) are
once again sub-Gaussian, so our approach to lower bounding Rt would also work for R′

t.
We would then establish the upper bound as in Remark 12, observing that the resulted cited
therein does not require the targets to be bounded.

6 Discussion

We showed that linear ensemble sampling genuinely works. Per Remark 9 and Remark 8,
ours is the first theoretical result for linear ensemble sampling to carry any real weight.
As discussed in Remarks 2, 3, 10 and 13, while the algorithm we study varies from that
presented in Lu et al. (2018) and Qin et al. (2022), the differences are largely cosmetic.
Our result might not be tight. We discuss why in Remark 11—in short, getting a tighter
regret bound, if possible, might not be easy. Improving the regret bound presented here
for ensemble sampling might first require developing a better understanding of Thompson
sampling itself. We also do not envisage the size of the ensemble m being improvable by
more than absolute constants. On a more positive note, there should be little challenge in
extending our result to the usual non-linear settings: generalised linear models, kernels, and
neural networks, via the neural tangent kernel.
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Appendix A. Proof of regret bound

We will use the following concentration inequality, a simple consequence of Exercise 20.8
in Lattimore and Szepesvári (2020) and Hoeffding’s lemma (Lemma 2.2, Boucheron et al.
(2013)).

Lemma 14. Fix 0 < δ ≤ 1. Let (ξt)t∈N+ be a real-valued martingale difference sequence
satisfying |ξt| ≤ c almost surely for each t ∈ N+ and some c > 0. Then,

P

∃τ :

(
τ∑

t=1

ξt

)2

≥ 2c2(τ + 1) log

(√
c2τ + 1

δ

) ≤ δ. (39)

We will also need the following classic result (Lemma 19.4 in Lattimore and Szepesvári
(2020)).

Lemma 15 (Elliptical potential lemma). Let (xt)t∈N+ be a sequence of vectors in Bd
2 , let

V0 = λI for some λ > 0 and Vt = V0 +
∑t

i=1 xix
T
i for each t ∈ N+. Then, for all τ ∈ N+,

τ∑
t=1

∥xt∥2V −1
t−1

≤ 2d log
(
1 +

τ

λd

)
. (40)

Claim 16. For any t ∈ N+, Xt is a subgradient of J at θt.

Proof Fix t ∈ N+. For any θ ∈ Rd,

J(θt) + ⟨Xt, θ − θt⟩ = ⟨Xt, θt⟩+ ⟨Xt, θ − θt⟩ = ⟨Xt, θ⟩ ≤ max
x∈X

⟨x, θ⟩ = J(θ), (41)

which is the defining inequality for a subgradient.

Proof of regret bound, Theorem 1 For any τ ∈ [T ], the regret is split into two parts,
which we will control separately:

R(τ) =

τ∑
t=1

(J(θ⋆)− J(θt)) +

τ∑
t=1

(J(θt)− ⟨Xt, θ
⋆⟩) . (42)

16



Ensemble Sampling for Linear Bandits

Fix an index t ∈ [T ] and consider J(θt)− ⟨Xt, θ
⋆⟩. We have that, on E ,

J(θt)− ⟨Xt, θ
⋆⟩ = ⟨Xt, θt − θ⋆⟩ ≤ ∥Xt∥V −1

t−1
∥θt − θ⋆∥Vt−1 ≤ γt−1∥Xt∥V −1

t
. (43)

where the first inequality is by Cauchy-Schwartz and second uses that on E , we have
θt, θ

⋆ ∈ Θt−1, and the definition of γt−1.
Now consider J(θ⋆) − J(θt), again for a fixed index t ∈ [T ]. Let θ− be a minimiser J

over Θt−1 (which is well defined, since J is continuous and Θt−1 closed) and let θ+ be any
element of ΘOPT. Then, on E , since θ⋆, θt ∈ Θt−1,

J(θ⋆)− J(θt) ≤ J(θ⋆)− J(θ−) ≤ J(θ+)− J(θ−). (44)

