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Abstract

For a given sequence of real numbers a1, . . . , an we denote the k-th smallest one by k- min1≤i≤n ai.
Let A be a class of random variables satisfying certain distribution conditions (the class contains
N(0, 1) Gaussian random variables). We show that there exist two absolute positive constants c
and C such that for every sequence of real numbers 0 < x1 ≤ . . . ≤ xn and every k ≤ n one has

c max
1≤j≤k

k + 1− j∑n
i=j 1/xi

≤ E k- min
1≤i≤n

|xiξi| ≤ C ln(k + 1) max
1≤j≤k

k + 1− j∑n
i=j 1/xi

,

where ξ1, . . . , ξn are independent random variables from the class A. Moreover, if k = 1 then the
left hand side estimate does not require independence of the ξi’s. We provide similar estimates for
the moments of k- min1≤i≤n |xiξi| as well.

1 Introduction

For a given sequence of real numbers a1, . . . , an we denote the k-th smallest one by k- min1≤i≤n ai; thus,
1- min1≤i≤n ai = min1≤i≤n ai, and 2- min1≤i≤n ai is the next smallest, etc., and (k- min1≤i≤n ai)n

k=1

is the non-decreasing rearrangement of the sequence (ai)n
i=1. In the same way we denote the k-th

biggest number by k- max1≤i≤n ai.
In the paper [GLSW1] we considered expressions of the form

E
m∑

k=1

k- max
1≤i≤n

|xifi|p,

where f1, f2, . . . , fn are random variables and x1, x2, . . . , xn are real numbers. Since the functions
(
∑m

k=1 k- max1≤i≤n |xi|p)1/p are norms on Rn, such forms appear naturally in the study of various
parameters associated with the geometry of Banach spaces [GLSW2]. Other applications of these
forms can be found in [KS1] and [KS2].

The striking difference in the present study is that we now consider expressions of the form(∑
k∈I k- min1≤i≤n |xi|p

)1/p for subsets I ⊆ {1, . . . , n}. These are not norms if I is not an integer
interval starting at 1. Hence, for a given sequence of random variables f1, . . . , fn, the computation of
expressions such as

E k- min
1≤i≤n

|fi|p = E (n− k + 1)- max
1≤i≤n

|fi|p
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requires completely different techniques. Such minima, also called order statistics, have been inten-
sively studied during last century. We refer an interested reader to [AB] and [DN] for basic facts,
known results, and references. Most works dealt with the case of independent identically distributed
random variables. Sometimes the condition “to be identically distributed” was substituted by the
condition“the fi’s have the same first and the same second moments”. In this paper we drop these
conditions and deal with sequences of random variables having no restrictions on their moments.
Applications of the current paper are related to important electrical engineering problems on the
minimization of the data loss of signals emanating from electrical networks. Applications appear
also in the study of the multifold K-functional or its geometric equivalent, the norm with unit ball
B = co(∪m

i=1Bi), where the Bi’s are unit balls of symmetric normed spaces.
Now we describe our setting and results. Let α > 0, β > 0 be parameters. We say that a random

variable ξ satisfies the (α, β)-condition if

(1) P (|ξ| ≤ t) ≤ αt for every t ≥ 0

and

(2) P (|ξ| > t) ≤ e−βt for every t ≥ 0.

Note that this forces the condition α t + e−βt ≥ 1 for all t ≥ 0, which implies α ≥ β.
Below (Claim 1 and the remark following it) we will see that many random variables, including

N(0, 1) Gaussian variables (with α = β =
√

2/π) and exponentially distributed variables (with
α = β = 1), satisfy this condition. We study first the moments of the minimum of a sequence of
such random variables. Let x1, . . . , xn be a sequence of real numbers and ξ1, . . . , ξn be independent
random variables satisfying the (α, β)-condition. We obtain that for every p > 0 one has

1
1+p α−p

(
n∑

i=1

1
|xi|

)−p

≤ E min
1≤i≤n

|xiξi|p ≤ β−p Γ(1 + p)

(
n∑

i=1

1
|xi|

)−p

,

where Γ(·) is the Gamma-function. Moreover, the left hand side estimate does not require the inde-
pendence of the ξi’s. In particular, it implies that for every p > 0

E min
1≤i≤n

|xigi|p ≤ Γ(2 + p) E min
1≤i≤n

|xifi|p,

where g1, . . . , gn are independent N(0, 1) Gaussian random variables and f1, . . . , fn are N(0, 1) Gaus-
sian random variables (not necessarily independent). Taking p = 1, we have

E min
1≤i≤n

|xigi| ≤ 2 E min
1≤i≤n

|xifi|.

