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Abstract

We prove sharp bounds for the expectation of the supremum of the Gaussian
process indexed by the intersection of Bn

p with ρBn
q for 1 ≤ p, q ≤ ∞ and ρ > 0,

and by the intersection of Bn
p∞ with ρBn

2 for 0 < p ≤ 1 and ρ > 0. We present
an application of this result to a statistical problem known as the approximate
reconstruction problem.

Keywords: Approximate reconstruction, Gaussian process, Gaussian averages, Gelfand
widths, diameter of a section, interpolation, learning theory, “Low M∗-estimate”.

1 Introduction

The motivation for the questions we study here came from problems in convex geometry
and in nonparametric statistics (learning theory).

To formulate the main question we tackle, let e1, ..., en be the standard basis in Rn

endowed with the canonical Euclidean structure, and set {gi}n
1 to be independent N (0, 1)

Gaussian random variables. Let T ⊂ Rn and consider the sets Tρ = T ∩ ρBn
2 , where Bn

2

is the unit Euclidean ball. Our aim is to bound `∗(Tρ) := E supt∈Tρ
〈
∑n

i=1 giei, t〉 as a
function of ρ. Obtaining precise estimates for a general set T is virtually impossible, but
as we show here, in some cases one can establish sharp bounds when T is Bn

p , the unit
ball in `n

p , for 1 ≤ p ≤ ∞ or Bn
p∞, the unit ball in a weak-`n

p , for 0 < p ≤ 1. In fact, one
can even obtain sharp bounds when the Bn

2 is replaced by a Bn
q , the unit ball in `n

q .
Our main results are the following two theorems (see Section 5 for more precise

formulations).

Theorem A There exist absolute positive constants c, C, and c1 < 1 for which the
following holds. Let {gi}i≤n be independent N (0, 1) Gaussian variables. Consider 1 ≤
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q0 < q1 ≤ ln(2n), let r be such that 1/r = 1/q0 − 1/q1, set 1 ≤ t ≤ c
q1/r
1 n1/r, and put

L = Bn
p0
∩ tBn

p1
, where 1/pi + 1/qi = 1, i = 0, 1. Then

c tr/q0
√

q0 + ln(2n/tr) + t
√

q1n
1/q1 ≤ E sup

y∈L

〈
n∑

i=1

giei, y

〉

≤ C tr/q0
√

q0 + ln(2n/tr) + t
√

q1n
1/q1 .

Theorem B There are absolute positive constants c and C for which the following
holds. Let {gi}i≤n be independent, standard Gaussian variables. Set 0 < p ≤ 1 and
γ = 1/(1/p− 1/2), let n−1/γ < ρ < 1 and put K = Bn

p∞ ∩ ρBn
2 .

(i) If 0 < p < 1 then

cρ2 1−p
2−p

√
ln (2nργ) ≤ E sup

y∈K

〈
n∑

i=1

giei, y

〉
≤ C

1− p
ρ2 1−p

2−p

√
ln (2nργ).

(ii) If p = 1 then

c
(
ln
(
2nρ2

))3/2 ≤ E sup
y∈K

〈
n∑

i=1

giei, y

〉
≤ C

(
ln
(
2nρ2

))3/2
.

The notion in learning theory that motivated this study is localization. Since we do
not want to present a detailed discussion concerning learning theory, let us present one
concrete problem in which the question we study is essential.

Let T ⊂ Rn be a given set, which we assume to be convex and symmetric. A point
t0 ∈ T is selected, and the goal of the learner is to approximate it with respect to the
Euclidean norm (denoted below by ‖ · ‖2). The data one is given to accomplish this task
is a set of random linear measurements (

〈
Xi, t0

〉
)k
i=1, where X1, ..., Xk are independent

random variables, distributed according to a probability measure µ on Rn. For every
such data set one produces t̂ ∈ Rn according to some rule, and the hope is to show that
with high probability (with respect to the product measure µk), ‖t0 − t̂‖2 is small.

The measure µ plays an important role here, and the idea is that it should be as
general as possible, specifically, it should not depend on the particular choice of the set
T .