Moreover, likewise for any probability measure Q over ΘOPT, we have

J(θ⋆)− J(θt) ≤
∫
J(θ+)− J(θ−) dQ(θ+). (45)

Writing ΘOPT
t−1 = ΘOPT ∩Θt−1, we choose Q = Qt−1 for the integral above given by

Qt−1 =

{
P(θt ∈ · ∩ΘOPT

t−1 | Ft−1)/pt−1 , pt−1 > 0 ;

any arbitrary probability measure, otherwise .
(46)

Then, by definition of Qt−1 and since θ− is Ft−1-measurable, we get

J(θ⋆)− J(θt) ≤ Et[(J(θt)− J(θ−))1[θt ∈ ΘOPT
t−1 ] | Ft−1]/pt−1, (47)

where for pt−1 = 0 we take the upper bound to be positive infinity. Observing that Xt is a
subgradient of J at θt (Claim 16 and Eq. (41)) and applying Cauchy-Schwartz, we have that

J(θt)− J(θ−) ≤ ⟨Xt, θt − θ−⟩ ≤ ∥Xt∥V −1
t−1

∥θ− − θt∥Vt−1 , (48)

Moreover, recalling that θ− ∈ Θt−1, that Θ
OPT
t−1 ⊂ Θt−1 and by definition of γt−1,

∥θ− − θt∥Vt−11[θt ∈ ΘOPT
t−1 ] ≤ γt−1. (49)

So, since γt−1 is, by assumption, Ft−1-measurable,

E[(J(θt)− J(θ−))1[θt ∈ ΘOPT
t−1 ] | Ft−1]/pt−1 ≤

γt−1

pt−1
E[∥Xt∥V −1

t−1
| Ft−1]. (50)

Chaining the above inequalities and writing ∆t = E[∥Xt∥V −1
t−1

| Ft−1]− ∥Xt∥V −1
t−1

, we have

J(θ⋆)− J(θt) ≤
γt−1

pt−1
E[∥Xt∥V −1

t−1
| Ft−1] =

γt−1

pt−1

(
∥Xt∥V −1

t−1
+∆t

)
, (51)

Combining Eqs. (43) and (51) with the regret decomposition in Eq. (42), for any τ ∈ [T ],

R(τ) ≤
T∑
t=1

((
γt−1 +

γt−1

pt−1

)
∥Xt∥V −1

t−1
+
γt−1

pt−1
∆t

)
≤ max

i∈[τ ]

γi−1

pi−1

(
2

τ∑
t=1

∥Xt∥V −1
t−1

+

τ∑
t=1

∆t

)
.

(52)
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Now, by Cauchy-Schwartz and the elliptical potential lemma (Lemma 15), for any τ ∈ N+,

τ∑
t=1

∥Xt∥V −1
t−1

≤

(
τ

τ∑
t=1

∥Xt∥2V −1
t−1

) 1
2

≤
√
2τd log

(
1 +

τ

dλ

)
. (53)

To deal with the second sum, observe that since for all t ∈ N+, Vt−1 ⪰ λI and Xt ∈ Bd
2 ,

∥Xt∥2V −1
t−1

= ⟨Xt, V
−1
t−1Xt⟩ ≤ ∥Xt∥22/λ ≤ 1/λ and so |∆t| ≤ 2/

√
λ for all t ∈ N+. (54)

Also, observe that (∆t)t∈N is a martingale. Thus, we can apply Lemma 14 with c = 2/
√
λ,

obtaining

P

∃τ ∈ N+ :
τ∑

t=1

∆t ≥ 2

√√√√2(τ + 1)

λ
log

(√
4τ/λ+ 1

δ

) ≤ δ. (55)

Combined with Eq. (52), the bounds on the two sums, Eq. (53) and Eq. (55), together with
a union bound, yield the claim.

Appendix B. Generic optimism with elliptical confidence sets

Lemma 17. Let F : Rd → R be a convex function and let u be its maximizer over the unit
ball. Then, for any v ∈ Hu

.
= {v ∈ Rd : ⟨v, u⟩ ≥ 1}, we have F (v) ≥ F (u).

