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Abstract. We study the volume ratio between projections of two convex bodies. Given
a high-dimensional convex body K we show that there is another convex body L such
that the volume ratio between any two projections of fixed rank of the bodies K and L is
large. Namely, we prove that for every 1 ≤ k ≤ n and for each convex body K ⊂ Rn there
is a centrally symmetric body L ⊂ Rn such that for any two projections P,Q : Rn → Rn

of rank k one has

vr(PK,QL) ≥ c min

 k√
n

√
1

log log log(n log(n)
k )

,

√
k√

log(n log(n)
k )

 ,

where c > 0 is an absolute constant. This general lower bound is sharp (up to logarithmic
factors) in the regime k ≥ n2/3.

1. Introduction.

The problem of estimating Banach-Mazur distances between projections or sections
of convex bodies had aroused considerable interest (see for example [4, 22, 20, 29] and
references therein). Recall that this distance, for two centrally symmetric convex bodies
K and L in Rn, is defined as

dBM(K,L) = inf{a · b | 1

a
K ⊂ TL ⊂ bK},(1)

where the infimum is taken over all invertible linear operators T : Rn → Rn and all
a, b > 0.

Note that two convex bodies can be far apart but they may have their projections or
sections quite close. This happens, for example, if the bodies are Gluskin’s polytopes
(absolute convex hulls of, say, 3n random points on the standard Euclidean sphere in
Rn). Indeed, Gluskin [9] proved that with high probability the Banach–Mazur distance
between two such polytopes is at least cn, where c is an absolute positive constant. On the
other hand it is known that “most” sections of a Gluskin polytope are nearly Euclidean,
thus “most” sections of two Gluskin’s polytopes are quite close to each other. This follows
from results on sections of convex bodies having bounded volume ratio [33, 32], see below
for the precise definitions.

A more general question was studied by Mankiewicz and Tomczak-Jaegermann in [22].
They estimated average distance between random k-dimensional projections of two given
centrally symmetric convex bodies. It turns out that such an average is bounded below by
the product of averages of distances of ((1

2
− ε)k)-dimensional projections of these bodies

to the Euclidean ball. Note here that a Gluskin’s polytope can be viewed as a random
projection of, say, (3n)-dimensional octahedron to Rn.
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Figure 1. A projection of the octahedron and the Euclidean ball.

Rudelson [29] studied the problem of estimating extremal distances between projec-
tions of centrally symmetric convex bodies. For k < n define the distance δk(K,L) as the
minimal Banach–Mazur distance between k-dimensional projections of K and L. Rudel-
son was interested in estimating the diameter of the Banach–Mazur compactum for this
distance; that is, in finding the asymptotic behaviour of

∆(k, n) := sup δk(K,L),

where the supremum is taken over all n-dimensional convex symmetric bodies K and L.
He proved that

∆(k, n) ∼logn

{√
k if k ≤ n2/3

k2

n
if k > n2/3,

(2)

where A ∼logn B means that

1

C loga n
A ≤ B ≤ (C loga n)A

for some absolute constants C, a > 0. In particular, Rudelson showed that there are two
centrally symmetric convex bodies K,L ⊂ Rn, such that for any k < n,

δk(K,L) &
k2

n log log n
,

where A & B means that A ≥ cB for some absolute constant c > 0. Note also the
well-known fact (proved in [3, 6, 10, 11])

δk(B
n
2 , B

n
1 ) &

√
k

log(1 + n
k
)
.

Another possible measure of how far two convex bodies K,L ⊂ Rn are from each other,
is given by their volume ratio:

vr(K,L) := inf

{(
|K|
|T (L)|

) 1
n

| T : Rn → Rn is an affine transformation, T (L) ⊂ K

}
,

where | · | denotes n-dimensional volume. Note that the standard volume ratio vr(K)
introduced in [33] is just vr(K,Bn

2 ).
In other words, vr(K,L) measures how well K can be approximated from inside by an

affine image of L in terms of volume. This invariant goes back to the works of McBeath [21]
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and Levi [18]. It was further investigated by many authors. In particular, Giannopoulos
and Hartzoulaki [8] proved that for every two convex bodies K,L ⊂ Rn,

vr(K,L) ≤ C
√
n log n,(3)

where C > 0 is an absolute constant. On the other hand, it was proved in [7] that given
a convex body K ⊂ Rn there is centrally symmetric body L ⊂ Rn such that the volume
ratio vr(K,L) is large. Precisely, we have

vr(K,L) ≥ C
√
n,(4)

where C > 0 is an absolute constant. This general lower estimate is sharp: by John’s
theorem and a reduction to the symmetric case we have, for example, that given any
convex body L ⊂ Rn, vr(Bn

2 , L) ≤
√
n. The lower bound in (4) is a refinement of a

previous estimate obtained by Khrabrov in [15] of order
√

n
log log(n)

.

We would also like to note that

dm(K,L) = vr(K,L) vr(L,K)

is a weaker version of the Banach–Mazur distance, called modified Banach–Mazur distance
(this name comes from [16]). Clearly, dm(K,L) ≤ dBM(K,L). It was introduced in [21]
(in fact, the logarithm of it, see also [18]) and then implicitly used in [14, 9] in order to
estimate the Banach–Mazur distance from below. Then it was investigated in a series of
works by Khrabrov, see also Corollary 5.3 and Remark 5.4 in [13]. Moreover, Khrabrov
[15] proved that for every centrally symmetric convex body K ⊂ Rn and every 1 ≤ p ≤ ∞,

dm(K,Bn
p ) = vr(K,Bn

p ) vr(Bn
p , K) ≤

√
en.(5)

We extend the notion of volume ratio for two given bodies lying in different subspaces
of Rn in the following natural way. Let 1 ≤ k ≤ n and let E,F be two k-dimensional
subspaces of Rn. Then for two convex bodies K ⊂ E and L ⊂ F , we define

vr(K,L) := inf

{(
|K|
|T (L)|

) 1
k

| T : E → F is an affine transformation, T (L) ⊂ K

}
,

where | · | denotes k-dimensional volume.
Note that for a convex body K we have a collection of k-dimensional convex bodies

given by QK ⊂ Rk for any given projection Q : Rn → Rn of rank k. Here we provide a
lower bound for volume ratio in the spirit of Rudelson’s approach. Namely, we show that
for every high-dimensional convex body K ⊂ Rn there exists a centrally symmetric convex
body L ⊂ Rn such that, for every pair of k-dimensional projections P,Q : Rn → Rn, the
volume ratio vr(PK,QL) is large. The following theorem is the main result of this work.