This problem, called the approximate reconstruction problem, and problems of a
similar flavor including the new direction of sparse approximation theory called com-
pressed sensing have been studied by various authors in the last few years (see, e.g.
[CDS, CT1, CT2, D, DE, DET, RV]). In all these results the main focus was on the
case where µ is the standard Gaussian measure on Rn and T is the set of sparse vectors
{x ∈ Rn | |supp x| ≤ s} for some s, or T = Bn

1 , or T = Bn
p∞. In [MePT] a more general

problem was solved – for an arbitrary convex, centrally symmetric set T and isotropic,

2



L-subgaussian measures. Recall that µ is isotropic if for every t ∈ Rn, E
〈
X, t

〉2
= ‖t‖2

2,
and is L-subgaussian if for every t ∈ Rn,

Pr
(
|
〈
X, t

〉
| ≥ uL‖t‖2

)
≤ 2 exp(−u2)

for every u ≥ 1.
It turns out (see Section 7 for more details) that the key parameter that governs the

degree of approximation, r∗k(θ, T ), is given by

r∗k(θ, T ) := inf
{

ρ > 0 | ρ ≥ 2`∗(Tρ)/θ
√

k
}

, (1)

where `∗(Tρ) was defined above and θ = c/L2 for some absolute constant c. More precisely,
one can show that if one selects t̂ ∈ T for which

〈
Xi, t̂

〉
=
〈
Xi, t0

〉
for every 1 ≤ i ≤ k,

then with high probability, ‖t̂− t0‖2 ≤ c1r
∗
k(θ, T ), where c1 is an absolute constant.

Note that r∗k(θ, T ) is governed by the quantity we are interested in – the expectation
of the supremum of the Gaussian process indexed by an intersection body. We show the
details in Section 7.

The geometric applications are related to Dvoretzky type results and estimates on
diameters of sections of convex bodies. Recall the following variant of so-called “Low
M∗-estimate”, which was first proved in [Mi1, Mi2], then improved in [PT1, PT2]. The
version we use here is from [Go1]. Given convex centrally-symmetric body T in Rn and
1 ≤ k ≤ n if

k >

(
`∗(Tρ)

ωkρ

)2

,

where 1 − 1/(4
√

k) < ωk :=
√

2
k
Γ
(

k+1
2

)
/Γ
(

k
2

)
< 1, then a “random” k-codimensional

subspace E of Rn satisfies
T ∩ E ⊂ ρBn

2 .

In other words, if we control `∗(Tρ) then we control the diameter of k-codimensional
section of T for an appropriate k. Thus our main results, Theorems A and B, have
immediate consequences for diameters of sections. We provide precise estimates for some
cases in Section 6.

2 Preliminaries and Notation

Let ‖ · ‖2 and 〈·, ·〉 denote a fixed (canonical) Euclidean norm and inner product on Rn.
The canonical basis of Rn is denoted by e1, . . . , en. For 1 ≤ p ≤ ∞ set ‖ · ‖p to be the
`n
p -norm, i.e.

‖x‖p =

(∑
i

|xi|p
)1/p

for p < ∞, ‖x‖∞ = sup
i
|xi|,

and let Bn
p be their unit balls.
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Given a sequence {ai}n
i=1, let {a∗i }n

i=1 be the non-increasing rearrangement of {|ai|}n
i=1.

We will also need the definition of the weak-`n
p -norm, ‖ · ‖p∞ for 0 < p < ∞, given by

‖x‖p∞ = sup
1≤k≤n

k1/p x∗k

with the unit ball Bn
p∞ =

{
x ∈ Rn | x∗k ≤ k−1/p for every k ≤ n

}
.

The convex hull of a set A is denoted by conv A.
Let K ⊂ Rn be a centrally symmetric (with respect to the origin) compact convex

set. As usual, the Minkowski functional of K is denoted by ‖ · ‖K and defined by

‖x‖K = inf {λ > 0 | x ∈ λK} .

The polar of K is
K◦ = {x | 〈x, y〉 ≤ 1 for every y ∈ K} .

