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Abstract

The vertex index of a symmetric convex body K ⊂ Rn, vein(K),
was introduced in [BL]. Bounds on the vertex index were given in
the general case as well as for some basic examples. In this note we
improve these bounds and discuss their sharpness. We show that

vein(K) ≤ 24n3/2,

which is asymptotically sharp. We also show that the estimate

n3/2

√
2πe ovr(K)

≤ vein(K),

obtained in [BL] (here ovr(K) denotes the outer volume ratio of K),
is not always sharp. Namely, we construct an example showing that
there exists a symmetric convex body K which simultaneously has
large outer volume ratio and large vertex index. Finally, we improve
the constant in the latter bound for the case of the Euclidean ball from√

2πe to
√

3, providing a completely new approach to the problem.

1 Introduction

Let K be a convex body symmetric about the origin 0 in Rn (such bodies
below we call 0-symmetric convex bodies). The vertex index of K, vein(K),
was introduced in [BL] as

vein(K) = inf

{∑
i

‖xi‖K | K ⊂ conv {xi}

}
,

where ‖x‖K = inf{λ > 0 | x ∈ λK} denotes the Minkowski functional of
K. In other words, given K one looks for the convex polytope that contains
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K and whose vertex set has the smallest possible closeness to 0 in metric
generated by K. Let us note that vein(K) is an affine invariant of K, i.e. if
T : Rn → Rn is an invertible linear map, then vein(K) = vein(T (K)).

The vertex index is closely connected to some important quantities in
analysis and geometry including the illumination parameter of convex bod-
ies, introduced by Bezdek; the Boltyanski-Hadwiger illumination conjecture,
which says that every convex body in R can be illuminated by 2n sources;
the Gohberg-Marcus conjecture, which avers that a convex body can be
covered by 2n smaller positive homothetic copies of itself). We refer to
[B1, B2, BL, MS] for the related discussions, history, and references.

Denote the volume by | · |, the canonical Euclidean ball in Rn by Bn
2 , and

as usual define the outer volume ratio of K by ovr(K) = inf (|E|/|K|)1/n,
where the infimum is taken over all ellipsoids E ⊃ K. In [BL] the following
theorem has been proved.

Theorem 1.1 There exists a positive absolute constant C such that for every
n ≥ 1 and every 0-symmetric convex body K in Rn one has

n3/2

√
2πe ovr(K)

≤ vein(K) (1)

and
vein(K) ≤ C n3/2 ln(2n). (2)

Moreover, in [GL] it was shown that vein(K) ≥ 2n for every n-dimensional
0-symmetric convex body K.

The purpose of this note is to discuss sharpness of estimates 1 and 2. We
start our discussion with the first estimate. Note that it is sharp (especially
in view of estimate (3) below) for the class of bodies with finite outer volume
ratio, that is bodies such that ovr(K) ≤ C, where C is a positive absolute
constant (fixed in advance). This class is very large, it includes in particular
the unit balls of `p-spaces for p ≥ 2 as well as 0-symmetric convex polytopes
having at most C1n facets (here C1 is another absolute constant). In Section 3
we show that in fact (1) is not sharp, i.e. that in general vein(K) is not
equivalent to n3/2/ovr(K). Namely, we construct a 0-symmetric convex body
K which has simultaneously large outer volume ratio and large vertex index
(in fact both are largest possible up to a logarithmic factor): vein(K) ≈ n3/2

and ovr(K) ≈
√

n/
√

ln(2n). It shows that for some bodies the gap in (1)
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can be of the order
√

n/
√

ln(2n). Note that despite of our example, there
are bodies with large outer volume ratio for which (1) is sharp, e.g. for the
n-dimensional octahedron Bn

1 we have vein(Bn
1 ) = 2n ([BL]) and

ovr(Bn
1 ) =

√
π

2

(
n

Γ(1 + n/2)

)1/n

≈
√

π√
2e

√
n.

The construction of our example is of the random nature, essentially we take
the absolute convex hull of n2 random points on the sphere and show that it
works with high probability.

Next, in Section 4, we remove the logarithmic factor in the estimate (2),
improving it to the asymptotically best possible one. The main new ingredi-
ent in our improvement is a recent result of Batson, Spielman, and Srivastava
([BSS]) on the decomposition of a linear operator acting on Rn (see Theo-
rem 4.1 below). The application of their theorem instead of corresponding
Rudelson’s Theorem used in [BL] allows us to remove the unnecessary loga-
rithm.