Theorem 1.1. Let n be large enough and k ≤ n. Then for every convex body K ⊂ Rn

there is a centrally symmetric body L ⊂ Rn such that for any two k-dimensional projections
P,Q : Rn → Rn one has

vr(PK,QL) ≥ c min

 k√
n
·
√

1

log log log(n log(n)
k

)
,

√
k√

log(n log(n)
k

)

 ,(6)

where c > 0 is an absolute constant.
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Moreover, in Corollary 5.2 below, we show that Theorem 1.1 is sharp (up to logarithmic
factors) in the regime k ≥ n2/3. Remarkably, the phase transition in (2) is exactly
k ∼ n2/3.

Although it is not directly related, we would like to mention the following result from
[12]. Interestingly, the proof of this uses Gluskin’s polytopes (as our theorem) and leads
to the essentially same lower bound. For all 1 ≤ k ≤ n there exist a universal convex
body K ⊂ Rn such that for every centrally symmetric convex body L ⊂ Rn and any
k-dimensional projections P and Q one has

dBM(PK,QL) ≥ c k√
n log n

,

where c > 0 is an absolute constant. Note that we cannot expect to have a universal
convex body L in Theorem 1.1. That is, the existence of a body L such that for every
body K ⊂ Rn inequality (6) holds. Indeed, vr(PL, PL) = 1 for every P ∈ Pk(n).

Finally, we mention that using duality we can reformulate our theorem in terms of
sections. For a convex body K with the origin in its interior and a subspace E ⊂ Rn

one has PE(K◦) = (E ∩K)◦, where PE denotes the orthogonal projection onto E. Note
that for centrally symmetric bodies it is enough to consider only linear operators in the
definition of volume ratio. Therefore, every result concerning volume ratios of projections
of a centrally symmetric bodies K and L has a dual version concerning volume ratios of
sections of K◦ and L◦. Thus, we can also state a dual version of our previous result.

Corollary 1.2. Let 1 ≤ k ≤ n. For each centrally symmetric convex body K ⊂ Rn there
is a centrally symmetric body L ⊂ Rn such that for any two k-dimensional subspaces
E,F ⊂ Rn one has

vr(F ∩ L,E ∩K) ≥ c min

 k√
n
·
√

1

log log log(n log(n)
k

)
,

√
k√

log(n log(n)
k

)

 ,

where c > 0 is an absolute constant.

Figure 2. A projection of Bn
∞ and a section of Bn

1 = (Bn
∞)◦.

2. Preliminaries.

Given two sequences of real numbers (an)n and (bn)n we write an . bn (resp., an & bn)
if there exists an absolute constant C > 0 (independent of n) such that an ≤ Cbn (resp.,
Can ≥ bn) for every n. We write an ∼ bn if an . bn and bn . an. We denote by e1, . . . , en
the canonical vector basis in Rn and by Bn

2 and Sn−1, the unit ball and unit sphere in Rn.
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Similarly, the unit ball of `np is denoted by Bn
p , where the norm in `np is defined by

‖x‖p =

(
n∑
i=1

|xi|p
)1/p

for 1 ≤ p <∞ and ‖x‖∞ = max
i≤n
|xi|.

Given X1, . . . , Xm ∈ Rn, we denote by absconv{X1, . . . , Xm} their absolute convex hull,
that is,

absconv{X1, . . . , Xm} :=

{
m∑
i=1

aiXi |
m∑
i=1

|ai| ≤ 1

}
⊂ Rn.

A convex body K ⊂ Rn is a compact convex set with non-empty interior. For K with
the origin as an interior point its Minkowski functional is defined on Rn by

‖x‖K = inf {λ > 0 | x ∈ λK} .
If K is centrally symmetric (i.e., K = −K), then ‖ · ‖K defines a norm and we denote by
XK the normed space (Rn, ‖ · ‖K) that has K as its unit ball. By |K| we denote the n-
dimensional volume of K. Moreover, with slight abuse of notations, given a k-dimensional
projection P on Rn, by |PK| we denote the k-dimensional volume of PK.

The polar set of a body K with 0 in its interior, denoted by K◦, is defined as

K◦ = {x ∈ Rn | 〈x, y〉 ≤ 1 for all y ∈ K}.
The following result relates the volume of a body with the volume of its polar and is

due to Blaschke-Santaló and Bourgain-Milman [1, Theorem 1.5.10 and Theorem 8.2.2]:
There exists an absolute constant c > 0 such that for every centrally symmetric convex

body K ⊂ Rn,

c|Bn
2 |2/n ≤ |K|

1
n |K◦|

1
n ≤ |Bn

2 |2/n.(7)

In other words, |K| 1n |K◦| 1n ∼ 1
n
. We also use the support function of K defined on Rn by

hK(x) = sup
y∈K
〈x, y〉 = ‖x‖K◦ .

Given two normed spaces X and Y and an operator T : X → Y , the operator norm
is denoted by ‖T : X → Y ‖. Similarly, given an operator T : Rn → Rn, we denote
‖T‖ := ‖T : `n2 → `n2‖.

We now recall some basic properties of the volume ratio, see e.g. [15].

Fact 2.1. For every pair of centrally symmetric convex bodies (K,L) in Rn the following
holds:

(1)

vr(K,L) =

(
|K|
|L|

) 1
n

· inf
T∈SL(n,R)

‖T : XL → XK‖,

where the infimum runs all over the linear transformations T that lie on the special
linear group of degree n (matrices of determinant one).

(2) vr(K,L) ∼ vr(L◦, K◦).
(3) If T : XL → XK is a linear operator we have that

1

‖T : XL → XK‖
· T (L) ⊂ K and hence vr(K,L) ≤ ‖T : XL → XK‖|K|

1
n

| detT | 1n |L| 1n
.

(4) vr(K,L) ≤ vr(K,Z) · vr(Z,L) for every convex body Z in Rn.



6 D. GALICER, A. LITVAK, M. MERZBACHER, AND D. PINASCO

Remark 2.2. We finally discuss not necessarily symmetric convex bodies. Note that for
every convex bodies K and L in Rn and for any affine transformations T and S one has

vr(K,L) = vr(T (K), S(L)).