Note that K is the unit ball of the normed space X = (Rn, ‖ · ‖K) and that X∗ =
(Rn, ‖ · ‖K◦). Moreover, given symmetric convex bodies K and L we have

(K ∩ L)◦ = conv (K◦ ∪ L◦) and (conv (K ∪ L))◦ = K◦ ∩ L◦.

In particular, (
conv

(
Bn

q0

⋃ 1

t
Bn

q1

))◦
= Bn

p0
∩ tBn

p1
,

where 1/pi + 1/qi = 1 and t > 0.
Throughout this note we denote by {gi} and {gi,j} collections of independent N (0, 1)

Gaussian random variables.
Given two functions F and G we write F ∼ G if there are absolute positive constants

c, C such that cF ≤ G ≤ CF.
Finally, all absolute constants are positive and denoted by c or C. Their actual values

may change from line to line.

3 Norm estimates on Gaussian vectors

In this section we recall some well known results and develop some new ones regarding
the expectations of Gaussian variables. We deal with a sequence of n independent N (0, 1)
Gaussian random variables, g1, . . . , gn, and compute expectations of some functionals of
the rearranged sequence g∗1, . . . , g

∗
n.

The first two lemmas are known and are derived by direct calculations (see, e.g.
Example 10 in [GoLSW2] for Lemma 3.2). They show that the expectation of g∗k behaves
quite regularly as a function of k and n, but the behavior is different for “large” and
“small” k.
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Lemma 3.1 Let 1 ≤ k ≤ n/2 and set {gi}n
i=1 to be independent N (0, 1) Gaussian ran-

dom variables. Then

E g∗k ∼
√

ln
n

k
.

In particular,

E
k∑

i=1

g∗i ∼ k

√
ln

n

k
.

Lemma 3.2 Let n/2 ≤ k ≤ n and set {gi}n
i=1 to be independent N (0, 1) Gaussian

random variables. Then√
π

2

n + 1− k

n + 1
≤ E g∗k ≤

√
2π

n + 1− k

n + 1
.

We will also require the following Lemma, which is a specific application of Example 16
in [GoLSW1].

Lemma 3.3 Let 1 ≤ q ≤ ln(2n) and 1 ≤ k ≤ n/2. Then(
E

k∑
i=1

(g∗i )
q

)1/q

∼ k1/q

√
q + ln

n

k
.

We now turn to two corollaries of Lemma 3.1 and Lemma 3.3 which will be used
below.

Corollary 3.4 Let 1 ≤ q ≤ ln(2n) and 1 ≤ k ≤ n. If {gi}n
i=1 are independent N (0, 1)

Gaussian random variables then

E

(
k∑

i=1

(g∗i )
q

)1/q

∼ k1/q

√
q + ln

2n

k
.

Proof: Without loss of generality, assume that k ≤ n/2. The upper bound follows
immediately from Lemma 3.3 and a comparison between the first and the q-th moments.

To obtain the lower bound, note that by Lemma 3.1 for every m ≤ k,

E

(
k∑

i=1

(g∗i )
q

)1/q

≥ E

(
m∑

i=1

(g∗i )
q

)1/q

≥ m−1+1/q E
m∑

i=1

g∗i ≥ c m1/q

√
ln

2n

m
,

where c > 0 is an absolute constant. Choosing m = [1 + k/eq] we obtain the desired
result. 2
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Remark 3.5 Corollary 3.4 can be used to show that for 1 ≤ q ≤ ln(2n)

E

(
n∑

i=1

|gi|q
)1/q

∼ n1/q √q.

Of course, this estimate is well known and can be obtained using direct calculations. Note

also that if q ≥ ln(2k) then g∗1 ∼
(∑k

i=1 (g∗i )
q
)1/q

. Hence, for q ≥ ln(2k) we have

E

(
k∑

i=1

(g∗i )
q

)1/q

∼
√

ln(2n).

Corollary 3.6 There is an absolute positive constant c1 < 1 for which the following
holds. If 1 ≤ q ≤ ln(2n) then for every k ≤ cq

1n,

E

(
n∑

i=k+1

(g∗i )
q

)1/q

∼ √
q n1/q,

where {gi}n
i=1 are independent N (0, 1) Gaussian random variables.

