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Abstract

In connection with an unsolved problem of Bang (1951) we give a
lower bound for the sum of the base volumes of cylinders covering a
d-dimensional convex body in terms of the relevant basic measures of
the given convex body. As an application we establish lower bounds
on the number of k-dimensional flats (i.e. translates of k-dimensional
linear subspaces) needed to cover all the integer points of a given
convex body in d-dimensional Euclidean space for 1 ≤ k ≤ d− 1.

1 Introduction

In a remarkable paper [Ba] Bang has given an elegant proof of the plank
conjecture of Tarski showing that if a convex body is covered by finitely
many planks in d-dimensional Euclidean space, then the sum of the widths
of the planks is at least as large as the minimal width of the body. A
celebrated extension of Bang’s theorem to d-dimensional normed spaces has
been given by Ball in [B3]. In his paper Bang raises also the important
related question whether the sum of the base areas of finitely many cylinders
covering a 3-dimensional convex body is at least half of the minimum area
of a 2-dimensional projection of the body. If true, then Bang’s estimate is
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sharp due to a covering of a regular tetrahedron by two cylinders described
in [Ba]. We investigate this challenging problem of Bang in d-dimensional
Euclidean space. Our main result is Theorem 3.1 presented and proved in
Section 3. As a special case, we get that the sum of the base areas of finitely
many cylinders covering a 3-dimensional convex body is always at least one
third of the minimum area 2-dimensional projection of the body.

In [BeH] Bezdek and Hausel has established a discrete version of Tarski’s
plank problem by asking for the minimum number of hyperplanes that can
cover the integer points within a convex body in d-dimensional Euclidean
space. Theorem 5.1 of Section 5 gives an improvement of their result, which
under some conditions improves also the corresponding estimate of Talata
[Ta]. A related but different problem of covering the lattice points within
a convex body by linear subspaces was investigated in [BarHPT]. Last but
not least, Theorem 3.1 combined with some additional ideas leads to a lower
bound on the number of k-dimensional flats (i.e. translates of k-dimensional
linear subspaces) needed to cover all the integer points of a given convex
body in d-dimensional Euclidean space for 1 ≤ k ≤ d − 1. This is the
topic of Section 4 and its main result, Theorem 4.1, actually improves the
corresponding estimate of Talata [Ta].

2 Notation

In this paper we identify a d-dimensional affine space with Rd. By |·| and 〈·, ·〉
we denote the canonical Euclidean norm and the canonical inner product on
Rd. The canonical Euclidean ball and sphere in Rd are denoted by Bd

2 and
Sd−1. By a subspace we always mean a linear subspace.

By a convex body in Rd we always mean a compact convex set with non-
empty interior. The interior of K is denoted by intK. Let K ⊂ Rd be a
convex body with the origin 0 in its interior. We denote by K◦ the polar of
K, i.e.

K◦ = {x | 〈x, y〉 ≤ 1 for every y ∈ K} .

The Minkowski functional of K (or the gauge of K) is

‖x‖K = inf{λ > 0 | x ∈ λK}.

If K is a centrally symmetric convex body with its center of symmetry at the
origin, then ‖x‖K defines a norm on Rd with the unit ball K.
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The Banach-Mazur distance between two convex bodies K and L in Rd

is defined by

d(K,L) = inf {λ > 0 | a ∈ L, b ∈ K, L− a ⊂ T (K− b) ⊂ λ (L− a)},

where the infimum is taken over all linear operators T : Rd → Rd. The
Banach-Mazur distance between K and the Euclidean ball Bd

2 we denote by
dK. As it is well-known, John’s Theorem ([J]) implies that for every K, dK is
bounded by d, while for centrally-symmetric convex body K, dK ≤

√
d (see

e.g. [B1]).
Given a convex body K in Rd we denote its distance to symmetric bodies

by
sdK := inf

{
λ > 0 | a ∈ Rd, −(K− a) ⊂ λ(K− a)

}
. (1)

Clearly, sdK ≤ dK ≤ d. In fact, sdK is one of the ways to measure the
asymmetry of the convex body K. We refer to [Gr] for the related discussion.