In other words, the volume ratio between K and L depends exclusively on the affine classes
of the bodies involved. By the Rogers-Shephards inequality (see e.g., [1, Theorem 1.5.2]),
for every convex body W ⊂ Rn we have vr(W −W,W ) ≤ 4. Clearly the last inequality
in Fact 2.1 holds for any (not necessarily centrally symmetric) convex bodies K,L, Z.
Therefore,

vr(K −K,L) ≤ vr(K −K,K) vr(K,L) ≤ 4 vr(K,L).(8)

3. Auxiliary results.

We start with recalling a standard result in geometric measure theory (see e.g., [24,
Theorem 7.5]).

Theorem 3.1. Let f : Rm → Rn be a Lipschitz map with Lipschitz constant Lf , 0 ≤ s ≤
m, and A ⊂ Rm. Then

Hs(f(A)) ≤ LsfHs(A),

where Hs is the s-Hausdorff measure.

Recall that for k ∈ N the k-Hausdorff measure is a multiple of the Lebesgue measure

in Rk. Namely, for every measurable set A, Hk(A) = 2k

|Bk2 |
|A| (see [24, 4.3]).

We denote by Pk(n) the set of all orthogonal projections of rank k in Rn. Given
Q ∈ Pk(n), |QK| denotes the k-dimensional Lebesgue measure of QK. As an application
of the last theorem we prove the following lemma, that relates the k-dimensional volume
of two different projections of K with their distance in the canonical operator metric.

Lemma 3.2. Let 1 ≤ k ≤ n and let P,Q ∈ Pk(n) be such that ‖P −Q‖ ≤ 1
2
√
n

. Then for

every centrally symmetric convex body K ⊂ Rn in the John position,

1

2
|QK|

1
k ≤ |PK|

1
k ≤ 2|QK|

1
k .

Proof. Note that

P = P 2 = PQ+ P (P −Q).

Since K is in John’s position, Bn
2 ⊂ K ⊂

√
nBn

2 . Using that ‖P −Q‖ ≤ 1
2
√
n
, we observe

(P −Q)K ⊂
√
n(P −Q)Bn

2 ⊂
1

2
Bn

2 ⊂
1

2
K.

This implies

PK ⊂ PQK +
1

2
PK.

Therefore for every x ∈ Rn we have

hPK(x) ≤ hPQK(x) +
1

2
hPK(x),

so hPK(x) ≤ 2hPQK(x). This implies that PK ⊂ 2PQK.
Finally we apply Theorem 3.1 with m := n, s := k, f := P and A := QK to obtain

|PK|
1
k ≤ 2|PQK|

1
k ≤ 2|QK|

1
k ,
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using that the Lipschitz constant of the mapping P is obviously one and simplifying the
constants to pass from the Hausdorff to the Lebesgue measure. �

Next we introduce a variant of Gluskin’s random polytopes. Instead of considering the
absolute convex hull of points taken uniformly on the unit sphere we are going to work
with Gaussian random vectors. The reason for doing this is that we want to deal with
projections of these bodies, and the Gaussian measure is more suitable for this purpose.
Let N > n and g1, . . . , gN be standard independent Gaussian vectors in Rn. We consider
the symmetric polytope

ZN = ZN(ω) = absconv{
√
ne1, . . . ,

√
nen, g1, . . . , gN}.

For basic properties of Gaussian polytopes we refer to [23]. It is well known that the
Euclidean norm of a Gaussian vector in Rn is well concentrated about its average, which
is essentially

√
n. We will need the following lemma, the standard proof of which is

provided for the sake of completeness (for simplicity we write just ‖ · ‖ for ‖ · ‖2).

Lemma 3.3. Let n ≥ 1 and let g be a standard Gaussian vector in Rn. Then for every
λ ≥ 2

√
n,

P {‖g‖ ≥ λ} ≤ exp(−λ2/8).

In particular,

P
{
‖g‖ ≥ 2

√
n
}
≤ exp(−n/2).

Moreover, for n ≥ 50,

P
{
‖g‖ ≤

√
n/4
}
≤ exp(−n/4).

Proof. The Gaussian concentration inequality (see [5] or inequality (2.35) in [19]) states
for every s > 0,

max
{
P {‖g‖ − E‖g‖ ≥ s} , P {E‖g‖ − ‖g‖) ≥ s}

}
≤ exp

(
−s2/2

)
.

Since, E‖g‖ ≤ (E‖g‖2)1/2 =
√
n, this yields the first and the second bounds. To obtain

the third bound, denote a = E‖g‖ and observe

n− a2 = E (‖g‖ − a)2 =

∫ ∞
0

2tP {|‖g‖ − a| ≥ t} dt ≤
∫ ∞

0

4te−t
2/2dt = 4.

Thus a2 ≥ n− 4 and hence for n ≥ 50, a ≥
√
n(1/4 + 1/

√
2). Applying the concentration

inequality with s =
√
n/2, we obtain

P
{
‖g‖ ≤

√
n/4
}
≤ P

{
a− ‖g‖ ≥ a−

√
n/4
}
≤ P {a− ‖g‖ ≥ s}

≤ exp
(
−s2/2

)
= exp (−n/4) ,

which completes the proof. �

Remark 3.4. Below we denote

Ω0(n,N) := {ω | ∀i ≤ N :
√
n/4 ≤ ‖gi‖ ≤ 2

√
n}.

Lemma 3.3 yields

P(Ω0(n,N)) ≥ 1− 2Ne−n/4.(9)

Note that on Ω0(n,N) we have

Bn
2 ⊂ ZN(ω) ⊂ 2

√
nBn

2 .(10)



8 D. GALICER, A. LITVAK, M. MERZBACHER, AND D. PINASCO

In fact, Gluskin proved that there exist absolute constants C, c > 0 such that for Cn ≤
N ≤ en one has

c

√
log

(
N

n

)
Bn

2 ⊂ ZN(ω) ⊂ 2
√
nBn

2

with probability at least 1 − e−n (see [11, Theorem 2] or the remark following the proof
of Theorem 2 in [10]).

The following theorem establishes a bound for the volume of projections of Gluskin’s
polytopes.

Theorem 3.5. There exists an absolute constant C > 0 such that the following holds.
Let k ≤ n and 2n ≤ N ≤ nek. Then there exists a set Ω1(n,N) ⊂ Ω0(n,N) such that for
every ω ∈ Ω1(n,N) and every Q ∈ Pk(n) one has

|QZN(ω)|1/k ≤ C max


√
n

k

√
log log log

(
N

k

)
,

√
log(N

k
)

√
k

(11)

and such that
P(Ω1(n,N)) ≥ 1− 4Ne−n/4.

