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Abstract

We show that, given an n-dimensional normed space X a sequence
of N = (8/ε)2n independent random vectors (Xi)N

i=1, uniformly dis-
tributed in the unit ball of X∗, with high probability forms an ε net
for this unit ball. Thus the random linear map Γ : Rn → RN defined
by Γx = (〈x,Xi〉)N

i=1 embeds X in `N
∞ with at most 1+ ε norm distor-

tion. In the case X = `n
2 we obtain a random 1 + ε embedding into

`N
∞ with asymptotically best possible relation between N , n, and ε.

1 Introduction

Let X = (Rn, ‖·‖) be an arbitrary n-dimensional normed space with unit ball
K. It is well known that, for any 0 < ε < 1, X can be 1 + ε embedded into
`N
∞, for some N = N(ε, n), depending on ε and n, but independent of X. In

this note we investigate 1+ε isomorphic embeddings which are random with
respect to some natural measure, depending on K. We first show that for
N = (8/ε)2n, a sequence of N independent random vectors (Xi)

N
i=1, uniformly

distributed in the unit ball K0 of the dual space X∗, forms an ε net for K0,
with high probability. Thus, with high probability, the random linear map
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Γ : Rn → RN defined by Γx = (〈x, Xi〉)N
i=1 embeds X in `N

∞ with at most
1 + ε norm distortion.

The important case is X = `n
2 . In this case it is more natural to consider

random vectors Xi uniformly distributed on the sphere Sn−1. Such vectors
also form an ε-net on the sphere hence they determine a random 1 + ε em-
bedding Γ of `n

2 into `N
∞. We also show that

√
n/N Γ is a 1+ε isometry from

`n
2 into `N

2 , with high probability.
The case X = `n

2 is connected with Dvoretzky’s theorem ([D]). Milman
found a new proof ([M]), using the Levy isoperimetric inequality on the
sphere, that there exists a function c(ε) > 0 such that for all n ≤ c(ε) log N ,
`n
2 can be 1 + ε embedded into any normed space Y of dimension N . His

proof gives c(ε) ∼ ε2/ log(2/ε). Later a new approach was found in ([Go1])
by using random Gaussian embeddings. It yields that c(ε) ∼ ε2 is sufficient.
Milman raised the question what is the best behavior of c(ε), as ε → 0, in
the above estimates. Recently Schechtman showed in [S1] that one may take
c(ε) ∼ ε/ (log(2/ε))2, however his approach is not random.

Since in this paper we deal with embeddings into `N
∞, we shall restrict our

attention to this case only. When Y = `N
∞, it is well known that there exists

an embedding with c(ε) ∼ 1/ log(2/ε). It is also known that this behavior
of c(ε) as ε → 0 cannot be improved. The standard embedding relies on the
existence of ε-nets of appropriate cardinalities. It is therefore natural to ask
whether this embedding can be randomized.

In this paper we provide a positive answer to this question. Namely, we
show (in Theorems 4.1, 4.3) that for the random embedding Γ determined by
independent uniformly distributed vectors on Sn−1, with large probability one
may achieve c(ε) ∼ 1

log(2/ε)
, which is the best possible as mentioned above.

We would like to note that such result is not valid in the setting of the
Haar measure on Grassman manifold (equivalently, for embeddings defined
by Gaussian matrices). Indeed, Schechtman recently showed ([S2]) that if
“most” n = c′(ε) log N dimensional subspaces of `N

∞ are 1+ ε Euclidean then
c′(ε) ∼ ε.

2 Notation and preliminary results

We denote by 〈·, ·〉 the scalar product of the canonical Euclidean structure on
Rn and by | · | the canonical Euclidean norm. The Euclidean ball is denoted
by Bn

2 and the Euclidean sphere is denoted by Sn−1.
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By a convex body in Rn we always mean a compact convex set with non-
empty interior. A centrally symmetric body with respect to origin will be
called symmetric.

Given a convex body K in Rn we denote by |K| its volume and by ‖ · ‖K

we denote the Minkowski functional of K, i.e.

‖x‖K = inf {λ > 0 | x ∈ λK} .

If K is symmetric then ‖ · ‖K is a norm with the unit ball K.
Given a finite set A we denote its cardinality by |A|.
Recall that if K is a symmetric convex body in Rn then for every 0 < ε ≤ 1

there exists an ε-net Λ in K with respect to the norm ‖ · ‖K of cardinality

|Λ| ≤ (1 + 2/ε)n ≤ (3/ε)n .