Proof: First observe that the upper estimate is simple. Indeed,

E

(
n∑

i=k+1

(g∗i )
q

)1/q

≤ E

(
n∑

i=1

(g∗i )
q

)1/q

= E

(
n∑

i=1

|gi|q
)1/q

∼ n1/q √q

by Remark 3.5.
Now let us prove the lower estimate. Using Remark 3.5 again, we obtain that there

exists an absolute positive constant c2 such that

E

(
n∑

i=1

|gi|q
)1/q

≥ 2c2n
1/q √q.

Therefore, applying Corollary 3.4,

E

(
n∑

i=k+1

(g∗i )
q

) 1
q

≥ E

(
n∑

i=1

|gi|q
) 1

q

− E

(
k∑

i=1

(g∗i )
q

) 1
q

≥ 2c2n
1
q
√

q − C k
1
q

√
q + ln

2n

k
,

where C is an absolute constant. Since the function f(x) = x2/q(q+ln(2n/x)) is increasing
on [0, n], it is evident that if k ≤ cq

1n for some 0 < c1 < 1 then

E

(
n∑

i=k+1

(g∗i )
q

) 1
q

≥ 2c2n
1
q
√

q − C c1 n
1
q

√
q ln(2e/c1)

= (2c2 − c1C ln(2e/c1)) n
1
q
√

q.

The desired result is evident by choosing 0 < c1 < 1 such that c1C ln(2e/c1) ≤ c2. 2
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4 Interpolation results

We begin this section with the following two known interpolation results. We present the
proof of the second one for the sake of completeness. The proof of the first one can be
obtained in a similar way (see [H]).

Lemma 4.1 There exists an absolute constant c > 0 for which the following holds. Let
1 ≤ q0 < q1 < ∞, set r to satisfy 1/r = 1/q0 − 1/q1 and put 1 ≤ t ≤ n1/r. If
K = conv

(
Bn

q0
∪ 1

t
Bn

q1

)
then for every x ∈ Rn,

c

(∑
i≤tr

(x∗i )
q0

)1/q0

+ t

(∑
i>tr

(x∗i )
q1

)1/q1
 ≤

≤ ‖x‖K ≤

(∑
i≤tr

(x∗i )
q0

)1/q0

+ t

(∑
i>tr

(x∗i )
q1

)1/q1

.

Moreover, if q1 = ∞, then, denoting q = q0 ∈ [1,∞),

‖x‖K ∼

(∑
i≤tq

(x∗i )
q

)1/q

.

Lemma 4.2 There exists an absolute constant c > 0 for which the following holds. Let
0 < p ≤ 1, set γ = 1/(1/p− 1/2) and put n−1/γ < ρ < 1. If K = Bn

p∞ ∩ ρBn
2 then

c

(
ρ |||x|||+

∑
i>m

i−1/px∗i

)
≤ sup

y∈K
〈x, y〉 ≤ ρ |||x|||+

∑
i>m

i−1/px∗i , (2)

where m = [1/ργ] and

|||x||| =

(∑
i≤m

(x∗i )
2

)1/2

.

Proof: Fix x ∈ Rn, x 6= 0 and without loss of generality assume that x1 ≥ x2 ≥ . . . ≥
xn ≥ 0. Recall that y ∈ K if and only if y ∈ ρBn

2 and y∗i ≤ i−1/p for every i ≤ n.
Applying Hardy-Littlewood inequality for rearrangements we obtain for every y ∈ K

〈x, y〉 ≤
n∑

i=1

|xiyi| ≤
n∑

i=1

x∗i y
∗
i =

∑
i≤m

xiy
∗
i +

∑
i>m

xiy
∗
i ≤ ρ |||x|||+

∑
i>m

i−1/pxi,

which shows the right hand side inequality in (2).
To prove the left hand side of (2), first consider y ∈ Rn defined by yi = ρxi/|||x||| for

i ≤ m and yi = 0 for i > m. Clearly, y ∈ ρBn
2 . Note that for every i ≤ m

xi ≤

(
1

i

∑
j≤i

x2
j

)1/2

≤ |||x|||/
√

i.
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Thus,

yi ≤
ρ√
i
≤ 1

m1/p−1/2
√

i
≤ 1

i1/p
,

implying that y ∈ Bp∞, and hence y ∈ K. Therefore

sup
z∈K

〈x, z〉 ≥ 〈x, y〉 =
∑
i≤m

ρx2
i /|||x||| = ρ|||x|||.