To prove the theorem we will need two lemmas. The first one on the cardinality of
ε-nets in Pk(n) is due to Szarek [31]. The second lemma bounds the volume of a polytope
in terms of the lengths of the vertices.

Lemma 3.6. There exists an absolute positive constant C0 such that for every 0 < ε < 1
the set Pk(n) admits an ε-net Π of cardinality at most

|Π| ≤
(
C0

ε

)nk
.

Lemma 3.7. Let (wi)
N
i=1 ⊂ Rn be a collection of vectors. For every α ≥

√
2 max

i≤N
{‖wi‖2}

we have

| absconv{w1, . . . , wN}|1/n ≤
√

2πeα

n
exp

(
2

n

N∑
i=1

exp

(
− α2

2‖wi‖2
2

))
.

Remark 3.8. Assuming that ‖wi‖2 ≤ 1 for every i ≤ N and letting α =
√

2 log(2N/n)
we observe the well known bound (see [2, 6, 10])

| absconv{w1, . . . , wN}|1/n ≤
C
√

log(2N/n)

n
.(12)

Our proof of Lemma 3.7 follows the proof of this bound with corresponding adjustments.
Note also, that using the standard estimate (12) instead of Lemma 3.7, would lead to the
bound

|QZN(ω)|1/k ≤ C

√
n

k

√
log

(
N

k

)
(13)

in Theorem 3.5, and thus, to the bound

vr(PK,QL) ≥ ck√
n log n logn

k
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in Theorem 1.1.

Proof of Lemma 3.7. For simplicity we write ‖ · ‖ for ‖ · ‖2. Fix α ≥
√

2 max
i≤N
{‖wi‖} and

set Pi := {x ∈ Rn : |〈x,wi〉| ≤ α}. Consider

K :=
1

α

N⋂
i=1

Pi.

Note that K◦ = absconv{w1, . . . , wN} and that

γn(αK) = γn

(
N⋂
i=1

Pi

)
≥

N∏
i=1

γn(Pi),

where γn denotes the Gaussian measure on Rn and where the inequality follows from
Šidák’s lemma ([30], [10]) or from the Gaussian correlation inequality ([27], see also [17]).

Clearly,

γn(Pi) =
1√
2π

α
‖wi‖∫

− α
‖wi‖

e−
t2

2 dt.

Considering intervals of increasing and decreasing (on [0,∞)) of the function

f(s) := e−
s2

2 +
1√
2π

∫ s

−s
e−

t2

2 dt,

it is not difficult to see that

1√
2π

∫ s

−s
e−

t2

2 dt ≥ 1− e−
s2

2 .

Therefore,

γn(αK) ≥
N∏
i=1

(
1− e−

α2

2‖wi‖2

)
.

Note that, for x ∈ (0, 3
4
), 1− x ≥ e−2x. Using that α2 ≥ 2‖wi‖2 for all i ≤ N , we obtain

γn(αK) ≥
N∏
i=1

exp

(
−2e

− α2

2‖wi‖2

)
= exp

(
−2

N∑
i=1

e
− α2

2‖wi‖2

)
.

Since |αK| = αn|K| ≥ (2π)
n
2 γn(αK),

|K|
1
n ≥
√

2π

α
exp

(
− 2

n

N∑
i=1

e
− α2

2‖wi‖2

)
.

Finally, the Blashke-Santaló inequality (7) implies

|K◦|
1
n ≤ |B

n
2 |

2
n

|K| 1n
≤ 2πeα√

2πn
exp

(
2

n

N∑
i=1

e
− α2

2‖wi‖2

)
.

This completes the proof. �

We are now ready to prove Theorem 3.5.
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Proof of Theorem 3.5. Note that if k is proportional to n (i.e., k = cn where c > 0 is
an absolute constant) the theorem follows directly from (12) and (9), so we can assume

that k < n/16. For this case, fix ε ∈ [2
√
k/n, 1/2] to be defined later. Let C0 denote

the constant from Lemma 3.6. Denote C = 40C0 (without loss of generality we assume
C0 ≥ 5, hence C ≥ 200) and set

m0 =
Ck log(1/ε)

4
and m1 =

Ck log(1/ε)

4ε2
=

10C0k log(1/ε)

ε2
.

Without loss of generality, we just assume for simplicity that m0 and m1 are integers.
Consider the sequence (λm)Nm=1 defined by λm = 2

√
n for i ≤ m0, λm = 2ε

√
n for i > m1,

and

λm =

√
Cnk log(1/ε)

m
for m0 < i ≤ m1.

Let g denote a standard Gaussian vector in Rn. Note that for any fixed projection
Q0 ∈ Pk(n), Q0(g) is a standard k-dimensional Gaussian vector. Thus, by Lemma 3.3,

for every t ≥ 2
√
k we have

P {ω ∈ Ω | ‖Q0(g(ω))‖ ≥ t} ≤ e−t
2/8.(14)

Let g1, . . . , gN be standard Gaussian independent vectors in Rn. For a fixed projection
Q0 in Pk(n) and for m ≤ N consider the events

A(m,Q0) :=
{
ω ∈ Ω0(n,N) | #{i : ‖Q0(gi(ω))‖ > λm} ≥ m

}
.

Note that on Ω0(n,N) we have ‖gi(ω)‖ ≤ 2
√
n, hence A(m,Q0) = ∅ for m ≤ m0. By AQ0

denote the union (over m) of A(m,Q0), that is

AQ0 =
{
ω ∈ Ω0(n,N) | ∃m ∈ {1, . . . , N} : #{i : ‖Q0(gi(ω))‖ > λm} ≥ m

}
=
{
ω ∈ Ω0(n,N) | ∃m ∈ {m0 + 1, . . . , N} : #{i : ‖Q0(gi(ω))‖ > λm} ≥ m

}
.

To estimate the probability of AQ0 we first note that

eN

m1

e−ε
2n/2 ≤ eN

m1

e−ε
2n/4 ≤ 1

2
.(15)

Indeed, consider the function

f(ε) := ε−2 eε
2n/4.

Since it is increasing on [2/
√
n,∞), using that ε ≥ 2

√
k/n ≥ 2/

√
n, we observe that

f(ε) ≥ n

4k
ek.