Let K be a convex body in Rd. We denote its volume by vol(K). When
we would like to emphasize that we take d-dimensional volume of a body in
Rd we write vold(K).

Given a linear subspace (in short, a subspace) E ⊂ Rd we denote the
orthogonal projection on E by PE and the orthogonal complement of E by
E⊥. We will use the following theorem, proved by Rogers and Shephard
([RS], see also [C] and Lemma 8.8 in [Pi1]).

Theorem 2.1 Let 1 ≤ k < d. Let K be a convex body in Rd and E be a
k-dimensional subspace of Rd. Then

max
x∈Rd

vold−k

(
K ∩

(
x + E⊥)) volk(PEK) ≤

(
d

k

)
vold(K).

Remark. Note that the reverse estimate

max
x∈Rd

vold−k

(
K ∩

(
x + E⊥)) volk(PEK) ≥ vold(K)

is a simple application of the Fubini Theorem and is correct for any measur-
able set K in Rd.

We will be using the following parameters of a convex body K with 0 in
its interior

M(K) :=

∫
Sd−1

‖x‖K dσ(x),
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where σ denotes the normalized Lebesgue measure on Sd−1, M∗(K) :=
M(K◦), and

MM∗(K) := inf M(T (K− a))M∗(T (K− a)),

where the infimum is taken over all invertible linear maps T : Rd → Rd and
all a in the interior of K. Note that M∗(K) is the half of mean width of K.
Below we need the following theorem.

Theorem 2.2 There exist absolute positive constants C and α such that for
every d ≥ 1 and every convex body K in Rd one has

MM∗(K) ≤ Cd1/3 lnα(d + 1).

Moreover, if K is centrally symmetric then

MM∗(K) ≤ C ln(d + 1).

The second estimate in this theorem is a well-known fact from Asymptotic
Theory of finite dimensional normed spaces (see, e.g., [Pi1, To]). In fact, it is
a combination of results by Lewis ([L]), by Figiel and Tomczak-Jaegermann
([FT]) with a deep theorem by Pisier on the so-called Rademacher projection
([Pi2]). The result in the general case is due to Rudelson ([Rud]). The both
estimates of the theorem plays an essential role in the Asymptotic Theory.

The lattice width of a convex body K in Rd is defined as

w(K, Zd) = min

{
max
x∈K

〈x, y〉 −min
x∈K

〈x, y〉 | y ∈ Zd, y 6= 0

}
.

Note that, if the origin is in the interior of K, then

w(K, Zd) = min
{
‖y‖K◦ + ‖ − y‖K◦ | y ∈ Zd, y 6= 0

}
.

The flatness parameter of K is defined as

Flt(K) = sup w(TK, Zd),

where the supremum is taken over all invertible affine maps Rd → Rd sat-
isfying TK ∩ Zd = ∅. The following theorem was proved in [Ban] for the
centrally symmetric case and the case of an ellipsoid, and in [BanLPS] for
the general case. It improves the previous bound by Kannan and Lovász
([KL]), who showed Flt(K) ≤ Cd2.
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Theorem 2.3 There exist absolute positive constants C and c such that for
every d ≥ 1 and every convex body K in Rd one has

cd ≤ Flt(K) ≤ CdMM∗(K).

Moreover, Flt(K) ≤ d if K is an ellipsoid.

3 Covering by cylinders

In this section we introduce a volumetric parameter related to covering by
cylinders and provide corresponding estimates.

By a cylinder in Rd we always mean a 1-codimensional cylinder, that is, a
set C ⊂ Rd that can be presented as C = ` + B, where ` is a line containing
0 in Rd and B is a measurable set in E := `⊥. Let K ⊂ Rd be a convex body
and C ⊂ Rd be a cylinder. The cross-sectional volume of C with respect to
K we denote by

crvK(C) :=
vold−1(C ∩ E)

vold−1(PEK)
=

vold−1(PEC)

vold−1(PEK)
=

vold−1(B)

vold−1(PEK)
.