This result should be compared with well known S̆idák’s inequality ([S], [G]), saying that

E max
1≤i≤n

|xigi| ≥ E max
1≤i≤n

|xifi|.

In other words our result is, in a sense, an inverse S̆idák’s inequality. It would be nice to eliminate
the factor 2 from it.

We generalize our estimates for the expectation of the minimum to the case of the k-th minimum.
For 0 < x1 ≤ x2 ≤ . . . ≤ xn and independent random variables ξ1, . . . , ξn satisfying the (α, β)-
condition, we obtain that there are two absolute positive constants c and C such that for every p > 0
one has

cp α−1 max
1≤j≤k

k + 1− j∑n
i=j 1/xi

≤
(

E k- min
1≤i≤n

|xiξi|p
)1/p

≤ C(p, k) β−1 max
1≤j≤k

k + 1− j∑n
i=j 1/xi

,
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where cp = c1+1/p and C(p, k) = C max{p, ln(k + 1)}. We would like to emphasize that the estimates
are pretty sharp, in particular the ratio of upper and lower bounds surprisingly does not depend on
n and, up to a constant depending only on p, is bounded by ln(k + 1).

The latter result implies that we may evaluate sums of the form∑
k∈I

E k- min
1≤i≤n

|xigi|p,

where I ⊂ {1, 2, ..., n} is any subset of integers and the gi’s are N(0, 1) Gaussian random variables.
The paper is organized as follows: in the next section, Section 2, we introduce the notations, quote

some known facts, and prove that random variables with certain densities, including Gaussian and
exponential, satisfy the (α, β)-condition. In Section 3, we provide combinatorial results used in the
proofs. In Section 4, we prove our main theorems. Finally, in Section 5, we provide some examples.

An extended abstract of this work appeared in [GLSW3].

2 Notation and preliminaries

Given A ⊂ N we denote its cardinality by |A|. Given a set E we denote its complement by Ec. We
say that (Aj)k

j=1 is a partition of {1, 2, . . . , n} if ∅ 6= Aj ⊂ {1, 2, . . . , n}, j ≤ k, ∪j≤kAj = {1, 2, . . . , n},
and Ai ∩Aj = ∅ for i 6= j. The canonical Euclidean norm and the canonical inner product on Rn we
denote by | · | and 〈·, ·〉. By 1/t we mean ∞ if t = 0 and 0 if t = ∞.

As we defined above, (k- min1≤i≤n ai)n
k=1 denotes the non-decreasing rearrangement of the se-

quence (ai)n
i=1, i.e. k- min(ai)n

i=1 is the k-th smallest element of the sequence.
We will use the following simple properties of k- min which hold for every sequence (ai)n

i=1.
For every r < k

(3) k- min(ai)n
i=1 ≥ (k − r)- min(ai)n

i=r+1.

For every partition (Aj)j≤k of {1, 2, ..., n}

(4) k- min(ai)n
i=1 ≤ max

j≤k

{
min
i∈Aj

ai

}
j≤k

.

Now we recall some definitions and estimates connected to the Gaussian distribution.
Let x and y be non-negative real numbers. The Gamma-function is defined by

Γ(x) =
∫ ∞

0
tx−1e−t dt

Note that
xΓ(x) = Γ(1 + x), Γ(n + 1) = n!,

and, by Stirling’s formula, for every x ≥ 1

(5)
√

2πx
(x

e

)x
< Γ(x + 1) <

√
2πx

(x

e

)x
e

1
12x .

Finally, we show examples of random variables, satisfying the (α, β)-condition.

