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Abstract

This paper considers compressed sensing matrices and neighbor-
liness of a centrally symmetric convex polytope generated by vectors
±X1, . . . ,±XN ∈ Rn, (N ≥ n). We introduce a class of random
sampling matrices and show that they satisfy a restricted isometry
property with overwhelming probability. In particular, we prove that
matrices with i.i.d. centered and variance 1 entries that satisfy uni-
formly a sub-exponential tail inequality possess the restricted isometry
property with overwhelming probability. We show that such “sensing”
matrices are valid for the exact reconstruction process of m-sparse
vectors via `1 minimization with m ≤ Cn/ log2(cN/n). The class of
sampling matrices we study includes the case of matrices with columns
that are independent isotropic vectors with log-concave densities. We
deduce that if K ⊂ Rn is a convex body and X1, . . . , XN ∈ K are
i.i.d. random vectors uniformly distributed on K, then, with over-
whelming probability, the symmetric convex hull of these points is an
m-centrally-neighborly polytope with m ∼ n/ log2(cN/n).
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1 Introduction

Let 1 ≤ m ≤ n ≤ N be integers and let X1, . . . , XN ∈ Rn. Denote by A the
n × N matrix with X1, . . . , XN as columns and by K(A) = K(X1, . . . , XN)
the convex hull of ±X1, . . . ,±XN . Recall that a centrally symmetric convex
polytope is m-centrally-neighborly if any set of less than m vertices con-
taining no-opposite pairs, is the vertex set of a face (see the books [15] and
[31]).

The connection between the neighborliness of K(A) and sparse solutions
of undetermined system of linear equations was discovered in [10], Theorem
1, where it is proved that the following two statements are equivalent:

i) K(A) has 2N vertices and is m-neighborly

ii) whenever y = Az has a solution z having at most m non-zero coordi-
nates (in other words z is m-sparse), then z is the unique solution of
the program:

(P ) min ‖t‖`1 , At = Az.

Here the `1-norm is defined by ‖t‖`1 =
∑N

i=1 |ti| for any t = (ti)
N
i=1 ∈ RN .

Statement ii) is the so-called exact reconstruction problem by `1 mini-
mization or basis pursuit algorithm. For a more detailed and complete anal-
ysis of the reconstruction of sparse vectors by the basis pursuit algorithm we
refer to [7] and [11].

Let us also mention in the same stream of ideas that problem ii) is dual
to the problem of decoding by linear programming. In this latter problem a
linear code is given by the matrix A∗, and thus a vector x ∈ Rn generates
the vector A∗x ∈ RN defined by measurements

(
〈X1, x〉, . . . , 〈XN , x〉

)
. Sup-

pose that A∗x is corrupted by a noise vector z ∈ RN which is assumed to
be m-sparse. The problem is to reconstruct x from the data, which is the
noisy output y = A∗x+z. This problem is then tackled by a linear program-
ming approach (see [8] for complete references) that consists of the following
minimization problem

(P ′) min
t∈Rn

‖y − A∗t‖`1 .
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Let us denote by | · | the natural Euclidean norm in Rn and RN . Look-
ing for a sufficient condition for a given matrix M to satisfy condition ii),
the authors of [8] introduced the concept of the restricted isometry property
defined by the following parameter.

Definition 1.1. Let M be an n × N matrix and let δ ∈ (0, 1). For any
1 ≤ m ≤ N the isometry constant of M is defined as the smallest number
δm = δm(M) so that

(1− δm)|z|2 ≤ |Mz|2 ≤ (1 + δm)|z|2

holds for all m-sparse vectors z ∈ RN . The matrix M is said to satisfy the
restricted isometry property of order m with parameter δ, shortly RIPm(δ),
if 0 ≤ δm(M) < δ.

The relevance of this parameter for the reconstruction property ii) is for
instance revealed in [7],[8], where it was shown that if δm(M) + δ2m(M) +
δ3m(M) < 1 then M satisfies ii) (see also [6], [9], [17]). In the present paper,
we shall use the following sufficient condition from [5]: if a matrix M satisfies

δ2m (M) <
√

2− 1

then i) and ii) are satisfied. In other words, if M has RIP2m(
√

2 − 1) then
M has the reconstruction property ii). This approach gives the strategy of
our paper.

Recall that no constructive method to produce centrally symmetric poly-
topes is known to give polytopes with an optimal order of neighborliness. All
known results are of randomized nature, namely, they show that for a certain
probability on the space of n×N matrices, a polytope K(A) is m-centrally-
neighborly with overwhelming probability, for (large) m depending on n and
N . Consequently, from now on, A will be a random matrix in some Ensemble
in the sense of the Random Matrix Theory. Due to the normalization, we
shall consider the isometry constant of A/

√
n. The plan is to specialize to

some model of random matrices the condition δ2m

(
A√
n

)
<
√

2− 1.