Thus, using that ε < 1/2, N ≤ nek and C ≥ 200,

eN

m1

e−ε
2n/2 =

4eNε2

Ck log(1/ε)
e−ε

2n/2 ≤ 4enek

Ck(log 2)f(ε)
≤ 16e

C log 2
≤ 1

2
.

Denote
p := exp(−C0nk log(1/ε)).

Using the union bound, the independence of gi’s, equations (14), (15), and the standard
bound for 1 ≤ ` ≤ N ∑̀

m=0

(
N

m

)
≤
(
eN

`

)`
,
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we obtain

P (AQ0) ≤
N∑

m=m0+1

P (A(m,Q0)) ≤
N∑

m=m0+1

(
N

m

)
e−λ

2
mm/8

≤
m1∑

m=m0+1

(
N

m

)
exp(−Cnk log(1/ε)/8) +

N∑
m=m1+1

(
N

m

)
e−ε

2nm/2

≤
(
eN

m1

)m1

p5 +
N∑

m=m1+1

(
eN

m
e−ε

2n/2

)m
≤
(
eN

m1

)m1

p5 +

(
eN

m1

e−ε
2n/2

)m1 ∞∑
m=1

(
1

2

)m
=

(
eN

m1

)m1 (
p5 + exp(−Cnk log(1/ε)/8)

)
≤ 2

(
eN

m1

)m1

p5.

Using (15) again, we estimate(
eN

m1

)m1

≤ exp

(
ε2nm1

4

)
≤ exp

(
10C0kn log(1/ε)

4

)
= p−2.5.

Hence,

P(AQ0) ≤ 2p2.(16)

For each ω ∈ Ω0(n,N) define the vector a = a(ω) ∈ RN by ai := ‖Q0(gi(ω))‖ for i ≤ N .
Then, by definition, on Ω0(n,N) ∩ Ac

Q0
we have

a∗m ≤ λm,

where a∗ stands for the decreasing rearrangement of a.
Similarly, given Q ∈ Pk(n) for each ω ∈ Ω define the vector b = b(ω,Q) ∈ RN by

bi := ‖Q(gi(ω))‖ for i ≤ N . Let

B :=
{
ω ∈ Ω0(n,N) | ∃Q ∈ Pk(n)∃m ≤ N : b∗m(ω,Q) > 2λm

}
.

We now use an approximation argument. Let Q ∈ Pk(n) and consider Q0 such that
‖Q−Q0‖ < ε. Then,

‖Q(gi(ω))‖ ≤ ‖Q0(gi(ω))‖+ ‖Q−Q0‖‖gi(ω)‖
≤ ‖Q0(gi(ω))‖+ εmax ‖gi(ω)‖2.

Therefore, for ω ∈ Ω0(n,N) ∩ Ac
Q0

and for every m ≤ N we have

b∗m(ω,Q) ≤ a∗m + 2ε
√
n ≤ λm + 2ε

√
n ≤ 2λm.

Let Π ⊂ Pk(n) be an ε-net of cardinality at most
(
C0

ε

)nk ≤ 1
p

given by Lemma 3.6. Then,

B ⊂
⋃
Q0∈Π

AQ0 ,

and therefore, by (16),

P(B) ≤ 2p.
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Therefore, defining Ω1(n,N) := Bc ∩ Ω0(n,N), by (9), we obtain

P(Ω1(n,N)) ≥ 1− 2Ne−n/4 − 2p ≥ 1− 4Ne−n/4.

It remains to estimate volumes of corresponding polytopes for ω ∈ Ω1(n,N). They can
be written as Q(ZN(ω)) = absconv{w1, . . . , wN} with ‖wm‖ ≤ 2λm for every m ≤ N . We
first estimate

A : =
N∑
m=1

e
− α2

8λ2m ≤ m0e
− α2

32n +

m1∑
m=m0+1

e
− α2m

8Cnk log( 1
ε) + (N −m1)e−

α2

32ε2n

≤ m0e
− α2

32n +

(
1− e

− α2

8Cnk log( 1
ε)

)−1

e
− α2(m0+1)

8Cnk log( 1
ε) +Ne−

α2

32ε2n

≤

(
m0 + max

{
2,

16Cnk log
(

1
ε

)
α2

})
e−

α2

32n +Ne−
α2

32ε2n

=
Ck log(1/ε)

4

(
1 + max

{
1,

16n

α2

})
e−

α2

32n +Ne−
α2

32ε2n ,

where we used that e−x ≤ max{1− x/2, 1/2} for x > 0. We choose

α = 6
√
nmax

{√
log
(
C log

1

ε

)
,

√
log

N

k
· ε

}
,

then 2
k
A ≤ 2. Furthermore, we choose

ε = max


√

log log log N
k√

log N
k

, 2

√
k

n


(recall that k ≤ n/16 ≤ N/32), then

α ≤ C1 max

{√
n log log log

N

k
, 2

√
k log

N

k

}
,

where C1 > 0 is an absolute constant. Applying Lemma 3.7 for Q(ZN(ω)) (note that
Q(ZN(ω)) is k-dimensional) we obtain

|Q(ZN(ω))|1/k ≤
√

2πe3α

k
≤ C2 max


√
n

k

√
log log log

N

k
,

√
log N

k√
k

 ,

where C2 > 0 is an absolute constant. This completes the proof. �

4. Proof of the main theorem.

We first prove a series of lemmas. Given two k-dimensional subspaces of Rn, E and F ,
we denote by S(E,F ) the set of all linear operators T : E → F preserving the volume (the
k-dimensional Lebesque measure). If E = Q0Rn and F = Q1Rn for some Q0, Q1 ∈ Pk(n)
we simply write S(Q0, Q1).
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Lemma 4.1. Let K ⊂ Rn be a centrally symmetric convex body, Q0, Q1 ∈ Pk(n) be fixed
orthogonal projections of rank k, and A > 0. Let T0 ∈ S(Q0, Q1) be a fixed linear operator.
Then

P{ω ∈ Ω | ‖T0 : XQ0ZN (ω) → XQ1K‖ ≤ A} ≤ (A/
√

2π)kN |Q1K|N .

Proof. Observe that

T0Q0(ZN(ω)) ⊂ AQ1K ⇐⇒ Q0ZN(ω) ⊂ AT−1
0 (Q1K)

⇐⇒ ∀i ≤ N : Q0gi(ω) ∈ AT−1
0 (Q1K).