Now take y =
∑

i>m i−1/p ei. It is evident that y ∈ Bp∞ and, since (m + 1)−1/γ ≤ ρ,∑
i>m

y2
i =

∑
i>m

i−2/p ≤ (m + 1)−2/p +

∫ ∞

m+1

x−2/p dx ≤ 2

2− p
ρ2.

Thus y ∈
√

2ρBn
2 , which implies that y ∈

√
2K. Therefore

√
2 sup

z∈K
〈x, z〉 ≥ 〈x, y〉 ≥

∑
i>m

xi

i1/p
,

and we obtain that

sup
z∈K

〈x, z〉 ≥ max

{
ρ|||x|||, 1√

2

∑
i>m

xi

i1/p

}
,

which completes the proof. 2

Remark 4.3 Note that if ρ ≤ n−1/γ then K = ρBn
2 . Also note that if p < 1 then∑

i>m

x∗i
i1/p

≤
√

2

1− p
ρ |||x|||.

Indeed, since x∗i ≤ |||x|||/
√

m for every i ≥ m and m ≤ 1/ργ ≤ m + 1, then∑
i>m

x∗i
i1/p

≤ |||x|||√
m

∑
i>m

i−1/p ≤ |||x|||
√

2

m + 1

(
1

(m + 1)1/p
+

∫ ∞

m+1

x−1/p dx

)
≤

√
2

1− p
ρ |||x|||.

5 Gaussian averages of interpolated bodies

Now we are ready to formulate our main results.

Theorem 5.1 There are absolute positive constants c, C, and c1 < 1 for which the
following holds. Let {gi}i≤n be independent N (0, 1) Gaussian variables. Consider 1 ≤
q0 < q1 ≤ ∞, let r be such that 1/r = 1/q0 − 1/q1, set 1 ≤ t ≤ n1/r and put K =
conv

(
Bn

q0
∪ 1

t
Bn

q1

)
, L = K◦ = Bn

p0
∩ tBn

p1
, where 1/pi + 1/qi = 1, i = 0, 1.
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(i) If q0 ≥ ln(2n) then

E sup
y∈L

〈
n∑

i=1

giei, y

〉
= E

∥∥∥∥∥
n∑

i=1

giei

∥∥∥∥∥
K

∼
√

ln(2n).

(ii) If q0 < ln(2n) ≤ q1 then

E sup
y∈L

〈
n∑

i=1

giei, y

〉
= E

∥∥∥∥∥
n∑

i=1

giei

∥∥∥∥∥
K

∼ t
√

q0 + ln(2n/tq0).

(iii) If q1 < ln(2n) and t > c
q1/r
1 n1/r then

c
√

q0 n1/q0 ≤ E sup
y∈L

〈
n∑

i=1

giei, y

〉
= E

∥∥∥∥∥
n∑

i=1

giei

∥∥∥∥∥
K

≤ C c
−q1/r
1

√
q0 n1/q0 .

(iv) If q1 < ln(2n) and t ≤ c
q1/r
1 n1/r then

E sup
y∈L

〈
n∑

i=1

giei, y

〉
= E

∥∥∥∥∥
n∑

i=1

giei

∥∥∥∥∥
K

∼ t
√

q1n
1/q1 .

Proof:
(i) In this case e−1Bn

∞ ⊂ Bn
q0
⊂ Bn

∞ and thus the same is true for K. The estimate
is known for the unit cube (see e.g. Lemma 4.14 of [Pi], or just use Lemma 3.1), from
which the claim follows.
(ii) Here, e−1Bn

∞ ⊂ Bn
q1
⊂ Bn

∞. Therefore, setting T = conv
(
Bn

q0
∪ 1

t
Bn
∞
)

and applying
Lemma 4.1, we obtain

‖x‖K ∼ ‖x‖T ∼

(∑
i≤tq0

(x∗i )
q0

)1/q0

.