Let X1, . . . , XN ∈ Rn be independent random vectors normalized so that
E|Xi|2 = n for all i = 1, . . . , N . The model we will develop here is structured
by two conditions: an inequality of the tails of linear forms and an inequality
of concentration of the Euclidean norm.
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• Linear forms obey a uniform sub-exponential decay, that is, for all
1 ≤ i ≤ N , all y ∈ Sn−1, and t > 0,

P (| 〈Xi, y〉 | > t) ≤ C exp(−ct),

where C, c > 0.

• The Euclidean norms of X1, . . . , XN are concentrated around their av-
erage:

P

(
max
i≤N

∣∣∣∣ |Xi|2

n
− 1

∣∣∣∣ ≥ √
2− 1

2

)
< λ.

Note that such a concentration inequality is clearly necessary in order to have
RIP1((

√
2− 1)/2).

One of the main results of this paper, Theorem 4.3, claims that under
these conditions, whenever

m ≤ cn/ log2(CN/n),

the random polytope K(A) is m-centrally-neighborly with probability larger
than 1−2λ−C exp(−c

√
n), where C, c > 0 are universal numerical constants.

We will make it more precise in Section 4. This model includes the cases when

• Xi’s are independent isotropic random vectors with a log-concave den-
sity;

• the entries of the matrix are independent, centered with variance one
and satisfy a sub-exponential tail inequality;

• Xi’s are on the sphere of radius
√
n and linear forms exhibit a uniform

sub-exponential tail inequality.

These examples give rise to new classes of compressed sensing matrices. The
class of i.i.d. entries with sub-exponential tail behavior (that is, entries being
ψ1 random variables), contains a subclass of matrices with i.i.d. ψr entries
for 1 < r ≤ 2 (see Definition 2.1 below of ψr random variables). Since in this
case the obtained bounds are better by a power of logarithm that may be
essential in applications, we prove our results in full generality, for 1 ≤ r ≤ 2.

Regarding the restricted isometry property, our result is optimal in the
following sense. Let M be a n×N matrix with entries Xij/

√
n, i = 1, . . . n,
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j = 1, . . . N , where Xij are i.i.d. symmetric exponential variables with vari-
ance one. There exist constants C > 0 and 0 < c < 1 such that if the
probability that the random matrix M satisfies the restricted isometry prop-
erty of order m with some parameter δ ∈ (0, 1) is larger than c, then

m log2

(
2N

m

)
≤ Cn.

Sub-gaussian matrices with independent ψ2 entries, which correspond to
r = 2, are by now well understood. They include for instance the Gaussian
case when the matrix A is built with i.i.d. Gaussian N(0, 1) random variables
(see [11],[8],[27]); the case when the entries of A are i.i.d. (±1) Bernoulli
random variables ([8], [23], [3]); a general case of i.i.d. sub-gaussian entries
is treated in ([23],[24], also see [25] for simpler proofs).

Results of this paper are based on concentration type inequalities for
random matrices under consideration. The proof of the main technical result,
Theorem 3.1, will employ methods from [1]. A crucial new ingredient consists
of an analysis of the quantity

Bm := sup
z∈Um

∣∣∣∣∣∣
∣∣∣∣∣∑
i≤N

ziXi

∣∣∣∣∣
2

−
∑
i≤N

z2
i |Xi|2

∣∣∣∣∣∣
1/2

,

where Um denotes the set of norm one m-sparse vectors in RN . In Section 2
we present some definitions and preliminary tools. In Section 3 we apply
Theorem 3.1 to estimate the isometry constant (Theorem 3.2). Then we
study the m-neighborly property of random polytopes in Section 4 and give
application to polytopes generated by random points from a convex body,
polytopes generated by independent vectors with independent ψr random
coordinates, and polytopes generated by independent ψr random vectors on
a sphere. Section 5 is devoted to the proof of Theorem 3.1 and discussion of
optimality of the result.

2 Notation and preliminaries

We equip Rn and RN with the natural scalar product 〈 ·, ·〉 and the natural
Euclidean norm | · |. We use the same notation | · | to denote the cardinality
of a set. Unless otherwise stated, (Xi)i≥1 will denote independent random
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vectors in Rn. By ‖M‖ we shall denote the operator norm of a matrix M ,
that is, ‖M‖ = sup|y|=1 |My|.

Definition 2.1. For a random variable Y ∈ R and r > 0 we define the
ψr-norm by

‖Y ‖ψr = inf {C > 0 ; E exp (|Y |/C)r ≤ 2} .