The polar of a convex body K ⊂ Rn is defined by

K0 = {x | 〈x, y〉 ≤ 1 for every y ∈ K} .

Let K be a convex body. We say that a vector X is uniformly distributed
on K if

P ({X ∈ A}) =
|K ∩ A|
|K|

for every measurable A ⊂ Rn.
Given a square matrix T by ‖T‖HS we denote its Hilbert-Schmidt norm.

Below we will need the following geometric lemma. Although we will use
only a particular case of the lemma, we prefer to state it in full generality
for future references.

Lemma 2.1 Let d > 0 and K, L be convex bodies in Rn such that K ⊂ −dL.
Then for every x ∈ K and for 0 < ε ≤ 1 one has

|K ∩ (x + εL)| ≥
∣∣∣∣ ε

d + 1
K ∩ L

∣∣∣∣ .

In particular, if K = L = −K then

|K ∩ (x + εK)| ≥
∣∣∣ε
2

K
∣∣∣ .
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Proof: Denote
α = 1− ε

d + 1
, β =

ε

d + 1
.

To prove the desired result it is enough to show that

K ∩ (x + εL) ⊃ αx + βK ∩ L.

Let z = αx + βy, where y ∈ K ∩ L. Clearly, z ∈ K and z = x + β(y − x).
Since

y − x ∈ L−K ⊂ L + dL = (1 + d)L,

we obtain the result. 2

Remark 1. The example of the cube (when x is a vertex) shows that the
estimate in the “in particular” part of Lemma 2.1 is sharp.

Remark 2. It is known that for every convex body K in Rn there exists a
shift such that K − a ⊂ −n(K − a). Thus, Lemma 2.1 implies that for every
convex body K in Rn there exists a vector a ∈ Rn such that for every x ∈ K
and for ε > 0 one has

|(K − a) ∩ (x + ε(K − a))| ≥
∣∣∣∣ ε

n + 1
K

∣∣∣∣ .

The example of the regular simplex (when x is a vertex) shows that the latter
estimate is sharp.

Remark 3. It was proved in [GLMP] that if a body L is in the position of
maximal volume in K (that is L ⊂ K and for every linear map T and every
point x ∈ Rn satisfying TL + x ⊂ K one has |TL| ≤ |L|), then there exist
a ∈ Rn such that

L− a ⊂ K − a ⊂ −n(L− a).

Thus Lemma 2.1 implies that if a body L is in the position of maximal volume
in K then there exists a vector a ∈ Rn such that for every x ∈ K and for
ε > 0 one has

|(K − a) ∩ (x + ε(L− a))| ≥
∣∣∣∣ ε

n + 1
L

∣∣∣∣ .
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3 Random embeddings of normed spaces in

`N
∞

First we show that N vectors uniformly distributed on a symmetric convex
body K form an ε-net in K.

Theorem 3.1 Let n ≥ 1, 0 < ε ≤ 1, and N = (4/ε)2n. Let X1, . . . , XN be
independent random variables uniformly distributed on a symmetric convex
body K in Rn. Then with a probability larger than 1 − exp (−(8/ε)n/2) the
set N = {X1, . . . , XN} forms an ε-net in K.

Proof: Fix an ε/2-net Λ ⊂ K with |Λ| ≤ (6/ε)n, and consider random vec-
tors X1, . . . , XN uniformly distributed on K, where N is as in the statement.

We want to show that the probability

P {∀x ∈ K ∃ i ≤ N such that ‖x−Xi‖K < ε} (1)

is large. Clearly this probability is larger than

P {∀x ∈ Λ ∃ i ≤ N such that ‖x−Xi‖K < ε/2} . (2)

By A denote the event considered in (2), and estimate the probability of its
complement Ac. We have

P(Ac) = P {∃x ∈ Λ ∀ i ≤ N one has ‖x−Xi‖K ≥ ε/2}

≤ |Λ|
(
P {‖x0 −X1‖K ≥ ε/2}

)N

≤ |Λ|
(
1− P {‖x0 −X1‖K < ε/2}

)N

,

where x0 ∈ Λ satisfies

P {‖x0 −Xi‖K ≥ ε/2} = max
x∈Λ

P {‖x−Xi‖K ≥ ε/2} .

Note that

P {‖x0 −X1‖K < ε/2} = P
{

X1 ∈ x0 +
ε

2
K

}
=
|K ∩ (x0 + ε

2
K)|

|K|
.