Claim 1 Let q ≥ 1. Let ξ be a non-negative random variable with the density function p(s) =
cq exp (−sq), where cq = 1/Γ(1 + 1/q). Then ξ satisfies (1) and (2) with parameters α = β = cq.
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Remark. An important case is the case q = 2 which corresponds to the Gaussian random
variable. Claim 1 implies that N(0, 1) Gaussian random variables satisfy the (α, β)-condition with
α = β =

√
2/π. We would like also to note that if q = 1 then we have an exponentially distributed

random variable. In this case α = β = 1.

Proof of Claim 1. The case q = 1 is trivial. So we assume that q > 1. Clearly we have

P (|ξ| ≤ t) = cq

∫ t

0
e−sq

ds ≤ cqt,

which shows α = cq.
Now consider the function g defined on [0,∞) by

g(x) = exp (−cq x)− cq

∫ ∞

x
e−sq

ds.

Then g(0) = limx→∞ g(x) = 0 and g′(x) = cq (exp (−xq)− exp (−cq x)) . Hence, g′(x) ≥ 0 on
[0, c

1/(q−1)
q ] and g′(x) ≤ 0 for x ≥ c

1/(q−1)
q . It shows that g(x) ≥ 0 for every x ≥ 0. Therefore

P (|ξ| > t) = cq

∫ ∞

t
e−sq

ds ≤ e−cqt,

i.e. β = cq. 2

3 Combinatorial results

In this section we prove some combinatorial results, which will be used later in the proofs of theorems.
First we quote the following result on symmetric means ([HLP]).

Lemma 2 Let 1 ≤ l ≤ n. Let ai, i = 1, . . . , n be nonnegative real numbers. Then

∑
A⊂{1,2,...,n}

|A|=l

∏
i∈A

ai ≤
(

n

l

)(
1
n

n∑
i=1

ai

)l

.

We will need the following consequence of this Lemma.

Corollary 3 Let 1 ≤ k ≤ n. Let ai, i = 1, . . . , n be nonnegative real numbers. Assume

0 < a :=
e

k

n∑
i=1

ai < 1.

Then
n∑

l=k

∑
A⊂{1,2,...,n}

|A|=l

∏
i∈A

ai <
1√
2πk

ak

1− a
.
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Proof. By Lemma 2 we have

n∑
l=k

∑
A⊂{1,2,...,n}

|A|=l

∏
i∈A

ai ≤
n∑

l=k

(
n

l

) (
ka

en

)l

=
n∑

l=k

n!alkl

l!(n− l)!elnl
≤

n∑
l=k

alkl

l!el
.

Applying Stirling’s formula (5), we obtain

n∑
l=k

∑
A⊂{1,2,...,n}

|A|=l

∏
i∈A

ai ≤
n∑

l=k

alkl

ll
√

2πl
≤ 1√

2πk

n∑
l=k

al <
1√
2πk

ak

1− a
.

2

We will also need the following result.

Lemma 4 Let 1 ≤ k ≤ n. Let (ai)n
i=1, be a nonincreasing sequence of positive real numbers. Then

there exists a partition (Al)l≤k of {1, 2, ..., n} such that

min
1≤l≤k

∑
i∈Al

ai ≥ a := 1
2 min

1≤j≤k

1
k + 1− j

n∑
i=j

ai.

Remark. In fact our proof gives that the Al’s can be taken as intervals, i.e. Al = {i | nl−1 < i ≤ nl},
l ≤ k, for some sequence 0 = n0 < 1 ≤ n1 < n2 < . . . < nk = n.

Proof. Denote b :=
∑n

i=1 ai.
Case 1. a1 ≤ b/k. Let n0 = 0 and, given 1 ≤ l ≤ k, let nl be the largest integer such that

nl∑
i=1

ai ≤
lb

k
.