It is well known that the ψr-norm of a random variable may be estimated
from the growth of the moments. More precisely if a random variable Y is
such that for any p ≥ 1, ‖Y ‖p ≤ p1/rK, for some K > 0, then ‖Y ‖ψr ≤ crK
where cr is a positive constant depending only on r.

Definition 2.2. Let X ∈ Rn be a centered random vector and r > 0. We
say that X is ψr or a ψr vector, if supy∈Sn−1 ‖ 〈X, y〉 ‖ψr is bounded and we
set

‖X‖ψr = sup
y∈Sn−1

‖ 〈X, y〉 ‖ψr .

Remark: The above notation of ‖X‖ψr for the weak ψr norm of a random
vector X should not be confused with the standard convention in the proba-
bility theory that this notation stands for the ψr norm of the random variable
|X|, i.e., ‖ |X| ‖ψr–this latter meaning will never be used in this paper.

We recall the well known Bernstein’s inequality which we shall use in the
form of a ψ1 estimate ([30], p. 103).

Lemma 2.3. Let Y1, ..., Yn be independent real random variables with zero
mean such that for some ψ > 0 and every i, ‖Yi‖ψ1 ≤ ψ. Then, for any
t > 0,

P
(∣∣ n∑

i=i

Yi
∣∣ > t

)
≤ 2 exp

(
− t2

4
∑

i≤n ‖Yi‖2
ψ1

+ 2tψ

)
.

Given a set E ⊂ {1, ..., N} by PE we denote the orthogonal projection
from RN onto the coordinate subspace of vectors whose supports are in E.
We denote this subspace by RE. The support of z ∈ RN is denoted by supp z.
A vector z ∈ RN is called m-sparse if | supp z| ≤ m. The subset of m-sparse
unit vectors in RN is denoted by

Um = Um(RN) := {z ∈ RN : |z| = 1, | supp z| ≤ m}.
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As usual we denote the N -dimensional cube and the unit N -dimensional
Euclidean ball by

BN
∞ = {x = (xi)

N
i=1 ∈ RN : ‖x‖∞ = max

i≤N
|xi| ≤ 1}

and

BN
2 = {x = (xi)

N
i=1 ∈ RN : |x|2 =

N∑
i=1

|xi|2 ≤ 1}.

For every E ⊂ {1, ..., N}, ε, α ∈ (0, 1] we select an ε-net (in the Euclidean
metric) in BN

2 ∩ αBN
∞ ∩ RE and denote it by N (E, ε, α). Thus for every

x ∈ BN
2 ∩ αBN

∞ supported by E, there exist x̄ ∈ N (E, ε, α) supported by E
such that |x− x̄| < ε. A standard volume comparison argument shows that
we may assume that the cardinality of N (E, ε, α) does not exceed (3/ε)m,
where m is the cardinality of E.

Definition 2.4. A random vector X ∈ Rn is called isotropic if

E〈X, y〉 = 0, E |〈X, y〉|2 = |y|2 for all y ∈ Rn,

in other words, if X is centered and its covariance matrix is the identity.

A subset K ⊂ Rn is said to be isotropic when a random point X uniformly
distributed in K is an isotropic random vector.

Recall that a function f : Rn → R is called log-concave if for any θ ∈ [0, 1]
and any x1, x2 ∈ Rn,

f
(
θx1 + (1− θ)x2

)
≥ f(x1)

θf(x2)
1−θ.

It is well known [4] that if a measure has a log-concave density, then linear
functionals exhibit a sub-exponential decay. More precisely, we have:

Lemma 2.5. [4]: Let X ∈ Rn be a centered random vector with a log-concave
density. Then for every y ∈ Sn−1,

‖ 〈X, y〉 ‖ψ1 ≤ c
(
E|〈X, y〉|2

)1/2
,

where c > 0 is a universal constant. As a consequence, if X is an isotropic
random vector with a log-concave density then ‖X‖ψ1 ≤ c.
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The Euclidean norm of an isotropic random vector with a log-concave
density highly concentrates around its expectation, this translates geometri-
cally to the concentration of mass of an isotropic convex body within a thin
Euclidean shell ([19], see also [14]). We will use here the following result
immediately derived from [18], Theorem 4.4.

Lemma 2.6. Let 1 ≤ n ≤ N be integers and let X1, . . . , XN ∈ Rn be
isotropic random vectors with log-concave densities. There exist numeri-
cal positive constants C, c0 and c1 ∈ (0, 1

2
) such that for all θ ∈ (0, 1) and

N ≤ exp(cθc0nc1),

P
(

max
i≤N

∣∣∣∣ |Xi|2

n
− 1

∣∣∣∣ ≥ θ

)
≤ C exp(−cθc0nc1).

Moreover, one can take c0 = 3.33 and c1 = 0.33.