By Corollary 3.4,

E

(∑
i≤tq0

(g∗i )
q0

)1/q0

∼ t

√
q0 + ln

2n

tq0
,

from which the desired result follows.
(iii) Since Bn

q1
⊂ n1/rBn

q0
then Bn

q0
⊂ K ⊂ c

−q1/r
1 Bn

q0
and the estimate is known (see

Remark 3.5).
(iv) First we observe that by Lemma 4.1, Corollary 3.4, and Corollary 3.6 one has

E

∥∥∥∥∥
n∑

i=1

giei

∥∥∥∥∥
K

∼ tr/q0
√

q0 + ln(2n/tr)+t
√

q1n
1/q1 = t

(
tr/q1

√
q0 + ln(2n/tr) +

√
q1n

1/q1

)
.
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Maximizing the function f(s) = s
√

q0 + ln(2n/sq1), it is not hard to see that

tr/q1
√

q0 + ln(2n/tr) ≤ 3
√

q1n
1/q1 ,

which implies the desired result. 2

Theorem 5.2 There are absolute positive constants c and C for which the following
holds. Let {gi}i≤n be independent, standard Gaussian variables. Set 0 < p ≤ 1 and
γ = 1/(1/p− 1/2), let n−1/γ < ρ < 1 and put K = Bp∞ ∩ ρBn

2 .

(i) If 0 < p < 1 then

cρ2 1−p
2−p

√
ln (2nργ) ≤ E sup

y∈K

〈
n∑

i=1

giei, y

〉
≤ C

1− p
ρ2 1−p

2−p

√
ln (2nργ).

(ii) If p = 1 then

E sup
y∈K

〈
n∑

i=1

giei, y

〉
∼
(
ln
(
2nρ2

))3/2
.

Proof: As in Lemma 4.2 denote

|||x||| =

(∑
i≤m

(x∗i )
2

)1/2

,

where m = [1/ργ]. By Corollary 3.4

E |||
n∑

i=1

giei||| ∼
√

m ln
2n

m
.

Applying Lemma 4.2 and Remark 4.3, there are absolute constants c and C such that
for p < 1

c ρ

√
m ln

2n

m
≤ E sup

y∈K

〈
n∑

i=1

giei, y

〉
≤ Cρ

1− p

√
m ln

2n

m
,

which proves (i).
Now, let p = 1. Then m = [1/ρ2] and thus, by Corollary 3.4,

ρ E |||
n∑

i=1

giei||| ∼
√

ln
2n

m
.

Using the assertion of Lemma 4.2, it suffices to bound
∑

i>m g∗i /i. To that end, note that
there are absolute positive constants C1, C2 and C3 for which the following holds.
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(a) By Lemma 3.2, for every m > n/2,

E
∑
i>m

g∗i
i
∼
∑
i>m

1

i

n− i + 1

n
∼ (n−m)2

n2
,

and thus

E
∑
i>m

g∗i
i
≤ C1.

(b) By Lemma 3.1 and (a), for every n/4 < m < n/2

C2 ≤ E
∑
i>m

g∗i
i
≤ C3.

(c) For every m ≤ n/4 and, again, by Lemma 3.1,

E
∑

m<i≤n/2

g∗i
i
∼

∑
m<i≤n/2

1

i

√
ln

2n

i
∼
(

ln
2n

m

)3/2

.

