Probabilités/Probability Theory
 Minima of sequences of Gaussian random variables Minima des suites des variables aléatoires Gaussiennes

Yehoram GORDON ${ }^{1,2}$
Alexander LITVAK
Carsten SCHÜTT ${ }^{2}$
Elisabeth WERNER ${ }^{3}$

Technion, Department of Mathematics, Haifa 32000, Israel.
gordon@techunix.technion.ac.il
Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta,
Canada T6G 2G1. alexandr@math.ualberta.ca
Christian Albrechts Universität, Mathematisches Seminar, 24098 Kiel, Germany.
schuett@math.uni-kiel.de
Department of Mathematics, Case Western Reserve University, Cleveland, Ohio 44106, U.S.A. and
Université de Lille 1, UFR de Mathématique, 59655 Villeneuve d'Ascq, France. emw2@po.cwru.edu
Abstract. For a given sequence of real numbers a_{1}, \ldots, a_{n} we denote the k-th smallest one by k - $\min _{1 \leq i \leq n} a_{i}$. We show that there exist two absolute positive constants c and C such that for every sequence of positive real numbers x_{1}, \ldots, x_{n} and every $k \leq n$ one has

$$
c \max _{1 \leq j \leq k} \frac{k+1-j}{\sum_{i=j}^{n} 1 / x_{i}} \leq \mathbb{E} k-\min _{1 \leq i \leq n}\left|x_{i} g_{i}\right| \leq C \ln (k+1) \max _{1 \leq j \leq k} \frac{k+1-j}{\sum_{i=j}^{n} 1 / x_{i}}
$$

where $g_{i} \in N(0,1), i=1, \ldots, n$, are independent Gaussian random variables. Moreover, if $k=1$ then the left hand side estimate does not require independence of the g_{i} 's. Similar estimates hold for $\mathbb{E} k$ - $\min _{1 \leq i \leq n}\left|x_{i} g_{i}\right|^{p}$ as well.

Résumé. Pour une suite a_{1}, \ldots, a_{n} des nombres réels, on note le k-ième plus petit membre par k - $\min _{1 \leq i \leq n} a_{i}$. On démontre qu'il existe deux constants positives c et C telles que pour toute suite x_{1}, \ldots, x_{n} des nombres réels et pour tout $k \leq n$, on ait

$$
c \max _{1 \leq j \leq k} \frac{k+1-j}{\sum_{i=j}^{n} 1 / x_{i}} \leq \mathbb{E} \min _{-\min _{1 \leq i \leq n}}\left|x_{i} g_{i}\right| \leq C \ln (k+1) \max _{1 \leq j \leq k} \frac{k+1-j}{\sum_{i=j}^{n} 1 / x_{i}} .
$$

Ici $g_{i} \in N(0,1), i=1, \ldots, n$, sont des variables aléatoires Gaussiennes indépendentes. En plus, si $k=1$, on n'a pas besoin de l'indépendence des g_{i} 's pour obtenir l'inégalité du gauche. On démontre également les inégalités correspondantes pour $\mathbb{E} k$ - $\min _{1 \leq i \leq n}\left|x_{i} g_{i}\right|^{p}$.

For a given sequence of real numbers $\left(a_{i}\right)_{i=1}^{n}$ we denote its non-decreasing rearrangement by $\left(k-\min _{1 \leq i \leq n} a_{i}\right)_{k=1}^{n}$, thus $1-\min _{1 \leq i \leq n} a_{i}=\min _{1 \leq i \leq n} a_{i}, 2-\min _{1 \leq i \leq n} a_{i}$ is the next smallest, etc.

Given $A \subset \mathbb{N}$ we denote its cardinality by $|A|$. We say that $\left(A_{j}\right)_{j=1}^{k}$ is a partition of $\{1,2, \ldots, n\}$ if $\emptyset \neq A_{j} \subset\{1,2, \ldots, n\}, j \leq k, \cup_{j \leq k} A_{j}=\{1,2, \ldots, n\}$, and $A_{i} \cap A_{j}=\emptyset$ for $i \neq j$. The canonical

[^0]Euclidean norm and the canonical inner product on \mathbb{R}^{n} we denote by $|\cdot|$ and $\langle\cdot, \cdot\rangle$. By $1 / t$ we mean ∞ if $t=0$ and 0 if $t=\infty$.

In this note we present two theorems. The first one investigates the behavior of the expectation of the minimum of symmetric Gaussian random variables.