In Section 5 we turn to the vertex index of the Euclidean ball. In [BL] it
was conjectured that

vein(Bn
2 ) = 2n3/2,

i.e., the best configuration for the Euclidean ball is provided by the vertices
of the n-dimensional octahedron. The conjecture was verified for n = 2 and
n = 3. Note that by (1)

n3/2

√
2πe

≤ vein(Bn
2 ).

We improve this bound to n3/2/
√

3. Our proof uses completely different
approach via operator theory (recall that in [BL] the approach via volumes
was used). We think that this new approach is interesting by itself and could
lead to more results. Thus the results of Sections 4 and 5 can be summarized
in the following theorem.

Theorem 1.2 For every n ≥ 1 and every 0-symmetric convex body K in Rn

one has
vein(K) ≤ 24 n3/2. (3)

Moreover
vein(Bn

2 ) ≥ n3/2/
√

3. (4)
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2 Preliminaries and Notation

By | · | and 〈·, ·〉 we denote the canonical Euclidean norm and the canonical
inner product on Rn. The canonical basis of Rn we denote by e1, . . . , en. By
‖ · ‖p, 1 ≤ p ≤ ∞, we denote the `p-norm, i.e.

‖x‖p =

(∑
i≥1

|xi|p
)1/p

for p < ∞ and ‖x‖∞ = sup
i≥1

|xi|.

In particular, ‖ · ‖2 = | · |. As usual, `n
p = (Rn, ‖ · ‖p), and the unit ball of `n

p

is denoted by Bn
p .

Given points x1, . . . , xk in Rn we denote their convex hull by conv {xi}i≤k

and their absolute convex hull by abs conv {xi}i≤k = conv {±xi}i≤k. Simi-
larly, the convex hull of a set A ⊂ Rn is denoted by conv A and absolute
convex hull of A is denoted by abs conv A (= conv {A ∪ −A}).

Given convex compact body K ⊂ Rn with 0 in its interior by |K| we
denote its volume and by ‖ · ‖K its Minkowski functional. K◦ denotes the
polar of K, i.e.

K◦ = {x | 〈x, y〉 ≤ 1 for every y ∈ K} .

The outer volume ratio of K is

ovr(K) = inf

(
|E|
|K|

)1/n

,

where infimum is taken over all 0-symmetric ellipsoids in Rn containing K.
It is well-known that

ovr(K) ≤
√

n

for every convex symmetric about the origin body K.
Finally we recall some notations from the Operator Theory. Given u, v ∈

Rn, u⊗v denotes the operator from Rn to Rn defined by (u⊗v)(x) = 〈u, x〉 v
for every x ∈ Rn. The identity operator on Rn is denoted by Id. Given two
operators T, S : Rn → Rn we write T ≤ S if S − T is positive semidefinite,
i.e., 〈(S − T )x, x〉 ≥ 0 for every x ∈ Rn.
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3 Example.

Theorem 3.1 There exists an absolute positive constant c such that for ev-
ery n ≥ 1 there exists a convex symmetric body K satisfying

ovr (K) ≥ c

√
n

ln(2n)
and vein K ≥ cn3/2.

Proof: Let m = n2 and u1, u2, . . ., um be independent random vectors
uniformly distributed on Sn−1. Let

K := abs conv {ui, ej}i≤m,j≤n .

Clearly
1√
n
Bn

2 ⊂ K ⊂ Bn
2 .

Moreover, it is well-known [G, CP, BF] that there exists an absolute positive
constant C0 such that for every linear transformation T satisfying TK ⊂ Bn

2

one has

|TK| ≤ C0

√
ln(2(m + n)/n)

n
,

which immediately implies that

ovr (K) ≥ c0

√
n

ln(2n)

for an absolute positive constant c0.
Now we prove the lower bound on vein (K). First note that if T is an

absolute convex hull of vectors x1, x2, . . ., xM satisfying

a :=
M∑
i=1

|xi| ≤
n3/2

4
√

2πe

then by Santaló inequality and a result of Ball and Pajor (Theorem 2 in
[BP]) we have

|T|
|Bn

2 |
≤ |Bn

2 |
|T0|

≤

(√
2πe√
n

)n (a

n

)n

≤ 4−n.
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It implies that the probability

P ({K ⊂ 2T}) ≤ P ({∀i ≤ m : ui ∈ 2T}) = (P ({∀i : ui ∈ 2T}))m

=
(
|2T ∩ Sn−1|

)m ≤
(
|2T ∩Bn

2 |
|Bn

2 |

)m

≤ 2−n3

.