Combining these estimates with Lemma 4.2, it follows that

E sup
y∈K

〈
n∑

i=1

giei, y

〉
∼ ρ E |||

n∑
i=1

giei|||+ E
∑
i>m

g∗i
i
∼
(

ln
2n

m

)3/2

,

which completes the proof. 2

6 Gelfand widths

The (k + 1)-th Gelfand width of a given symmetric convex body T ∈ Rn, ck+1(T ), is
defined as the smallest possible diameter (in the Euclidean metric) of k-codimensional
section of K. The literature over the decades about Gelfand numbers is enormous. For
classic results related to our applications see e.g. Chapter 5 of [Pi]. If T ∩ E ⊂ aBn

2 for
“most” (in the sense of normalized Haar measure on the Grassmanian) k-codimensional
subspaces E then we say that it is true for a “random” subspace E. We prefer not to
discuss measure estimates here, i.e. not to specify the word “most” (usually it means
that the Haar measure of such subspaces is larger than 1 − e−ck, where c is an absolute
positive constant). The smallest a satisfying T∩E ⊂ aBn

2 for a “random” k-codimensional
subspace E is called random Gelfand width and is denoted by crk+1(T ). The connection
between ck and crk was first investigated in [LT], [MaT] and then in recent works [GiMT,
V, LPT].

Recall our notation. Given a symmetric body T ⊂ Rn, let Tρ = T ∩ ρBn
2 and

`∗(T ) = E sup
t∈T

〈
n∑

i=1

giei, t

〉
.
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Set 1 − 1/(4
√

k) < ωk :=
√

2
k
Γ
(

k+1
2

)
/Γ
(

k
2

)
< 1. A variant of so-called “Low M∗-

estimate”, already mentioned in the introduction, can be formulated as follows.

Theorem 6.1 Let 1 ≤ k ≤ n and let T be a symmetric convex body in Rn. Assume that
ρ > 0 satisfies

k >

(
`∗(Tρ)

ωkρ

)2

. (3)

Then crk+1(T ) ≤ ρ.

Combining Theorem 6.1 with Theorems 5.1 and 5.2 we obtain the following corollaries.

Corollary 6.2 There exist an absolute positive constant C such that for every k < n
and every 1 ≤ p ≤ 2 ≤ q ≤ ∞ satisfying 1/p + 1/q = 1 one has

(i) if q ≥ ln(2n) (that is, when Bn
p is equivalent to Bn

1 ) then

crk

(
Bn

p

)
≤ C

(
1

k
ln

(
2n

k

))1/2

,

(ii) if q < ln(2n) then
crk

(
Bn

p

)
≤ C k−1/2 √qn1/q.

This corollary is well known ([K], [GaG], [Gl], see also a recent work [Go2]). We
provide a proof for completeness. For other related results see for example [GoGMP].

Proof: To simplify notation we denote Bn
p by T . We apply Theorem 5.1 with q0 = 2,

q1 = q. Then 1/r = 1/2 − 1/q and L = Bn
2 ∩ tBn

p = tTρ, where ρ = 1/t. Formally, we

should check that n−1/r ≤ ρ ≤ 1, but this condition will follow automatically, since one
trivially has n−1/r ≤ crk(T ) ≤ 1.

By Theorem 5.1 for q ≥ ln(2n) we have

`∗(Tρ) = (1/t) `∗(L) ≤ C1

√
2 + ln(2n/t2) ≤ C2

√
ln(2nρ2),

where C1 and C2 are positive absolute constants. Therefore there exists a positive absolute
constant C3 such that the choice

ρ = C3k
−1/2

√
ln(2n/k)

satisfies inequality (3) which shows the first estimate.
For the second estimate it is enough to use Remark 3.5: there exists an absolute

constant C4 such that
`∗(Tρ) ≤ `∗(B

n
p ) ≤ C4

√
qn1/q.

Therefore the choice
ρ = 2C4k

−1/2√qn1/q

satisfies inequality (3). 2
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Corollary 6.3 There exists an absolute positive constant C such that for every k < n
one has

crk (Bn
1∞) ≤ C k−1/2

(
ln

(
2n

k

))3/2

.

Proof: Denoting T = Bn
1∞, by Theorem 5.2 we have

`∗(Tρ) ≤ C1

(
ln
(
2nρ2

))3/2
,

where C1 is a positive absolute constant. Therefore there exists a positive absolute
constant C such that the choice

ρ = C k−1/2

(
ln

(
2n

k

))3/2

satisfies inequality (3), from which the desired result follows. 2

Corollary 6.4 There exists an absolute positive constant C such that for every 0 < p < 1
and every. k < n one has

crk

(
Bn

p∞
)
≤

C ln
(

2n
k(1−p)2

)
k(1− p)2


1
p
− 1

2

.