Theorem 1 Let $p>0$. Let $\left(x_{i}\right)_{i=1}^{n}$ be a sequence of real numbers. Let $g_{i} \in N(0,1), i \leq n$, be Gaussian random variables. Then

$$
\frac{1}{1+p}\left(\frac{\pi}{2}\right)^{p / 2}\left(\sum_{i=1}^{n}\left|x_{i}\right|^{-1}\right)^{-p} \leq \mathbb{E} \min _{1 \leq i \leq n}\left|x_{i} g_{i}\right|^{p}
$$

Moreover, if the g_{i} 's are independent then

$$
\mathbb{E} \min _{1 \leq i \leq n}\left|x_{i} g_{i}\right|^{p} \leq \Gamma(1+p)\left(\frac{\pi}{2}\right)^{p / 2}\left(\sum_{i=1}^{n}\left|x_{i}\right|^{-1}\right)^{-p}
$$

An immediate consequence of this theorem is the following Corollary.
Corollary 2 Let $p>0$. Let $\left(x_{i}\right)_{i=1}^{n}$ be a sequence of real numbers. Let $f_{i} \in N(0,1)$, $i \leq n$, be Gaussian random variables and $g_{i} \in N(0,1), i \leq n$, be independent Gaussian random variables. Then

$$
\mathbb{E} \min _{1 \leq i \leq n}\left|x_{i} g_{i}\right|^{p} \leq \Gamma(2+p) \mathbb{E} \min _{1 \leq i \leq n}\left|x_{i} f_{i}\right|^{p}
$$

Remark. This inequality is connected to the Mallat-Zeitouni problem ([2]). In fact, to prove a particular case of Conjecture 1 from [2] it is enough to prove our Corollary for $p=2$ and with factor 1 instead of $\Gamma(2+p)([3])$. Thus we provide the solution of this case up to constant 6 .

Next theorem deals with the moments of k-min of independent symmetric Gaussian variables.
Theorem 3 Let $p>0$. Let $2 \leq k \leq n$. Let $0<x_{1} \leq x_{2} \leq \ldots \leq x_{n}$. Let $g_{i} \in N(0,1)$, $i \leq n$, be independent Gaussian random variables. Then

$$
c_{p} \max _{1 \leq j \leq k} \frac{k+1-j}{\sum_{i=j}^{n} 1 / x_{i}} \leq\left(\mathbb{E} k-\min _{1 \leq i \leq n}\left|x_{i} g_{i}\right|^{p}\right)^{1 / p} \leq C(p, k) \max _{1 \leq j \leq k} \frac{k+1-j}{\sum_{i=j}^{n} 1 / x_{i}}
$$

where $c_{p}=\frac{1}{2 e} \sqrt{\frac{\pi}{2}}\left(1-\frac{1}{4 \sqrt{\pi}}\right)^{1 / p}$ and $C(p, k)=4 \sqrt{\pi} \max \{p, \ln (k+1)\}$.
Remark. Theorem 3 shows that we may evaluate sums of the form $\sum_{k \in I} \mathbb{E} k$ - $\min _{1 \leq i \leq n}\left|x_{i} g_{i}\right|^{p}$, where $I \subset\{1,2, \ldots, n\}$ is any subset of integers. Related inequalities, though in a different context, were developed initially in [1].

Theorems 1 and 3 are consequences of the following Lemmas, which are of independent interest.
Lemma 4 Let $0<x_{1} \leq x_{2} \leq \ldots \leq x_{n}$. Let $g_{i} \in N(0,1)$, $i \leq n$, be Gaussian random variables. Let $a=\sqrt{2 / \pi} \sum_{i=1}^{n} 1 / x_{i}$. Then for every $t>0$

$$
\mathbb{P}\left\{\omega\left|\min _{1 \leq i \leq n}\right| x_{i} g_{i}(\omega) \mid \leq t\right\} \leq a t
$$

Moreover, if the g_{i} 's are independent then for every $t>0$

$$
\mathbb{P}\left\{\omega\left|\min _{1 \leq i \leq n}\right| x_{i} g_{i}(\omega) \mid>t\right\} \leq e^{-a t}
$$