Since b/k ≥ a1 ≥ a2 ≥ . . . ≥ an, we have 0 = n0 < 1 ≤ n1 < n2 < . . . < nk = n. Define a partition
(Al)l≤k of {1, 2, ..., n} by Al = {i | nl−1 < i ≤ nl} . Let t be the largest integer such that at > b

2k (if
there is no such at we put t = 0). Then

[i] for every l such that nl ≤ t we have
∑

i∈Al
ai ≥ anl

> b
2k ;

[ii] for every l < k such that nl > t we have
∑

i∈Al
ai ≥ b

2k (otherwise, since anl+1 ≤ b
2k , we would

have
nl+1∑
i=1

ai ≤
nl−1∑
i=1

ai +
∑
i∈Al

ai + anl+1 <
(l − 1)b

k
+

b

2k
+

b

2k
=

lb

k
,

which contradicts the choice of nl);

[iii] for l = k we have
∑

i∈Ak
ai =

∑n
i=1 ai −

∑nk−1

i=1 ai ≥ b
k .

Since b
2k ≥ a, it proves the result in Case 1.

Case 2. a1 > b/k. Denote bj :=
∑n

i=j ai, j ≤ n. Clearly ak ≤ bk. Let m ≤ k be the smallest
integer such that

am ≤ bm

k + 1−m
.
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Since a1 > b/k = b1/k we have m > 1. For 1 ≤ l < m choose Al = {l}. Then∑
i∈Al

ai = al >
bl

k + 1− l
> a.

Let (Al)k
l=m be the partition of {m, m + 1, . . . , n} into k + 1−m sets constructed in the same way as

in the Case 1. Then, by Case 1, for every l ≥ m∑
i∈Al

ai ≥
bm

2(k + 1−m)
≥ a.

It completes the proof. 2

Remark. One can show that the sequence

āj =
1

k + 1− j

n∑
i=j

ai,

j ≤ k, considered in the last lemma (and which will appear again below) has the following properties:
there exists an integer 1 ≤ r ≤ k such that

(6) ā1 > ā2 > . . . > ār ≤ ār+1 ≤ . . . āk.

and

(7) āj+1 ≥ āj if and only if
n∑

i=j+1

ai ≥ (k − j)aj .

To see (7), note that by the formula for āj ’s we immediately obtain that āj+1 ≥ āj if and only if

(k + 1− j)
n∑

i=j+1

ai ≥ (k − j)
n∑

i=j

ai = (k − j)
n∑

i=j+1

ai + (k − j)aj ,

which implies (7). Now note that (7) implies that

(8) if āj+1 ≥ āj then āj+2 ≥ āj+1.

Indeed, if āj+1 ≥ āj then, by (7), (k − j)aj ≤
∑n

i=j+1 ai. Therefore, since (ai)i is nonincreasing,

(k − j − 1)aj+1 ≤ (k − j)aj − aj+1 ≤
n∑

i=j+1

ai − aj+1 =
n∑

i=j+2

ai,

which implies āj+2 ≥ āj+1 by (7). Finally, (6) is a simple consequence of (8).

4 Main results

In this section we state our main theorems, discussed in the introduction, and provide corresponding
deviation inequalities which imply the main theorems.
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Theorem 5 Let α > 0, β > 0. Let p > 0. Let (xi)n
i=1 be a sequence of real numbers and ξ1, ..., ξn

be random variables satisfying the (α, β)-condition. Then

1
1+p α−p

(
n∑

i=1

1/|xi|

)−p

≤ E min
1≤i≤n

|xiξi|p.

Moreover, if the ξi’s are independent then

E min
1≤i≤n

|xiξi|p ≤ β−p Γ(1 + p)

(
n∑

i=1

1/|xi|

)−p

.

An immediate consequence of this theorem is the following Corollary.

Corollary 6 Let p > 0. Let (xi)n
i=1 be a sequence of real numbers and f1, . . . , fn, ξ1, . . . , ξn be random

variables satisfying the (α, β)-condition. Assume that the ξi’s are independent. Then

E min
1≤i≤n

|xiξi|p ≤ Γ(2 + p) αp β−p E min
1≤i≤n

|xifi|p.

In particular, if f1, . . . , fn, ξ1, . . . , ξn are N(0, 1) Gaussian random variables, then

E min
1≤i≤n

|xiξi|p ≤ Γ(2 + p) E min
1≤i≤n

|xifi|p.