Proof For any v ∈ Rd with ⟨v, u⟩ > 1, the ray from v to u enters the interior of the unit
ball. Hence, for any such v, there exists a z ∈ Bd

2 and α ∈ (0, 1) such that u = αz+(1−α)v.
By convexity and maximality,

F (u) = F (αz + (1− α)v) ≤ αF (z) + (1− α)F (v) ≤ αF (u) + (1− α)F (v). (56)

Hence F (u) ≤ F (v). Since any finite convex function on an open set is continuous, the result
holds for any v ∈ Hu.

Proof of Lemma 3 Write F = J ◦ψt; since J is convex and ψt is affine, F is convex. Let u+

be the maximiser of F over Bd
2 and note that since Bd

2 is strictly convex, u+ ∈ ∂Bd
2 = Sd−1.

By assumption, θ⋆ ∈ ψt(B
d
2), and so J(θ⋆) ≤ F (u+). By Lemma 17, F (u+) ≤ F (u′) for any

u′ ∈ Hu+ . Thus ψt(Hu+) ⊂ ΘOPT. Moreover, by assumption, Θt ⊂ ψt(btB
d
2). These two

inclusions yield

ΘOPT ∩Θt ⊃ ψt(Hu+) ∩ ψt(btB
d
2) ⊃ ψt(Hu+ ∩ btBd

2). (57)

Thus, for any measure Q on Rd,

Q(ΘOPT ∩Θt) ≥ Q(ψt(Hu+ ∩ btBd
2)) ≥ inf

u∈Sd−1
Q(ψt(Hu ∩ btBd

2)).
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Appendix C. Concentration result

Lemma 10 is effectively a corollary to the following de la Peña-type concentration result.

Lemma 18. Let (Hi)i∈N be a filtration and ((Ai, Bi))i∈N+ be pairs of random variables such
that each Ai is Hi−1-conditionally Bi-subGaussian. Then, for any x, y > 0,

P

∃τ > 0:

(
τ∑

i=1

Ai

)2

≥

(
τ∑

i=1

B2
i + y

)(
x+ log

(
1 +

1

y

τ∑
i=1

B2
i

)) ≤ e−x/2. (58)

Proof of Lemma 10 Consider the right hand side of the event in Eq. (58); choosing
y = 1/m, x = α2m/2, and substituting B2

i = σ2i /m, it is equal to

1

m

(
τ∑

i=1

σ2i + 1

)(
α2m

2
+ log

(
1 +

τ∑
i=1

σ2i

))
≤ α2

(
τ∑

i=1

σ2i + 1

)
, (59)

where the inequality follows by assumption on α. We conclude by using the simple observa-
tion that for z ≥ 0, (z + 1) ≤ (z + 1)2.

The result of Lemma 18 is implied immediately by Theorem 2.1 in de la Pena et al.
(2004), but since a direct proof is brief, we include it.

Proof of Lemma 18 For any s ∈ R, define the random process M1(s),M2(s), . . . given by

Mn(s) = exp

(
s

n∑
i=1

Ai − s2/2

n∑
i=1

B2
i

)
for all n ∈ N+. (60)

Note that (Mn(s))s∈N+ is a nonnegative supermartingale satisfying EM1(s) ≤ 1. Indeed, for
any n ∈ N+,

EMn(s) = EMn−1(s)E[exp(sAn − s2/2B2
n) | Hn−1] ≤ EMn−1(s) ≤ . . . ≤ EM1(s) ≤ 1. (61)

Let M̄1, M̄2, . . . be the process given by M̄n =
∫
MndN (0, y) for all n ∈ N+. Then, by Lemma

20.3 of Lattimore and Szepesvári (2020), (M̄n)n∈N+ is again a nonnegative supermartingale.
Evaluating the integral that defines each M̄n, we see that

M̄n =

√
y∑n

i=1B
2
i + y

exp

(
(
∑n

i=1Ai)
2

2(
∑n

i=1B
2
i + y)