Note that for every k-dimensional convex body L one has γk(L) ≤ (2π)−k/2|L|. Using
this, the rotational invariance of the Gaussian measure, and the fact that T0 preserves the
Lebesgue measure in Q0Rn, we observe that for every i ≤ N ,

P{ω ∈ Ω | Q0gi(ω) ∈ AT−1
0 (Q1K)} ≤ (2π)−k/2|AT−1

0 (Q1K)| = (2π)−k/2Ak|Q1K|.
The result follows by the indepenence of gi’s. �

Lemma 4.2. There exists and absolute constant C > 0 such that the following holds. Let
k ≤ n, Cn ≤ N ≤ nek, and A > 0. Let K ⊂ Rn be a centrally symmetric convex body
and Q0, Q1 ∈ Pk(n) be fixed orthogonal projections of rank k. Then

P{ω ∈ Ω0(n,N) | ∃T ∈ S(Q0, Q1) such that ‖T : XQ0ZN (ω) → XQ1K‖ ≤ A}

≤ (5
√
n)k

2

(A/
√

2π)Nk|Q1K|N .

Proof. Let E := `n2 ∩ Q0Rn and let U := BL(E,XQ1K
) be the unit ball of L(E,XQ1K).

Denote

a :=
A

2
√
n
.

Let N be a maximal a-separated set in AU∩S(Q0, Q1) in the metric ‖·‖L(E,XQ1K
). By the

maximality of N , the set N is an a-net for AU ∩ S(Q0, Q1) and moreover, the following
inclusion for the disjoint union holds,⋃

η∈N

(
η +

a

2
U
)
⊂
(
A+

a

2

)
U.

Identifying the space with Rk2 and computing volumes we conclude that

#N ≤
(
A+ a/2

a/2

)k2
≤ (5
√
n)k

2

.

Take ω ∈ Ω0(n,N) such that there exists T ∈ S(Q0, Q1) with

‖T : XQ0ZN (ω) → XQ1K‖ ≤ A.

Recall that by Remark 3.4 we have on Ω0(n,N),

Bn
2 ⊂ ZN(ω) ⊂ 2

√
nBn

2 ,

hence T ∈ AU . Since N is an a-net for AU ∩ S(Q0, Q1) there is S ∈ N such that

‖S − T : E → XQ1K‖ ≤ a.

Using that, ZN(ω) ⊂ 2
√
nBn

2 ,

‖S : XQ0ZN (ω) → XQ1K‖ ≤ ‖S − T : XQ0ZN (ω) → XQ1K‖+ ‖T : XQ0ZN (ω) → XQ1K‖
≤ 2
√
n ‖S − T : E → XQ1K‖+ A ≤ 2

√
na+ A = 2A.



14 D. GALICER, A. LITVAK, M. MERZBACHER, AND D. PINASCO

This shows

{ω ∈ Ω0(n,N) | ∃T ∈ S(Q0, Q1) such that ‖T : XQ0ZN (ω) → XQ1K‖ ≤ A}

⊂
⋃
S∈N

{S | ‖S : XQ0ZN (ω) → XQ1K‖ ≤ 2A}.

Using the union bound and applying Lemma 4.1, we obtain the desired bound. �

Given bases B = {v1, . . . , vk} and B′ = {v′1, . . . , v′k} of vector spaces F and F ′ and a
vector x ∈ F we denote by (x)B the coordinates of x in the basis B (similarly, (y)B′ for

y ∈ F ′). That is, (x)B = (α1, . . . , αk) if x =
∑k

i=1 αivi. Also for an operator T : F → F ′

we denote by [T ]B,B′ the matrix (ai,j)1≤i,j≤k such that T (v`) =
∑k

i=1 ai,`v
′
i, for every

1 ≤ ` ≤ k (i.e., the `-column of [T ]B,B′ is (Tv`)
t
B′).

Lemma 4.3. Let K ⊂ Rn be a centrally symmetric convex body in John’s position. Then
for every β > 0 one has

P

{
ω ∈ Ω0(n,N) | ∃Q0, Q1 ∈ Pk(n)∃T ∈ S(Q0, Q1) : ‖T : XQ0ZN (ω) → XQ1K‖ ≤

β

|Q1K|
1
k

}
≤ CkN(

√
n)2nk+k2βkN ,

where C > 0 is an absolute constant.

Proof. By Lemma 3.6 there is a 1
2
√
n
-net, say Π, for Pk(n) of cardinality #Π ≤ (C0

√
n)nk.

By Lemma 4.2 and the union bound, it is enough to show that{
ω ∈ Ω0(n,N) | ∃Q0, Q1 ∈ Pk(n), ∃T ∈ S(Q0, Q1) : ‖T : XQ0ZN (ω) → XQ1K‖ ≤

β

|Q1K|
1
k

}

⊂
⋃

Q′0,Q
′
1∈Π

{
ω ∈ Ω0(n,N) | ∃S ∈ S(Q′0, Q

′
1) : ‖S : XQ′0ZN (ω) → XQ′1K

‖ ≤ C ′
β

|Q′1K|
1
k

}
.

Let ω ∈ Ω0(n,N) be such that there are Q0, Q1 ∈ Pk(n) and T ∈ S(Q0, Q1) with

‖T : XQ0ZN (ω) → XQ1K‖ ≤
β

|Q1K|
1
k

.(17)

Take Q′0, Q
′
1 ∈ Π such that ‖Qi −Q′i‖ ≤ 1

2
√
n
, i = 1, 2. Fix orthonormal bases

B = {v1, . . . , vk} and B′ = {v′1, . . . , v′k}

of Q0Rn and Q1Rn respectively. It is easy to see that the collections

B0 = {Q′0v1, . . . , Q
′
0vk} and B1 = {Q′1v′1, . . . , Q′1v′k}

are bases of Q′0Rn and Q′1Rn respectively. Let S : Q′0Rn → Q′1Rn be such that

[S]B0,B1 = [T ]B,B′ ,

in particular, S ∈ S(Q′0, Q
′
1).

It is enough to show that

‖S : XQ′0ZN (ω) → XQ′1K
‖ ≤ C ′ β

|Q′1K|
1
k

,
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which by Lemma 3.2 reduces to

‖S : XQ′0ZN (ω) → XQ′1K
‖ ≤ C ′ β

2|Q1K|
1
k

.