Theorem 7 Let α > 0, β > 0. Let p > 0 and 2 ≤ k ≤ n. Let 0 < x1 ≤ x2 ≤ ... ≤ xn and ξ1, . . . , ξn

be independent random variables satisfying the (α, β)-condition. Then

cpα max
1≤j≤k

k + 1− j∑n
i=j 1/xi

≤
(

E k- min
1≤i≤n

|xiξi|p
)1/p

≤ β−1 C(p, k) max
1≤j≤k

k + 1− j∑n
i=j 1/xi

,

where cpα = 1
2eα

(
1− 1

4
√

π

)1/p
and C(p, k) = 4

√
2 max{p, ln(1 + k)}.

Theorems 5 and 7 are consequences of the following Lemmas, which are of independent interest.
In [GLSW3] we showed how these Lemmas imply the Theorems in the Gaussian case. Since the proof
of the general case, which we consider here, is done in exactly the same way, we omit the proofs of
the Theorems and concentrate on the proofs of the Lemmas.

Lemma 8 Let α > 0, β > 0. Let 0 < x1 ≤ x2 ≤ ... ≤ xn and ξ1, . . . , ξn be random variables satisfying
the (α, β)-condition. Let a =

∑n
i=1 1/xi. Then for every t > 0

P
{

ω

∣∣∣∣ min
1≤i≤n

|xiξi(ω)| ≤ t

}
≤ α a t.

Moreover, if the ξi’s are independent then for every t > 0

P
{

ω

∣∣∣∣ min
1≤i≤n

|xiξi(ω)| > t

}
≤ e−β a t.
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Proof. Denote Ak(t) = {ω | |xkξk(ω)| > t} = {ω | |ξk(ω)| > t/xk} and

A(t) = {ω | min
k≤n

|xkξk(ω)| > t} =
⋂
k≤n

Ak(t).

By (1) we have P (Ak(t)c) ≤ α t/xk. Therefore

P (A(t)) ≥ 1−
n∑

k=1

P (Ak(t)c) ≥ 1− α t

n∑
k=1

1/xk,

which proves the first estimate.
Now assume that the ξk’s are independent. By (2) we have P (Ak(t)) ≤ exp (−βt/xk) . Therefore,

P (A(t)) =
n∏

k=1

P (Ak(t)) ≤ exp

(
−β

n∑
k=1

t/xk

)
,

which proves the result. 2

Lemma 9 Let α > 0, β > 0. Let 1 ≤ k ≤ n. Let 0 < x1 ≤ x2 ≤ ... ≤ xn and ξ1, . . . , ξn be
independent random variables satisfying the (α, β)-condition. Let

a =
α e

k

n∑
i=1

1
xi

.

Then for every 0 < t < 1/a one has

(9) P
{

ω

∣∣∣∣k- min
1≤i≤n

|xiξi(ω)| ≤ t

}
≤ 1√

2πk

(at)k

1− at
.

Proof. Denote A(t) = P {ω | k- min1≤i≤n |xiξi(ω)| ≤ t}. Clearly we have

A(t) = P
{

ω

∣∣∣∣∃i1, . . . , ik ≥ 1 : |ξij (ω)| ≤ t

xij

}
= P

n⋃
`=k

⋃
A⊂{1,...,n}

|A|=`

{
ω|∀i ∈ A : |ξi(ω)| ≤ t

xi
and ∀i /∈ A : |ξi(ω)| > t

xi

}

=
n∑

l=k

∑
A⊂{1,...,n}

|A|=l

∏
i∈A

P
{

ω | |ξi(ω)| ≤ t

xi

} ∏
i/∈A

P
{

ω | |ξi(ω)| > t

xi

}
.

It follows

A(t) ≤
n∑

l=k

∑
A⊂{1,...,n}

|A|=l

∏
i∈A

P
{

ω | |ξi(ω)| ≤ t

xi

}
≤

n∑
l=k

∑
A⊂{1,...,n}

|A|=l

∏
i∈A

α
t

xi
.

Corollary 3 implies the desired result. 2
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5 Examples

In this section we provide some examples. They show that Theorem 7 is sharp. Namely, we show
that both, the upper and lower estimate in Theorem 7 can be attained. We also provide an example
where the actual value of E k- min lies between the two estimates.