Lemma 5 Let $1 \leq k \leq n$. Let $0<x_{1} \leq x_{2} \leq \ldots \leq x_{n}$. Let $g_{i} \in N(0,1)$, $i \leq n$, be independent Gaussian random variables. Let

$$
a=\frac{e}{k} \sqrt{\frac{2}{\pi}} \sum_{i=1}^{n} \frac{1}{x_{i}} .
$$

Then for every $0<t<1$ /a one has

$$
\begin{equation*}
\mathbb{P}\left\{\omega\left|k-\min _{1 \leq i \leq n}\right| x_{i} g_{i}(\omega) \mid \leq t\right\} \leq \frac{1}{\sqrt{2 \pi k}} \frac{(a t)^{k}}{1-a t} \tag{1}
\end{equation*}
$$

In the rest of this note we provide proofs of Theorems 1 and 3 . Proofs of all lemmas will be shown in a forthcoming paper.
Proof of Theorem 1. Let us note that if $x_{i}=0$ for some i then the expectation is 0 and the Theorem is trivial. Therefore, without loss of generality, we assume that $x_{i}>0$ for every i.

Denote

$$
A=\left(\sqrt{\frac{2}{\pi}} \sum_{k=1}^{n} 1 / x_{k}\right)^{-p}
$$

Then, by the first estimate in Lemma 4, we have

$$
\mathbb{E} \min _{1 \leq i \leq n}\left|x_{i} g_{i}\right|^{p}=\int_{0}^{\infty} \mathbb{P}\left\{\omega\left|\min _{1 \leq i \leq n}\right| x_{i} g_{i}(\omega) \mid>t^{1 / p}\right\} d t \geq \int_{0}^{A}\left(1-t^{1 / p} A^{-1 / p}\right) d t=\frac{A}{1+p}
$$

which proves the first estimate.
Now assume that the g_{i} 's are independent and use the second estimate of Lemma 4. We obtain

$$
\mathbb{E} \min _{1 \leq i \leq n}\left|x_{i} g_{i}\right|^{p}=\int_{0}^{\infty} \mathbb{P}\left\{\omega\left|\min _{1 \leq i \leq n}\right| x_{i} g_{i}(\omega) \mid>t^{1 / p}\right\} d t \leq \int_{0}^{\infty} \exp \left(-t^{1 / p} A^{-1 / p}\right) d t=A p \Gamma(p)
$$

which implies the desired result.

To prove Theorem 3 we need also the following combinatorial lemma.
Lemma 6 Let $1 \leq k \leq n$. Let $\left(a_{i}\right)_{i=1}^{n}$, be a nonincreasing sequence of positive real numbers. Then there exists a partition $\left(A_{l}\right)_{l \leq k}$ of $\{1,2, \ldots, n\}$ such that

$$
\min _{1 \leq l \leq k} \sum_{i \in A_{l}} a_{i} \geq a:=\frac{1}{2} \min _{1 \leq j \leq k} \frac{1}{k+1-j} \sum_{i=j}^{n} a_{i}
$$

Remark. In fact one can show that the A_{l} 's can be taken as intervals, i.e. $A_{l}=\left\{i \mid n_{l-1}<i \leq n_{l}\right\}$, $l \leq k$, for some sequence $0=n_{0}<1 \leq n_{1}<n_{2}<\cdots<n_{k}=n$.

Proof of Theorem 3. First we show the lower estimate. Since for every sequence $\left(a_{i}\right)_{i=1}^{n}$ and every $r<k$ one has

$$
k-\min \left(a_{i}\right)_{i=1}^{n} \geq(k-r)-\min \left(a_{i}\right)_{i=r+1}^{n}
$$

it is enough to show that for every k we have

$$
\begin{equation*}
c_{p} k\left(\sum_{i=1}^{n} 1 / x_{i}\right)^{-1} \leq\left(\mathbb{E} k-\min _{1 \leq i \leq n}\left|x_{i} g_{i}\right|^{p}\right)^{1 / p} \tag{2}
\end{equation*}
$$

Let a be as in Lemma 5 and $t=(2 a)^{-p}$. Then, by Lemma 5 and since $k \geq 2$, we have

$$
\mathbb{P}\left\{\left.\omega\left|k-\min _{1 \leq i \leq n}\right| x_{i} g_{i}(\omega)\right|^{p} \geq t\right\} \geq 1-\frac{1}{\sqrt{2 \pi k}} \frac{\left(a t^{1 / p}\right)^{k}}{1-a t^{1 / p}} \geq 1-\frac{1}{4 \sqrt{\pi}}
$$

Therefore (2) follows from the standard estimate

$$
\mathbb{E} k-\min _{1 \leq i \leq n}\left|x_{i} g_{i}\right|^{p} \geq t^{p} \mathbb{P}\left\{\omega\left|k-\min _{1 \leq i \leq n}\right| x_{i} g_{i}(\omega) \mid \geq t\right\}
$$