Applying Lemma 2.1 we obtain

P {‖x0 −X1‖K < ε/2} ≥
(ε

2

)n

.
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This implies

P(Ac) ≤ (6/ε)n
(
1− (ε/2)n

)N

≤ (6/ε)n exp
(
−(ε/2)nN

)
= exp

(
n ln(6/ε)− (ε/2)n(4/ε)2n

)
≤ exp

(
−(8/ε)n/2

)
,

which implies the result. 2

To prove the next theorem we need the following standard lemma. We
provide its proof for the the sake of completeness.

Lemma 3.2 Let X be a Banach space and K be its unit ball. Let N be an
ε-net in the unit ball K0 (or in the unit sphere ∂K0) of the dual space. Then
for every x ∈ X we have

sup
y∈N

〈x, y〉 ≤ ‖x‖K ≤ (1− ε)−1 sup
y∈N

〈x, y〉 .

Proof: The left hand side estimate is obvious. Now let ‖x‖X = 1 and
consider z ∈ ∂K0 such that 〈x, z〉 = 1. Then for an appropriate y ∈ N we
have 1 = 〈x, y〉 + 〈x, z − y〉 ≤ supy∈N 〈x, y〉 + ε, which implies the required
estimate. 2

Combining Theorem 3.1 with Lemma 3.2 we obtain that a random matrix
whose rows are independent random vectors uniformly distributed on the
polar of a symmetric convex body provides a random embedding of the body
into `N

∞.

Theorem 3.3 Let 0 < ε < 1 and n ≤ log N
2 ln(4/ε)

. Let K be a symmetric
convex body in Rn. Let X1, . . . , XN be independent random vectors uni-
formly distributed on K0. Consider the matrix Γ : Rn → RN whose rows
are X1, . . . , XN (i.e. Γx = (〈x, Xi〉)N

i=1). Then with probability larger than
1− exp (−(8/ε)n/2) we have

(1− ε) ‖x‖K ≤ ‖Γx‖∞ ≤ ‖x‖K ,

for all x ∈ Rn.
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4 The Euclidean case

In this section we discuss the embedding of `n
2 into `N

∞. Here it is more
natural to work with random vectors uniformly distributed on the Euclidean
sphere Sn−1. Accordingly, in the rest of the paper X1, . . . , XN stands for
independent random vectors uniformly distributed on the Euclidean sphere
Sn−1 and Γ : Rn → RN is the matrix whose rows are X1, . . . , XN (that is,
Γx = (〈x, Xi〉)N

i=1).
One can easily check that Theorem 3.1 holds for Sn−1 and such vectors

X1, . . . , XN . Indeed, this follows from the same argument as before with
minor modifications. We need only to observe that given y ∈ Sn−1 the
normalized Lebesgue measure of a cap{

x ∈ Sn−1 | |x− y| ≤ ε
}

is larger than or equal to (ε/2)n (cf. e.g., [P1], chapter 6), as well as the
fact that in Sn−1 there exists an ε-net of the cardinality (3/ε)n. Therefore
Theorem 3.3 holds with K = Bn

2 and with the matrix Γ : Rn → RN defined
above. We formally state both facts for future reference.

Theorem 4.1 Let 0 < ε < 1 and n ≤ log N
2 ln(4/ε)

. Let N = {X1, . . . , XN} where

Xi (i = 1, . . . , N) are independent random vectors uniformly distributed on
Sn−1. Then, with probability larger than 1 − exp (−(8/ε)n/2), N forms an
ε-net on Sn−1. Furthermore, with the same probability, the matrix Γ as above
satisfies

(1− ε) |x| ≤ ‖Γx‖∞ ≤ |x|,
for all x ∈ Rn.

Denote by Q the unit ball of `N
∞ (i.e. the N -dimensional cube). Theo-

rem 4.1 shows that Q has an n-dimensional section (which can be realized
as E := ΓRn) which is almost Euclidean, i.e.

ΓBn
2 ⊂ Q ∩ E ⊂ (1− ε)−1 ΓBn

2 .

Below we show that in fact the ellipsoid ΓBn
2 is, up to 1+ε

1−ε
, equivalent to the

standard Euclidean ball of radius
√

N/n. In other words, a random subspace
E = ΓRn of `N

∞ is nearly Euclidean with respect to the canonical Euclidean
structure on RN . Namely, Theorem 4.3 below shows that

(1− ε)
√

N/n ΓBn
2 ⊂ Q ∩ E ⊂ 1 + ε

1− ε

√
N/n ΓBn

2 .
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We need the following lemma, which shows that
√

n/N Γ almost preserves
the Euclidean norm of a vector.