)
for all n ∈ N+. (62)

Applying Ville’s inequality to (M̄n) (Ville, 1939), we have that

e−x/2 ≥ e−x/2EM̄1 ≥ P
(

sup
n∈N+

M̄n ≥ ex/2
)

= P
(
∃n ∈ N+ : log M̄n ≥ x/2

)
, (63)

which, after plugging in the expression for M̄n and rearranging, is the stated inequality.
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Appendix D. Proof of initialisation result, Lemma 6

Lemma 6 is an immediate consequence of the following theorem (take δ =
√
m/20).

Theorem 19. Let M ∈ Rm×d, m ≥ d, be a matrix with rows M1, . . . ,Mm distributed
uniformly and independently on

√
dSd−1. Then, for C = 2(1 +

√
3), and for all δ > 0,

P{
√
m− C(

√
3d+ δ) ≤ sd(M) ≤ s1(M) ≤

√
m+ C(

√
3d+ δ)} ≥ 1− e−δ2 . (64)

Claim 20. Fix x ∈ Sd−1, let U ∼ U(Sd−1) and U2
x = ⟨U, x⟩2. Then,

E exp(s |U2
x − EU2

x |) ≤ exp

(
s2ν/2

1− cs

)
for all 0 < s < 1/c (65)

and some ν, c > 0 that satisfy ν ≤ 2/d2 and c ≤ 4/d, and where EU2
x = 1/d.

Proof It is known that the thus defined U2
x has distribution Beta(12 ,

d−1
2 ) (see, for example,

Theorem 1.5 and the discussion thereafter in Fang, 1990), which has the stated expectation.
We thus need only look up moment generating function bounds for beta random variables.
Skorski (2023) derives such in their proof of their Theorem 1, and our result follows by
substituting in the parameters of our beta distribution, and bounding crudely.

Proof of Theorem 19 For x ∈ Sd−1, consider Z2
x = 1

m∥Mx∥22 = d
m

∑m
j=1⟨Mj/

√
d, x⟩2.

Observe that eachMj/
√
d ∼ U(Sd−1). Using Claim 20 and thatM1, . . . ,Mm are independent,

we have that, for all 0 < sd/m < 1/c,

E exp(s |Z2
x − 1|) =

m∏
j=1

E exp

(
sd

m
|U2

x − EU2
x |
)

≤ exp

(
s2d2ν/(2m)

1− csd/m

)
.

Examining section 2.4 of Boucheron et al. (2013), we see that Z2
x − 1 is what would be

termed there sub-gamma with parameters (d2ν/m, cd/m) on both tails. Thus, it satisfies
the there-stated Bernstein-type bound for sub-gamma random variables that, combined with
a union bound over the two tails, and the bounds ν ≤ 2/d2 and c ≤ 4/d from Claim 20,
gives that, for all r > 0,

P(|Z2
x − 1| ≥

√
4r/m+ 4r/m) ≤ 2e−r .

Now let N be a 1
4 -net of S

d−1. By the usual variational representation of norm argument,
supx∈Sd−1 |z2x − 1| ≤ 2maxx∈N |z2x − 1| (see, e.g., exercise 4.4.3 in Vershynin, 2018). Also, by
our bound on nets from Lemma 9, |N | ≤ 9d. Thus, for any r > 0, the event

Er =

{
sup

x∈Sd−1

|Z2
x − 1| ≥ 4

√
r/m+ 8r/m

}
satisfies P(Er) ≤ 2|N |e−r ≤ exp(3d− r) .

(66)
Next, observe that since Zx > 0, we have that |Z2

x − 1| ≥ |Zx − 1| ∨ |Zx − 1|2. So,

|Z2
x − 1| ≥ λ|Zx − 1|+ (1− λ)|Zx − 1|2 for all λ ∈ [0, 1]. (67)
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Using the above inequality with λ =
√
3− 1 shows that

|Z2
x − 1| ≤ 4

√
r/m+ 8r/m =⇒ |Zx − 1| ≤ 2(1 +

√
3)
√
r/m . (68)

Therefore, taking
√
r =

√
3d+ δ gives us that, with probability at least 1− e−δ2 ,

√
m sup

x∈Sd−1

|Zx − 1| ≤ 2(1 +
√
3)(

√
3d+ δ) .