Take x ∈ ZN(ω) and note

SQ′0x = SQ′0(Q′0x−Q0x)︸ ︷︷ ︸
(1)

+SQ′0Q0x︸ ︷︷ ︸
(2)

.

We check that both terms (1) and (2) are contained in a multiple of β

|Q1K|
1
k
Q′1K.

We start with the second term, SQ′0Q0x. Write Q0x =
∑
αivi, so Q′0Q0x =

∑
αiQ

′
0vi.

We have,

(SQ′0Q0x)tB1
= [T ]B,B′(Q

′
0Q0x)tB0

= [T ]B,B′(Q0x)tB

= (TQ0x)tB′ .

Therefore SQ′0Q0x = Q′1TQ0x. Since x ∈ ZN(ω), by (17) we have TQ0x ∈ β

|Q1K|
1
k
Q1K,

hence

Q′1TQ0x ∈
β

|Q1K|
1
k

Q′1Q1K.

Since K is in John’s position, Bn
2 ⊂ K ⊂

√
nBn

2 . Using ‖Q1 −Q′1‖ ≤ 1
2
√
n
, we obtain

Q′1Q1K ⊂Q′1K +Q′1((Q1 −Q′1)K)(18)

⊂Q′1K +Q′1((Q1 −Q′1)
√
nBn

2 )

⊂Q′1K +Q′1B
n
2

⊂ 2Q′1K.

This implies

SQ′0Q0x = Q′1TQ0x ∈
β

|Q1K|
1
k

Q′1Q1K ⊂
2β

|Q1K|
1
k

Q′1K,

proving the inclusion for term (2).

Next we deal with the first term, SQ′0(Q′0x − Q0x). Recall that ZN(ω) ⊂ 2
√
nBn

2 on
Ω0(n,N) and ‖Q0−Q′0‖ ≤ 1

2
√
n
. Therefore (Q′0−Q0)x ∈ Bn

2 and then Q′0(Q′0−Q0)x ∈ Bk
2 .

Thus, it is enough to show that

‖S : XQ′0B
n
2
→ XQ′1K

‖ ≤ C ′′
β

|Q1K|
1
k

.

Take y ∈ Q′0Rn with ‖y‖2 = 1. Write (y)B0 = (β1, . . . , βk). Then,

(γ1, . . . , γk) := (Sy)B1 =[T ]B,B′(β1, . . . , βk)
t = (T (

∑
βivi))B′ .(19)

Notice that

‖
∑

βivi‖2 ≤‖
∑

βiQ0vi −
∑

βiQ
′
0vi‖2 + ‖

∑
βiQ

′
0vi‖2

≤ 1

2
√
n
‖
∑

βivi‖2 + 1,
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which implies

‖
∑

βivi‖2 ≤
1

1− 1
2
√
n

≤ 2.

Since by (10) we have Bn
2 ⊂ ZN(ω) on Ω0(n,N), using (17), we observe

T (
∑

βivi) ∈
2β

|Q1K|
1
k

Q1K.(20)

On the other hand, by (19),

Sy =
∑

γiQ
′
1v
′
i = Q′1(

∑
γiv
′
i) = Q′1T (

∑
βivi).

Therefore, using (20) and (18),

Sy ∈ 2β

|Q1K|
1
k

Q′1Q1K ⊂
4β

|Q1K|
1
k

Q1K.

This completes the proof. �

We are now ready to prove our main result.

Proof of Theorem 1.1. First note that it is enough to consider orthogonal projections
only. Indeed, let P be a projection of rank k and Q be the orthogonal projection with the
same kernel as P . Then QP = Q, hence Q(PK) = QK and vr(PK,W ) = vr(QK,W )
for every convex body W .

Furthermore, by (8) for every Q0, Q1 ∈ Pk(n) we have

vr(Q0(K −K), Q1ZN) ≤ vr(Q0(K −K), Q0K) vr(Q0K,Q1ZN) ≤ 4 vr(Q0K,Q1ZN).

Thus it is enough to estimate from below vr(Q0(K−K), Q1ZN). In other words, without
loss of generality, we may assume that K is centrally symmetric. Moreover, since volume
ratio is an affine invariant, we may also assume that K is in John’s position.

Let N = n log n and β a positive constant to be chosen later. Let Ω1(n,N) be the set
given by Theorem 3.5 (note that for k ≤

√
n the result is trivial, so we may assume that

k ≥
√
n and thus the assumption on N in Theorem 3.5 is satisfied). Consider the event

Eβ :=
{
∃Q0, Q1 ∈ Pk(n), ∃T ∈ S(Q0, Q1) : ‖T : XQ0ZN (ω) → XQ1K‖ ≤

β

|Q1K|
1
k

}
.

Since Ω1(n,N) ⊂ Ω0(n,N), Lemma 4.3 yields that for some absolute constant C > 0,

P
(
Eβ
⋂

Ω1(n,N)
)
≤ CkN(

√
n)2nk+k2βkN ≤ (Cβ)kN n2nk.

Choose β as C−1e−3 := c̃. Then, using Theorem 3.5 we obtain

P (Eβ) ≤ e−Nk + P (Ω1(n,N)) ≤ e−Nk + 4Ne−n/4 ≤ 5n log(n) e−n/4 < 1.

Thus there is ω ∈ Ω1(n, n log(n)) such that for every Q0, Q1 ∈ Pk(n) and T ∈ S(Q0, Q1),

‖T : XQ0ZN (ω) → XQ1K‖ ≥
c̃

|Q1K|
1
k

.
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Using Fact 2.1 (1) and Theorem 3.5, we conclude that

vr(Q1K,Q0ZN) ≥ |Q1K|
1
k

|Q0ZN |
1
k

c̃

|Q1K|
1
k

≥c min

 k
√
n
√

log log log
(
N
k

) , √
k√

log(N
k

)


which proves the desired result. �

Finally, for the sake of completeness, we prove Corollary 1.2.

Proof of Corollary 1.2. Let E,F be k-dimensional subspaces Rn. Applying Theorem 1.1
and Fact 2.1 (2) for K◦, there is a centrally symmetric body W such that

min

 k√
n
·
√

1

log log log(n log(n)
k

)
,

√
k√

log(n log(n)
k

)

 . vr (PEK
◦, PFW )

∼ vr ((PFW )◦, (PEK
◦)◦)

= vr (F ∩W ◦, E ∩K) ,

where we used that (PEK
◦)◦ = E ∩ K and (PFW )◦ = E ∩ W ◦. This completes the

proof. �

5. Sharpness.

We will use the following Rudelson’s result proved in [29] (see the first page of the
Section 4 in that paper, p. 1077).