Now we consider a 1
2
√

n
-net (in the Euclidean metric) N in n3/2Bn

2 of

cardinality less than A = (6n2)n (it is well known that such a net exists).
We fix M = [n3/2/8

√
2πe] (assuming without loss of generality M ≥ 3) and

consider

CM =

{
T | T = abs conv {xi}i≤N , N ≤ M, xi ∈ N ,

N∑
i=1

|xi| ≤
n3/2

4
√

2πe

}
.

Then the cardinality of CM is

|CM | ≤
M∑
i=1

(
A

i

)
≤
(

eA

M

)M

≤ (6n2)nM .

It implies that

P ({∃T such that K ⊂ 2T}) ≤ (6n2)nM2−n3

< 1.

This proves that there exists K such that

∀T ∈ CM : K 6⊂ 2T. (5)

Finally fix K satisfying (5) and assume

vein K <
n3/2

8
√

2πe
,

i.e., that there exists L = conv {xi}i≤k with K ⊂ L and

k ≤
k∑

i=1

‖xi‖K <
n3/2

8
√

2πe
.

Since K ⊂ Bn
2 , we observe that

k∑
i=1

|xi| <
n3/2

8
√

2πe
,
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in particular xi ∈ n3/2Bn
2 , i ≤ k. Then for every i there exist yi ∈ N such

that

|xi − yi| ≤
1

2
√

n
.

Therefore

k∑
i=1

|yi| ≤
k∑

i=1

|xi|+
k∑

i=1

|xi − yi| ≤
n3/2

8
√

2πe
+

k

2
√

n
≤ n3/2

4
√

2πe
.

Thus P = abs conv {yi}i≤N ∈ CM , so, by (5) one has K 6⊂ 2P. On the other
hand we have for every x

‖x‖L0 = max
i≤k

〈x, xi〉 ≤ max
i≤k

〈x, yi〉+ max
i≤k

〈x, xi − yi〉

≤ ‖x‖P0 +
1

2
√

n
|x| ≤ ‖x‖P0 +

1

2
‖x‖L0 ,

where the latter inequality holds because 1√
n
Bn

2 ⊂ K ⊂ L. The above
inequality means that L ⊂ 2P, which contradicts the fact that K 6⊂ 2P.
Hence

vein K ≥ n3/2

8
√

2πe
,

which proves the theorem. 2

4 An upper bound for the vertex index

In this section we prove the inequality (3), i.e. we prove the sharp (up to an
absolute constant) upper estimate for the vein of a convex symmetric body in
the general case, removing the unnecessary logarithmic term from (1). Recall
that such bound is attained for any body with a bounded volume ratio as
well as for the body from Theorem 3.1.

In [BL] the Rudelson theorem on decomposition of identity was essentially
used. It contains a logarithmic term which appeared in the upper bound
on the vertex index. Here we use a recent result of Batson, Spielman, and
Srivastava instead of Rudelson’s theorem. In [BSS], they proved the following
theorem.
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Theorem 4.1 Let m ≥ n ≥ 1, λ > 1, and ui ∈ Rn, i ≤ m be such that

Id =
m∑

i=1

ui ⊗ ui.

Then there exist non-negative numbers c1, c2, . . . , cm such that at most λn of
them non-zero and

Id ≤
m∑

i=1

ciui ⊗ ui ≤

(√
λ + 1√
λ− 1

)2

Id.

To obtain the upper bound it is enough to apply this theorem combined
with the standard John decomposition instead of Rudelson theorem in the
proof given in Section 5 of [BL]. For the sake of completeness we provide the
details. The following standard lemma proves (3).

Lemma 4.2 Let λ > 1, n ≥ 1, and K be a 0-symmetric convex body in Rn

such that its minimal volume ellipsoid is Bn
2 . Then there exists a 0-symmetric

convex polytope P in Rn with at most λn vertices such that

P ⊂ K ⊂ Bn
2 ⊂

√
λ + 1√
λ− 1

√
n P.

In particular
vein(K) ≤ 24n3/2.

Proof: The John decomposition ([J]) states that there exist points vi, i ≤ m,
with ‖vi‖K = |vi| = 1 and scalars λi > 0 such that

Id =
m∑

i=1

λivi ⊗ vi.

Then Theorem 4.1 applied to ui =
√

λivi implies that there exist non-negative
numbers c1, c2, . . . , cm such that at most λn of them non-zero and

Id ≤
m∑

i=1

ciλivi ⊗ vi ≤

(√
λ + 1√
λ− 1

)2

Id. (6)
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Let I denotes the set of indices i such that ci 6= 0. Consider P = abs conv {vi}i∈I .
Since vi ∈ K = −K, i ≤ m, we observe

P ⊂ K ⊂ Bn
2 .