Proof: Denoting T = Bn
p∞, by Theorem 5.2 we have

`∗(Tρ) ≤
C1

1− p
ρ2 1−p

2−p

√
ln (2nργ)

where C1 is a positive absolute constant and γ = 1/(1/p−1/2). Note that 1−21−p
2−p

= γ/2.

Therefore to satisfy inequality (3) it is enough to choose ρ such that

ργ ≥ 2C1

(1− p)2

ln (2nργ)

k

Clearly, there exists a positive absolute constant C such that the choice

ρ =

C ln
(

2n
k(1−p)2

)
k(1− p)2


1
p
− 1

2

works. 2
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7 The Approximate reconstruction problem

Finally, let us present an example of how these bounds can be used in the approximate
reconstruction problem for an arbitrary convex, symmetric set T ⊂ Rn.

Consider the set T − T = {t − s | t, s ∈ T}. Since T is convex and symmetric,
T − T ⊂ 2T . Note that if Γ = k−1/2

∑k
i=1

〈
Xi, ·

〉
ei and t, s ∈ T for which Γt = Γs then

t − s ∈ (T − T ) ∩ ker(Γ). In particular, if t0 ∈ T is the unknown vector we wish to
reconstruct and t̂ ∈ T satisfies that

〈
Xi, t

〉
=
〈
Xi, t̂

〉
, then

t̂− t0 ∈ 2T ∩ ker(Γ).

Hence, to estimate ‖t − t̂‖ in our case, it suffices to prove the following: that if µ is an
isotropic, L-subgaussian measure on Rn and if X1, ..., Xk are independent, distributed
according to µ, then with high probability

diam(2T ∩ ker(Γ)) ≤ c1r
∗
k(θ, T ),

for θ = c2/L
2. This fact was proved in [MePT].

Let us mention that in the language of the previous section, the approximate recon-
struction problem can be solved using an estimate on the random (k+1)-Gelfand number
of T , but with a different source of randomness – instead of a random element in the
Grassman manifold, a random k-codimensional subspace which is given by the kernel of
the random matrix Γ.

The particular example we consider here is when T = Bn
1∞, the unit ball in weak-`n

1 .

Theorem 7.1 Fix any t0 ∈ Bn
1∞ and let µ be an isotropic, L-subgaussian measure on

Rn. Set X1, ..., Xk to be independent vectors selected according to µ, and put t̂ ∈ Bn
1∞ to

be a point which satisfies
〈
Xi, t̂

〉
=
〈
Xi, t0

〉
for all 1 ≤ i ≤ k. Then with probability at

least 1− 2 exp(−cLk)

‖t̂− t0‖2 ≤
CL√

k
ln3/2

(
CL

n

k

)
,

where cL and CL are positive constants depending on L only.

Remark. Note that such a point t̂ always exists because t0 ∈ T satisfies these conditions.

Proof: Recall that

r∗k(θ, T ) := inf
{

ρ > 0 : ρ ≥ 2`∗(Tρ)/θ
√

k
}

,

where θ = c/L2 and that Tρ = T ∩ ρBn
2 . By estimates from [MePT], with probability at

least 1− 2 exp(−cLk),
‖t̂− t0‖ ≤ C0r

∗
k(θ, B

n
1∞),

where cL > 0 depends only on L and C0 > 0 is an absolute constant. Applying Theo-
rem 5.2(ii),

`∗((B
n
1∞)ρ) ≤

(
ln
(
2nρ2

))3/2
,
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and solving for ρ shows that

r∗k(θ,B1∞) ≤ C1L
2

√
k

ln3/2
(
C1L

4n

k

)
,

where C1 > 0 is an absolute constant. Therefore, with probability at least 1−2 exp(−cLk),

‖t̂− t0‖2 ≤
C0C1L

2

√
k

ln3/2
(
C1L

4n

k

)
.

It proves the result with CL = max{C0C1L
2, C1L

4} . 2
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