It is easy to see that for every (d − 1)-dimensional subspace H ⊂ Rd not
containing ` one has

crvK(C) =
vold−1(C ∩H)

vold−1(PK)
,

where P is the projection on H with the kernel `. We would also like to
notice that for every invertible affine map T : Rd → Rd one has crvK(C) =
crvTK(TC).

Theorem 3.1 Let K be a convex body in Rd. Let C1, . . . , CN be cylinders
in Rd such that

K ⊂
N⋃

i=1

Ci.

Then
N∑

i=1

crvK(Ci) ≥
1

d
.
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Moreover, if K is an ellipsoid then

N∑
i=1

crvK(Ci) ≥ 1.

Proof: In this proof we denote vn := voln(Bn
2 ). Every Ci can be presented

as Ci = `i + Bi, where `i is a line containing 0 in Rd and Bi is a body in
Ei := `⊥i .

We first prove the theorem for ellipsoids. Since crvK(C) = crvTK(TC)
for every invertible affine map T : Rd → Rd, we may assume that K = Bd

2.
Then

crvK(Ci) =
vold−1(Bi)

vd−1

.

Consider the following (density) function on Rd

p(x) = 1/
√

1− |x|2

for |x| < 1 and p(x) = 0 otherwise. The corresponding measure on Rd we
denote by µ, that is dµ(x) = p(x)dx. Let ` be a line containing 0 in Rd and
E = `⊥. It follows from direct calculations that for every z ∈ E with |z| < 1∫

`+z

p(x) dx = π.

Thus, we have

µ(Bd
2) =

∫
Bd

2

p(x) dx =

∫
Bd

2∩E

∫
`+z

p(x) dx dz = π vd−1

and for every i ≤ N

µ(Ci) =

∫
Ci

p(x) dx =

∫
Bi

∫
`i+z

p(x) dx dz = π vold−1 (Bi) .

Since Bd
2 ⊂

⋃N
i=1 Ci, we obtain

π vd−1 = µ(Bd
2) ≤ µ

(
N⋃

i=1

Ci

)
≤

N∑
i=1

µ (Ci) =
N∑

i=1

π vold−1 (Bi) .
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It implies
N∑

i=1

crvBd
2
(Ci) =

N∑
i=1

vold−1(Bi)

vd−1

≥ 1. (2)

Now, we show the general case. For i ≤ N denote C̄i = Ci ∩K and note
that

K ⊂
N⋃

i=1

C̄i and PEi
C̄i = Bi ∩ PEi

K.

Since C̄i ⊂ K we have also

max
x∈Rd

vol1
(
C̄i ∩ (x + `i)

)
≤ max

x∈Rd
vol1 (K ∩ (x + `i)) .

Therefore, applying Theorem 2.1 (and Remark after it, saying that we don’t
need convexity of C̄i) we obtain for every i ≤ N

crvK(Ci) =
vold−1(Bi)

vold−1(PEi
K)

≥ vold−1(PEi
C̄i)

vold−1(PEi
K)

≥ vold(C̄i)

maxx∈Rd vol1
(
C̄i ∩ (x + `i)

) maxx∈Rd vol1 (K ∩ (x + `i))

dvold(K)
≥ vold(C̄i)

dvold(K)
.

Using that C̄i’s covers K, we observe

N∑
i=1

crvK(Ci) ≥
1

d
,

which completes the proof. 2

Remark 1. If K is close to the Euclidean ball (and d is not very big), then
the following estimate can be better than the general one

N∑
i=1

crvK(Ci) ≥
1

dd−1
K

.