Lemma 4.2 Let 0 < ε < 1 and let N ≥ n3/ε4. Let X1, . . . , XN be indepen-
dent random points on the sphere Sn−1. Then with probability larger than
1− n2/(ε4N) we have

(1− ε)|x| ≤ |Γx|
√

n/N ≤ (1 + ε)|x|,

for every x ∈ Rn.

Remark. One can get better estimates using a theorem of Bourgain [B].
For instance, the above inequalities are satisfied with probability larger than
1 − δ as far as N ≥ c(δ)n(log n)3/ε2 (instead of let N ≥ n3/ε4) for some
function c(δ) > 0. However, we prefer to present here a simpler proof, which
provides estimates good enough for our purposes.

Proof: Set A := ‖Γ∗Γ− (N/n)I‖HS. Using the fact that ‖T‖2
HS = tr(T ∗T )

for every operator T : Rn → RN , we get

A2 =
∑
i,j

| 〈Xi, Xj〉 |2 + (N2/n2)n− (2N/n)‖Γ‖2
HS

=
∑
i,j

| 〈Xi, Xj〉 |2 + (N2/n2)n− 2N2/n

=
∑

i

|Xi|4 +
∑
i6=j

| 〈Xi, Xj〉 |2 −N2/n.

Therefore,

EA2 = N + N(N − 1)E| 〈X1, X2〉 |2

Since E| 〈X1, X2〉 |2 = 1/n, we finally obtain EA2 = N(1− 1/n).
By Chebyshev’s inequality we get, for any ε1 > 0,

P{A > ε1} ≤ EA2/ε2
1 ≤ N/ε2

1.

Thus

P{‖ n

N
Γ∗Γ− I‖ < ε1} ≥ P{‖ n

N
Γ∗Γ− I‖HS < ε1}

≥ 1− P{A >
N

n
ε1} ≥ 1− Nn2

ε2
1N

2
= 1− n2

ε2
1N

.
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The last estimate implies that, for any ε1 > 0, with probability larger
than or equal to 1 − n2/(ε2

1N), we have the estimates for singular numbers
of the matrix Γ, ∣∣∣√n/Nsj(Γ)− 1

∣∣∣ <
√

ε1,

for j = 1, . . . , n. In particular,

1−
√

ε1 <
√

n/Nsn(Γ) ≤
√

n/Ns1(Γ) < 1 +
√

ε1.

Setting ε1 = ε2 immediately implies the desired conclusion. 2

Combining Theorem 3.3 with Lemma 4.2 we obtain the following theorem.

Theorem 4.3 Let 0 < ε < 1 and 2 ≤ n ≤ log N
2 ln(4/ε)

. Let X1, . . . , XN be

independent random vectors uniformly distributed on Sn−1. Consider the
matrix Γ : Rn → RN whose rows are X1, . . . , XN . Then with probability
larger than 1− n2 ε2n−4/16n − exp (−(8/ε)n/2) ≥ 1− e−n we have

1− ε

1 + ε
|Γx| ≤

√
N

n
‖Γx‖∞ ≤ 1

1− ε
|Γx|,

for all x ∈ Rn.

Finally, we would like to emphasize the differences between the random-
ness given by the matrix Γ and a standard Gaussian matrix G (i.e., with
independent N(0, 1) entries). Fix N and 0 < ε < 1. As already mentioned
in the introduction, Γ gives a random embedding with n1 ∼ log N

log(2/ε)
(which

is best possible in general), while G provides a random embedding with
n2 ∼ ε log N , which is best possible if one requires high probability ([S2]).

Another observation is that Euclidean sections of the cube determined by
Γ and G, and taken in the appropriate dimensions n1 and n2 (or smaller),
will have different radii. Indeed, the conclusion of Theorem 4.3 implies that,
with high probability defined by Γ, for every non-zero y ∈ ΓRn1 ,

‖y‖∞
|y|

∼
√

n1

N
∼

√
log N

N log(2/ε)
.

On the other hand, with high probability defined by G for every non-zero
y = Gx ∈ GRn2 one has

‖y‖∞
|y|

∼ E ‖Gx‖∞
E |Gx|

=
E ‖Ge1‖∞
E |Ge1|

∼
√

log N

N
.
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These two expectations are not comparable uniformly in ε (as ε → 0).

Added in the proof: Theorem 3.1 should be compared with Proposition
5.3 of [GiM]
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