Seeing as √
m inf

x∈Sd−1
Zx = sd(M) ≤ s1(M) =

√
m sup

x∈Sd−1

Zx

we have now proven the stated theorem.

Appendix E. Proofs of claims

Proof of Claim 11 Fix u ∈ Sd−1 and note that

Rj
t+1 =

⟨u, Sj
t + Ut+1Xt+1⟩2

∥u∥2Vt+1

=
⟨u, Sj

t ⟩2 + (U j
t+1)

2⟨u,Xt+1⟩2 + 2U j
t+1⟨u, S

j
t ⟩⟨u,Xt+1⟩

∥u∥2Vt
+ ⟨u,Xt+1⟩2

. (69)

Recall that Et = E[· | Ft], that Xt+1 and Sj
t are Ft-measurable and that U j

t+1 is independent

of Ft. The latter of these gives EtU
j
t+1 = 0 and Et(U

j
t+1)

2 = 2
3 . With that, we have that

EtR
j
t+1 −Rj

t =
⟨u, Sj

t ⟩2 + 2
3⟨u,Xt+1⟩2

∥u∥2Vt
+ ⟨u,Xt+1⟩2

− ⟨u, Sj
t ⟩2

∥u∥2Vt

(70)

=
2
3⟨u,Xt+1⟩2∥u∥2Vt

− ⟨u, Sj
t ⟩2⟨u,Xt+1⟩2

∥u∥2Vt

(
∥u∥2Vt

+ ⟨u,Xt+1⟩2
) (71)

=
⟨u,Xt+1⟩2

∥u∥2Vt
+ ⟨u,Xt+1⟩2

(
2

3
− ⟨u, Sj

t ⟩2

∥u∥2Vt

)
(72)

= Qt

(
2

3
−Rj

t

)
. (73)

The statement follows by averaging over j ∈ {1, . . . ,m}.

Proof of Claim 12 Subtracting Eq. (70) from Eq. (69) and averaging over j ∈ {1, . . . ,m},
we see that

Wt+1 = Rt+1 − EtRt+1 =
Qi

m

m∑
i=1

((U j
i+1)

2 − 2

3
) +

1

m

m∑
i=1

U j
i+1H

j
i (74)

where Hj
i = ⟨u,Xi+1⟩⟨u, Sj

i ⟩/∥u∥2Vi+1
. Note that Qi and Hi are Fi measurable and that

U1
i+1, . . . , U

m
i+1 are independent of Fi and one another, and their absolute values are bounded

by 1. Thus, examining the two terms in the sum we see that:
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• Qi

m

∑m
i=1((U

j
i+1)

2 − 2
3) is Fi-conditionally

Qi√
m
-sub-Gaussian.

• 1
m

∑m
i=1 U

j
i+1H

j
i is Fi-conditionally

Ht√
2m

-sub-Gaussian, where

(Ht)
2 :=

1

m

m∑
j=1

(Hj
i )

2 =
1

m

m∑
j=1

⟨u,Xi+1⟩2⟨u, Sj
i ⟩2

∥u∥4Vi+1

=
Qi

m

m∑
j=1

⟨u, Sj
i ⟩2

∥u∥2Vi+1

≤ QiRi. (75)

The result follows by recalling that if the sum of an a-sub-Gaussian random variable and a
b-sub-Gaussian random variable is

√
2(a2 + b2)-sub-Gaussian.

The proof of the final claim will require the following simple lemma.