It can be obtained as follows: Using that crvK(C) = crvTK(TC) for an
invertible affine transformation, we may assume that Bd

2 is a distance ellipsoid
for K, namely assume that Bd

2 ⊂ K ⊂ dKBd
2. Then

N∑
i=1

crvK(Ci) =
N∑

i=1

vold−1(Bi)

vold−1(PEi
K)

≥
N∑

i=1

vold−1(Bi)

vold−1(PEi
dKBd

2)
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≥ d−d+1
K

N∑
i=1

crvBd
2
(Ci) ≥ d−d+1

K

(in the last inequality we used “moreover” part of Theorem 3.1). Recall that
dK ≤

√
d for any centrally symmetric convex body K in Rd and dK ≤ d in

general. Thus, if d = 3 and K is a centrally-symmetric convex body, then
this estimate is better than the general one given by Theorem 3.1.

Remark 2. Note that the proof of Theorem 3.1 can be extended to
the case of cylinders of other dimensions. Indeed, given k < d define a
k-codimensional cylinder C as a set which can be presented in the form
C = H+B, where H is a k-dimensional subspace of Rd and B is a measurable
set in E := H⊥. As before, given a convex body K and a k-codimensional
cylinder C = H + B denote

crvK(C) :=
vold−k(C ∩ E)

vold−k(PEK)
=

vold−k(PEC)

vold−k(PEK)
=

vold−k(B)

vold−k(PEK)
.

Repeating the proof of Theorem 3.1 (the general case), we obtain that if a
convex body K is covered by k-codimensional cylinders C1, . . . , Cn, then

N∑
i=1

crvK(Ci) ≥
1(
d
k

) .
As was noted by Bang ([Ba]), the case k = d − 1 here corresponds to the
“plank problem”, indeed, in this case we have the sum of relative widths of
the body. As we mentioned in the introduction, Ball ([B3]) proved that such
sum should exceed 1 in the case of centrally symmetric body K, while the
general case is still open. Our estimate implies the lower bound 1/d. Of
course, Ball’s Theorem implies the estimate 1/sdK.

4 Covering lattice points by lines and flats

Theorem 4.1 Let K be a convex body in Rd containing the origin in its
interior. Let `1, . . . , `N be lines in Rd such that

K ∩ Zd ⊂
N⋃

i=1

`i.
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Then

N ≥

(
w
(
K ∩ −K, Zd

)
Cd MM∗ (K ∩ −K)

)d−1

≥

(
w
(
K ∩ −K, Zd

)
C0d ln(d + 1)

)d−1

,

where C and C0 are absolute positive constants. If, in addition, −K ⊂ sdKK
(that is, if infimum in (1) attains at a = 0), then

N ≥

(
w
(
K, Zd

)
C sdK d MM∗ (K)

)d−1

≥

(
w
(
K, Zd

)
C0 d7/3 lnα(d + 1)

)d−1

,

where C, C0, and α are absolute positive constants.
Moreover, if K is an ellipsoid centered at the origin, then

N ≥

(
w
(
K, Zd

)
2d

)d−1

.

Proof: Let λ > 0 be such that

K ⊂
N⋃

i=1

(`i + λK) and K 6⊂
N⋃

i=1

(`i + λ intK) .

Since 0 ∈ K, we have 0 ∈ li for some i, which clearly implies that λ ≤ 1.
For i ≤ N let Hi denote the (d − 1)-dimensional subspace orthogonal to

`i and let Pi denote the orthogonal projection on Hi. We define

Ci := `i + λK = `i + λPiK.

Then crvK(Ci) = λd−1. Theorem 3.1 implies N ≥ cdλ−d+1, where c is a
positive absolute constant.

Now, K 6⊂ ∪N
i=1 (`i + λ intK) if and only if there exists x ∈ K such that

for every i ≤ N one has x 6∈ `i + λ intK, i.e. (x− λ intK) ∩ `i = ∅. Let
y = (1− λ/2)x. By convexity of K we have(

y +
λ

2
(K ∩ − intK)

)
⊂ K ∩ (x− λ intK) .