Theorem 5.1. Let 1 ≤ k ≤ n/16. Let L ⊂ Rn be a centrally symmetric convex body.
Then there are a parameter t = t(L) and a linear operator T : Rn → Rn of rank k such
that

c

(
Bk

1 +
t√

n log n
Bk

2

)
⊂ TL ⊂ C

(
tBk

1 +

√
k

n
Bk

2

)
⊂ C

(
t+

k√
n

)
Bk

1 ,

where C > c > 0 are absolute constants.

As a consequence of Rudelson’s theorem we obtain the following bound.

Corollary 5.2. Let 1 ≤ k ≤ n. Let L ⊂ Rn be a convex body. Then there is a k-
dimensional projection Q such that

vr(Bk
1 , QL) ≤ C max

{
k√
n
,

√
n

k
log n

}
,

where C > 0 is an absolute constant.

Before providing the proof of Corollary 5.2 we make two important remarks.

Remark 5.3. Recall that by (5) and Remark 2.2, for every convex body L ⊂ Rn and
every projection Q of rank k,

vr(Bk
1 , QL) ≤ vr(Bk

1 , QL−QL) vr(QL−QL,QL) ≤ 4
√
ek.(21)
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Thus Corollary 5.2 implies that for every convex body L ⊂ Rn there exists a k-dimensional
projection Q such that

vr(Bk
1 , QL) ≤ C


k√
n

if k ≥ n2/3(log n)2/3√
n
k

log n if
√
n log n < k ≤ n2/3(log n)2/3

√
k if k ≤

√
n log n.

Remark 5.4. Clearly, Bk
1 can be realized as a (coordinate) projection of K = Bn

1 . Thus
Corollary 5.2 shows sharpness of Theorem 1.1 (up to logarithmic factors) in the regime
k ≥ n2/3. Note that Rudelson’s bound (2) has the same phase transition k ∼ n2/3.

Proof of Corollary 5.2. Clearly we may assume that k ≤ n/16 (otherwise we may use
(21)).

Using again Remark 2.2, which implies that for every projection Q of rank k,

vr(Bk
1 , QL) ≤ vr(Bk

1 , QL−QL) vr(QL−QL,QL) ≤ 4 vr(Bk
1 , QL−QL),

without lost of generality we assume that L is centrally symmetric.
Let T be a projection given by Theorem 5.1. We consider two cases. First assume that

t(L) ≤ k/
√
n. In this case

cBk
1 ⊂ TL ⊂ 2C

k√
n
Bk

1 .

This implies

vr(Bk
1 , TL) ≤ 2C k

c
√
n
.

The second case is t(L) > k/
√
n. In this case we have

c t√
n log n

Bn
2 ⊂ TL ⊂ 2tCBk

1 .

This implies

vr(Bk
1 , TL) ≤ 2C

√
n log n

c

(
|Bk

1 |
|Bk

2 |

)1/k

≤ 2C
√
n log n

c
√
k

.

Finally, note that, similarly to the beginning of the proof of Theorem 1.1, any image of a
convex body under a linear operator of rank k is on the Banach–Mazur distance 1 to an
image of the body under a projection having the same kernel. Since volume ratio is an
affine invariant, this completes the proof. �

6. Concluding remarks.

In fact our results can be interpreted in terms of the following parameter of convex
bodies.

Let 1 ≤ k ≤ n, for a given convex body K ⊂ Rn define its k-projection volume ratio as

pvrk(K) = sup
L

inf
P,Q

vr(PK,QL).

where the supremum is taken over all convex bodies L ⊂ Rn and the infimum is taken
over all projections P,Q of rank k. Given two bodies K and L, note that the quantity
infP,Q vr(PK,QL) measures how close k-dimensional projections of the bodies can be (in
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terms of the volume ratio). So, pvrk(K) provides the worst estimate of this measure that
works for any body L. In this terminology, Theorem 1.1 says that

pvrk(K) & min

 k√
n
·
√

1

log log log(n log(n)
k

)
,

√
k√

log(n log(n)
k

)

 ,

while Remark 5.3 states

pvrk(B
n
1 ) .


k√
n

if k ≥ n2/3(log n)2/3√
n
k

log n if
√
n log n < k ≤ n2/3(log n)2/3

√
k if k ≤

√
n log n.

Note also that (3) implies that for every convex body K ⊂ Rn,

pvrk(K) .
√
k log k,

while (12) implies that

pvrk(B
n
2 ) ≥ inf

rk Q=k

vr(Bk
2 , QB

n
1 ) &

√
k

log(2n/k)
,

which in particular shows that up to logarithmic factors Bn
2 maximizes pvrk(·) and that,

in general, pvrk(K) could be significantly larger than k/
√
n even for k ≥ n2/3.

Finally let us note that it would be natural to consider the following counterpart of the
previous parameter. For 1 ≤ k ≤ n and a convex body K ⊂ Rn we define the k-projection
outer volume ratio as

povrk(K) = sup
L

inf
P,Q

vr(PL,QK),

where as before the supremum is taken over all convex bodies L ⊂ Rn and the infimum
is taken over all projections P,Q of rank k.

Note that by Dvoretzky theorem for 1 ≤ k ≤ c log n,

povrk(B
n
2 ) ≤ 2.

In the next theorem we show that this quantity is also bounded when k is proportional
to n.

Theorem 6.1. Let 0 < λ ≤ 1 There exists a constant C(λ) > 0 depending only on λ such
that if k = λn then

povrk(B
n
2 ) ≤ C(λ).

Proof. Let L ∈ Rn be a convex body. Applying an affine transformation if needed we
can assume that L is in M -position, which means that |L| = |Bn

2 |, that L can be covered
by eCn translates of Bn

2 and that Bn
2 can be covered by eCn translates of L. We refer

to [1, Chapter 8] and to [26, Chapter 7] for several equivalent definitions of M -position,
its existence, and for basic properties of convex bodies in M -position. Note that the
existence of M -position in the non-symmetric case was first established in [25, 28]. By [1,
Theorem 8.5.4] such a position exists for every convex body.

Now, Theorem 8.6.1 in [1] implies that there exists a projection P of rank k = λn such
that the body PL has its volume ratio bounded by a constant depending only on λ (in
fact, it is true for “most” projections). This implies the desired result. �
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