Now we prove the upper bound. Let $\left(A_{j}\right)_{j \leq k}$ be the partition given by Lemma 6 for sequence $a_{i}=1 / x_{i}, i \leq k$. The number $q, q \geq 1$, will be specified later. It is easy to see that $k-\min _{1 \leq i \leq n}\left|x_{i} g_{i}\right|^{p} \leq \max _{j \leq k}\left\{\min _{i \in A_{j}}\left|x_{i} g_{i}\right|^{p}\right\}_{j \leq k}$. Therefore, using Theorem 1, we get

$$
\begin{aligned}
& \left(\mathbb{E} k-\min _{1 \leq i \leq n}\left|x_{i} g_{i}\right|^{p}\right)^{1 / p} \leq\left(\mathbb{E}\left(\sum_{j \leq k}\left(\min _{i \in A_{j}}\left|x_{i} g_{i}\right|^{p}\right)^{q}\right)^{1 / q}\right)^{1 / p} \leq\left(\mathbb{E} \sum_{j \leq k} \min _{i \in A_{j}}\left|x_{i} g_{i}\right|^{p q}\right)^{1 /(p q)} \\
& \leq \sqrt{\frac{\pi}{2}}\left(\Gamma(1+p q) \sum_{j \leq k}\left(\sum_{i \in A_{j}} 1 / x_{i}\right)^{-p q}\right)^{1 /(p q)} \\
& \leq \sqrt{\frac{\pi}{2}}(k \Gamma(1+p q))^{1 /(p q)} \max _{j \leq k}\left(\sum_{i \in A_{j}} 1 / x_{i}\right)^{-1} .
\end{aligned}
$$

Applying Lemma 6, we obtain

$$
\left(\mathbb{E} k-\min _{1 \leq i \leq n}\left|x_{i} g_{i}\right|^{p}\right)^{1 / p} \leq \sqrt{2 \pi}(k \Gamma(1+p q))^{1 /(p q)} \max _{1 \leq j \leq k} \frac{k+1-j}{\sum_{i=j}^{n} 1 / x_{i}}
$$

To complete the proof we choose $q=\frac{\ln (k+1)}{p}$ if $p \leq \ln (k+1), q=1$ otherwise, and apply Stirling's formula.

Remark. Finally we would like to note that our results can be extended to the case of general distributions satisfying certain conditions. Namely, fix $\alpha>0, \beta>0$ and say that a random variable ξ satisfies an (α, β)-condition if for every $t>0$ one has

$$
\mathbb{P}(|\xi| \leq t) \leq \alpha t \quad \text { and } \quad \mathbb{P}(|\xi|>t) \leq e^{-\beta t}
$$

Then Theorems 1, 3 and Lemmas 4, 5 hold for g_{i} 's satisfying an (α, β)-condition (even not identically distributed), with constants depending on α, β. More precisely, in the estimates of Theorem 1, $(\pi / 2)^{p / 2}$ should be substituted by α^{-p} and β^{-p} correspondingly; in Theorem $3, \sqrt{\pi / 2}$ should be substituted by $1 / \alpha$ and, in the upper estimate, $4 \sqrt{\pi}$ by $4 \sqrt{2} / \beta$; in Lemma 5 and in the first estimate of Lemma $4, \sqrt{2 / \pi}$ should be substituted by α; in the second estimate of Lemma $4, \sqrt{2 / \pi}$ should be substituted by β.
Acknowledgement: The authors are indebted to Ofer Zeitouni for bringing to our attention some questions which motivated this study.

References

[1] Y. Gordon, A. E. Litvak, C. Schütt, E. Werner, Orlicz Norms of Sequences of Random Variables, Ann. of Prob., 30 (2002), 1833-1853.
[2] S. Mallat and O. Zeitouni, Optimality of the Karhunen-Loeve basis in nonlinear reconstruction, preprint, http://www.ee.technion.ac.il/ zeitouni/openprob.html
[3] O. Zeitouni, private communications.

[^0]: ${ }^{1}$ This author is partially supported by the Fund for the Promotion of Research at the Technion.
 ${ }^{2}$ This author is partially supported by FP6 Marie Curie Actions, MRTN-CT-2004-511953, PHD
 ${ }^{3}$ This author is partially supported by a NSF Grant, by a Nato Collaborative Linkage Grant and by a NSF Advance Opportunity Grant