Since K ∩ Zd ⊂ ∪N
i=1`i, we obtain(

y +
λ

2
(K ∩ − intK)

)
∩ Zd = ∅.
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Using Theorem 2.3 (and, if needed, approximating λ by λ − ε with small
enough ε), we observe

λ

2
w
(
K ∩ −K, Zd

)
= w

(
y +

λ

2
(K ∩ −K) , Zd

)
≤ Flt(K ∩ −K) ≤ Cd MM∗ (K ∩ −K) ,

where C is an absolute constant. Thus,

N ≥ cdλ−d+1 ≥ cd

(
w
(
K ∩ −K, Zd

)
2Cd MM∗ (K ∩ −K)

)d−1

.

This shows the left-hand side of the first estimate. The right-hand side
follows by Theorem 2.2. Note that in the case of ellipsoid we have C = c = 1,
MM∗ (K ∩ −K) = 1, which implies the “moreover” part of the theorem.

The second estimate follows the same lines. For the sake of completeness
we sketch it. Let 0 < λ ≤ sdK be such that

K ⊂
N⋃

i=1

(`i − 2λK) and K 6⊂
N⋃

i=1

(`i − λ intK) .

Repeating arguments of the first part we obtain that N ≥ cdλ−d+1 and
(x + λ intK) ∩ `i = ∅ for every i ≤ N . Convexity of K and the inclusion
−K ⊂ sdKK yields for y = (1− λ/(sdK + 1))x(

y +
λ

sdK + 1
intK

)
⊂ K ∩ (x + λ intK) .

It implies (
y +

λ

sdK + 1
intK

)
∩ Zd = ∅

and, by Theorem 2.3,

λ

sdK + 1
w
(
K, Zd

)
≤ C1d MM∗ (K) .

Therefore,

N ≥ cdλ−d+1 ≥ cd

(
w
(
K, Zd

)
C1 (sdK + 1) d MM∗ (K)

)d−1

,
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which proves the left-hand estimate (with C = 2C1). Since sdK ≤ d, Theo-
rem 2.2 implies the right-hand side inequality. 2

Remark. It is not difficult to see that the proof above can be extended
almost without changes to the case of k-dimensional flats instead of lines
(one needs to use Remark 2 following Theorem 3.1). In particular, for a
centrally symmetric body K = −K, whose integer points are covered by the
k-dimensional flats H1, . . . , HN we have

N ≥

(
w
(
K, Zd

)
(d− k)

C d2 ln(d + 1)

)d−k

.

We omit the details and precise estimates in the non-symmetric case.

5 Covering lattice points by hyperplanes

The following theorem improves the estimate of the remark after Theorem 4.1
in the case k = d− 1, extending a Bezdek-Hausel result from [BeH].

Theorem 5.1 Let K be a centrally symmetric (with respect to the origin)
convex body in Rd. Let H1, . . . , HN be hyperplanes in Rd such that

K ∩ Zd ⊂
N⋃

i=1

Hi.

Then

N ≥ c
w(K, Zd)

d MM∗(K)
≥ c0

w(K, Zd)

d ln(d + 1)
,

where c, c0 are absolute positive constants.

Proof: The proof is based on the Ball’s solution of the plank problem.
Namely, we use that given a centrally symmetric body K ⊂ Rd and N
hyperplanes H1, . . . , HN in Rd there exists x ∈ Rd such that

L := x +
1

N + 1
K ⊂ K

and the interior of L is not met by any Hi (see Corollary or abstract in [B3]).
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Since all integer points of K are covered by Hi’s, we observe that

intL ∩ Zd = ∅.

Applying Theorem 2.3, we obtain

1

N + 1
w
(
K, Zd

)
= w

(
L, Zd

)
≤ Flt(K) ≤ Cd MM∗ (K) ,

where C is an absolute constant. Together with Theorem 2.2 it implies the
desired result. 2
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