Example 10 Let 1 ≤ k ≤ n. Let gi, i ≤ n, be independent N(0, 1) Gaussian random variables. Then
(i) for k ≤ n/2 √

π

2
k

n + 1
≤ E k- min

1≤i≤n
|gi| ≤

√
2π

k

n + 1
.

(ii) For k ≥ n/2

c

√
ln

2n

n + 1− k
≤ E k- min

1≤i≤n
|gi| ≤ C

√
ln

2n

n + 1− k
,

where c and C are absolute positive constants.

Remark Note that in this case x1 = · · ·xn = 1, hence max1≤j≤k
k+1−j∑n
i=j 1/xi

= k/n. Thus (i) of this

example shows that the lower estimate in Theorem 7 can be attained (up to an absolute constant).

Proof of Example 10. (i) follows immediately from the following claim:
Claim. For all 1 ≤ k ≤ n one has√

π

2
k

n + 1
≤ E k- min

1≤i≤n
|gi| ≤

√
π

2
k

n + 1− k
.

We now prove the claim. Denote u = u(t) = P{|g1| > t} =
√

2
π

∫∞
t e−s2/2ds. Using the same ideas as

in the proof of Lemma 9, we observe

E k- min
1≤i≤n

|gi| =
∫ ∞

0
P
{

k- min
1≤i≤n

|gi| > t

}
dt =

k−1∑
l=0

∑
A⊂{1,...,n}
|A|=n−l

∫ ∞

0

(∏
i∈A

u(t)
∏
i/∈A

(1− u(t))

)
dt

=
k−1∑
l=0

(
n

l

) ∫ ∞

0
(u(t))n−l (1− u(t))l dt =

√
π

2

k−1∑
l=0

(
n

l

) ∫ ∞

0
(u(t))n−l (1− u(t))l et2/2 (−du(t)).

To obtain the lower estimate note that et2/2 ≥ 1 and therefore

E k- min
1≤i≤n

|gi| ≥
√

π

2

k−1∑
l=0

(
n

l

)
B(n− l + 1, l + 1) =

√
π

2
k

n + 1
,

where B(x, y) =
∫ 1
0 sx−1(1− s)y−1ds = Γ(x)Γ(y)/Γ(x + y) is the Beta-function.

To obtain the upper estimate note that considering function f(t) = et2/2
∫∞
x e−s2/2 ds one can

obtain that u(t)et2/2 ≤ 1, and therefore

E k- min
1≤i≤n

|gi| ≤
√

π

2

k−1∑
l=0

(
n

l

)
B(n− l, l + 1) =

√
π

2

k−1∑
l=0

1
n− l

≤
√

π

2
k

n + 1− k
.

(ii) is well known. 2

The next two examples can be obtained by direct calculation as well. One should split a sequence
into two parts and use deviation inequalities. We omit the details.
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Example 11 Let 1 ≤ k ≤ n/2. Let gi, i ≤ n, be independent exponentially distributed random
variables (i.e. with density p(s) = e−s). Let x1 = · · · = xk = 1, xk+1 = · · · = xn = n2. Then

c ln k ≤ E k- min
1≤i≤n

|xigi| ≤ C ln k,

where c and C are absolute positive constants.

Remark Note that in this case max1≤j≤k
k+1−j∑n
i=j 1/xi

= k
k+(n−k)/n2 ≈ 1. Thus this example shows

that the upper estimate in Theorem 7 can be attained (up to an absolute constant).

Example 12 Let 1 ≤ k ≤ n. Let gi, i ≤ n, be independent N(0, 1) Gaussian random variables. Let
x1 = · · · = xk = 1, xk+1 = · · · = xn = n2. Then

c
√

ln k ≤ E k- min
1≤i≤n

|xigi| ≤ C
√

ln k,

where c and C are absolute positive constants.
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[GLSW1] Y. Gordon, A. E. Litvak, C. Schütt, E. Werner, Orlicz Norms of Sequences of Random Variables, Ann.
of Prob., 30 (2002), 1833–1853.
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