Lemma 21. Let b1, b2, . . . be a sequence of real numbers in [0, 1]. Then, for any λ > 0 and
n ∈ N+,

n∑
j=1

bj

λ+
∑j

i=1 bi
≤ 2

λ
+ 2 log(λ+ n− 1) and

n∑
j=1

(
bj

λ+
∑j

i=1 bi

)2

≤ 4(λ+ 1)

λ2
. (76)

Proof Let (nk : k ≥ 1) be a finite sequence of integers where each nk is the largest integer
such that

∑nk
i=1 bi ≤ k, and we stop if nk = n. Then for some ℓ ∈ N, we have a sequence

0 = n0 < n1 < . . . < nℓ = n such that for all 1 ≤ k ≤ ℓ, k − 1 ≤
∑nk

i=1 bi ≤ k, and if k < ℓ,

then k ≤
∑nk+1

i=1 bi. Hence
∑nk+1

i=nk+1 bi ≤ 2. Therefore, for the first sum,

n∑
j=1

bj

λ+
∑j

i=1 bi
=

n−1∑
k=0

nk+1∑
j=nk+1

bj

λ+
∑j

i=1 bi
≤

n−1∑
k=0

nk+1∑
j=nk+1

bj

λ+
∑nk+1

i=1 bi

≤
n−1∑
k=0

1

λ+ k

nk+1∑
j=nk+1

aj ≤ 2
n−1∑
k=0

1

λ+ k
≤ 2

λ
+ 2

∫ n−1

0

1

λ+ x
dx,

which is in equal to the stated upper bound. For the second sum,

n∑
j=1

(
bj

λ+
∑j

i=1 bi

)2

=

n−1∑
k=0

nk+1∑
j=nk+1

(
bj

λ+
∑j

i=1 bi

)2

≤
n−1∑
k=0

nk+1∑
j=nk+1

(
bj

λ+
∑nk+1

i=1 bi

)2

≤
n−1∑
k=0

1

(λ+ k)2

 nk+1∑
j=nk+1

bj

2

≤
n−1∑
k=0

4

(λ+ k)2
≤ 4

λ2
+

∫ ∞

0

4

(λ+ x)2
dx,

which is again equal to the stated upper bound.

Proof of Claim 13 Noting that since ∥u∥ = 1 and λ ≥ 5, by Lemma 21,

t∑
i=τ

Qi ≤
T−1∑
i=0

⟨u,Xi+1⟩2

λ+
∑i+1

j=0⟨u,Xj⟩2
≤ 2

5
+ log(4 + T ) ≤ 17

5
+ T (77)
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and
t∑

i=τ

Q2
i ≤

T−1∑
i=0

Q2
i =

T−1∑
i=0

(
⟨u,Xi+1⟩2

λ+
∑i+1

j=0⟨u,Xj⟩2

)2

≤ 5

λ
≤ 1. (78)

Using these, we have

1 +
t∑

i=τ

σ2i = 1 + 2
t∑

i=τ

Q2
i +

t∑
i=τ

RiQi ≤ 3 +
t∑

i=τ

RiQi ≤ 3 +

(
17

5
+ T

)
max
τ≤i≤t

Ri, (79)

which establishes the first part of the claim. Now, since (a+b)2 ≤ 2a2+2b2 and by symmetry,

Rj
i =

⟨u, Sj
0 +

∑i
i=1 U

j
ℓXℓ⟩2

λ+
∑i

ℓ=1⟨u,Xℓ⟩2
≤ 2Rj

0 + 2

(∑i
ℓ=1⟨u,Xℓ⟩

)2
λ+

∑i
ℓ=1⟨u,Xℓ⟩2

≤ 2Rj
0 + 2 max

b∈[0,1]

(ib)2

λ+ ib2
(80)

≤ 2Rj
0 + 2i. (81)

By definition, Ri =
1
m

∑m
j=1R

j
i , and by assumption R0 ≤ 2 and i ≤ T − 1, so Ri ≤ 4 + 2i ≤

2 + 2T . And so,

3 +

(
17

5
+ T

)
max
τ≤i≤t

Ri ≤ 3 +

(
17

5
+ T

)
(2 + 2T ) ≤ (3 + 2T )2, (82)

which shows the second part of the claim.
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