By (6) we also have for every x ∈ Rn

|x|2 = 〈Id x, x〉 ≤

〈
m∑

i=1

ciλi 〈vi, x〉 vi, x

〉
=

m∑
i=1

ciλi 〈vi, x〉2

≤ max
i≤m

〈vi, x〉2
m∑

i=1

ciλi = ‖x‖2
P◦

m∑
i=1

ciλi

and
m∑

i=1

ciλi =
m∑

i=1

ciλi 〈vi, vi〉 = trace
m∑

i=1

ciλivi ⊗ vi

≤

(√
λ + 1√
λ− 1

)2

trace Id =

(√
λ + 1√
λ− 1

)2

n.

It implies that |x| ≤
√

λ+1√
λ−1

√
n ‖x‖P◦ , which means Bn

2 ⊂
√

λ+1√
λ−1

√
n P. This

proves

P ⊂ K ⊂ Bn
2 ⊂

√
λ + 1√
λ− 1

√
n P

and in particular implies

vein(K) ≤ 2
√

n

√
λ + 1√
λ− 1

∑
i∈I

‖vi‖K ≤ 2λ

√
λ + 1√
λ− 1

n3/2.

Choosing λ = 4 we obtain the result. 2

5 A lower bound for the vertex index of Bn
2

In this section we prove estimate (4), i.e. we improve the constant in the
estimate

cn3/2 ≤ vein(Bn
2 ) ≤ 2n3/2
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from c = 1/
√

2πe proved obtained [BL] to c = 1/
√

3. Recall that the proof
in [BL] was based on volume estimates. We use here completely different
approach.

Proof: Assume that Bn
2 ⊂ L = conv {xi}i≤N for some non zero xi’s and

denote

a =
n∑

i=1

|xi|.

Our goal is to show that a2 ≥ n3/3.
Define the operator T : RN → Rn by Tei = xi, i ≤ N . Then the rank

of T is n (since Bn
2 ⊂ L), a =

∑n
i=1 |Tei| and for every x ∈ Rn

|x| ≤ ‖x‖L0 = max
i≤N

〈x, xi〉 = max
i≤N

〈T ∗x, ei〉 . (7)

For i ≤ N denote

λi =
√
|Tei|/a and vi =

Tei

aλi

.

Then
n∑

i=1

λ2
i = 1 and

n∑
i=1

|vi|2 = 1.

We also observe that T ∗ can be presented as T ∗ = aΛS, where Λ is the
diagonal matrix with λi’s on the diagonal and

S =
N∑

i=1

vi ⊗ ei.

Note that the rank of S equals n. Let s1 ≥ s2 ≥ . . . ≥ sn > 0 be the singular
values of S and let {wi}i≤n, {zi}i≤n be orthonormal systems such that

S =
n∑

i=1

snwi ⊗ zi.

Then
n∑

i=1

s2
i = ‖S‖2

HS =
n∑

i=1

|vi|2 = 1,
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where ‖S‖HS is the Hilbert-Schmidt norm of S. Now for m ≤ n denote

Sm =
n∑

i=m

snwi ⊗ zi

and consider the (n + 1−m)-dimensional subspace

Em = Im (ΛSm) ⊂ Im T ∗.

Considering the extreme points of the section of the cube BN
∞∩Em we observe

that there exists a vector y = {yi}i≤N ∈ BN
∞∩Em such that the set A = {i |

|yi| = 1} has cardinality at least n + 1 − m. Without loss of generality we
assume that |A| = n + 1−m (otherwise we choose an arbitrary subset of A
with such cardinality). We observe

|(aΛ)−1y| = 1

a

√√√√ N∑
i=1

y2
i

λ2
i

≥ 1

a

√∑
i∈A

1

λ2
i

≥ n + 1−m

a
√∑

i∈A λ2
i

≥ n + 1−m

a
√∑N

i=1 λ2
i

=
n + 1−m

a
.

Note that by construction y ∈ Em ⊂ Im T ∗, so denoting the inverse of T ∗

from the image by (T ∗)−1 we have

|(T ∗)−1y| = |S−1(aΛ)−1y| = |S−1
m (aΛ)−1y| ≥ |(aΛ)−1y|

‖Sm‖
≥ n + 1−m

asm

.

Using (7) we obtain

n + 1−m

asm

≤ |(T ∗)−1y| ≤ max
i≤N

〈
T ∗(T ∗)−1y, ei

〉
= ‖y‖∞ = 1.

This shows sm ≥ (n + 1−m)/a and implies

n3

3a2
≤ 1

a2

n∑
m=1

(n + 1−m)2 ≤
n∑

m=1

s2
m = 1,

which proves the desired result. 2
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