Remark: It is conjectured that in the above theorem one can replace
θ3.33n0.33 by c(θ)n1/2.

We shall also use the following result from [26] as formulated in [1].

Lemma 2.7. Let N, n ≥ 1 be integers and let X1, . . . , XN ∈ Rn be isotropic
random vectors with log-concave densities. Then there exists an absolute
positive constant C0 such that for any N ≤ exp(

√
n) and for every K ≥ 1

one has
max
i≤N

|Xi| ≤ C0K
√
n

with probability at least 1− exp(−K
√
n).

In this paper, different universal positive constants may be denoted by
the same letters C,C0, C

′, c, c0, c
′, etc.

3 Isometry constant

We begin this section by formulating, in Theorem 3.2, a general estimate
for the isometry constant of random matrices with independent ψr columns.
Then, in order to apply such an estimate, we introduce two sufficient con-
ditions that determine large classes of random matrices. Finally, we give
examples of important classes that satisfy the estimates from Theorem 3.2
and thus provide us with models: the Log-Concave Ensemble, matrices with
i.i.d. ψr entries, and matrices defined by independent ψr vectors on a sphere.
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3.1 Estimating the isometry constant

Techniques of “compressed sensing” rely on properties of the sampling ma-
trix, which should act nearly isometrically on sparse vectors. This motivated
the concept of restricted isometry property defined in [8]. To quantify this
property of the “sensing” matrix, the authors introduced the isometry con-
stant δm(M) defined in the Introduction (Definition 1.1) for any n×N matrix
M and any 1 ≤ m ≤ N . Of course if m > n then δm ≥ 1.

Let X1, . . . , XN ∈ Rn and let A = A(n,N) be the “sampling” matrix with
the Xi’s as columns. We begin by a simple observation. For every m ≤ N
define the following quantity

Bm = sup
z∈Um

∣∣∣∣∣∣
∣∣∣∣∣∑
i≤N

ziXi

∣∣∣∣∣
2

−
∑
i≤N

z2
i |Xi|2

∣∣∣∣∣∣
1/2

. (3.1)

Then, clearly

δm

(
A√
n

)
= sup

z∈Um

∣∣∣∣ |Az|2n
− 1

∣∣∣∣ ≤ B2
m

n
+ max

i≤N

∣∣∣∣ |Xi|2

n
− 1

∣∣∣∣ . (3.2)

Thus the isometry constant is controlled by quantity Bm and the second term,

maxi≤N

∣∣∣ |Xi|2
n
− 1
∣∣∣ . We begin by estimating Bm in the following technical

theorem.

Theorem 3.1. Let n ≥ 1 and 1 ≤ m ≤ N be integers. Let 1 ≤ r ≤ 2 and
X1, . . . , XN ∈ Rn be independent ψr random vectors with ψ = maxi≤N ‖Xi‖ψr .
Let θ ∈ (0, 1/4), K,K ′ ≥ 1 and assume that m satisfies

m log2/r 2N

θm
≤ θ2n.

Then setting ξ = ψK +K ′, the inequality

B2
m ≤ Cξ2θn

holds with probability at least

1− exp

(
−Kr

√
m log

(
2N

θm

))
− P

(
max
i≤N

|Xi| ≥ K ′√n
)
,

where c is an absolute positive constant.
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We postpone the proof of Theorem 3.1 to the last section. Combining
this theorem with inequality (3.2), we immediately deduce an estimate for
the isometry constant of a random matrix with independent ψr columns.

Theorem 3.2. Let n ≥ 1 and m,N be integers such that 1 ≤ m ≤ min(N, n).
Let 1 ≤ r ≤ 2. Let X1, . . . , XN ∈ Rn be independent ψr random vectors and
let ψ = maxi≤N ‖Xi‖ψr . Let θ′ ∈ (0, 1), K,K ′ ≥ 1 and set ξ = ψK + K ′.
Then

δm

(
A√
n

)
≤ Cξ2

√
m

n
log1/r

(
eN

m
√

m
n

)
+ θ′

holds with probability larger than

1 − exp

(
−cKr

√
m log

(
eN

m
√

m
n

))

− P
(

max
i≤N

|Xi| ≥ K ′√n
)
− P

(
max
i≤N

∣∣∣∣ |Xi|2

n
− 1

∣∣∣∣ ≥ θ′
)
,

where C, c > 0 are universal constants.

Remark. In fact to obtain Theorem 3.2 from Theorem 3.1 we have to
choose θ =

√
m/n log1/r(en/(m

√
m/n), hence formally Theorem 3.2 is a

corollary of Theorem 3.1 only for m such that θ above is smaller than 1/4.
However, if θ ≥ 1/4, then, adjusting C (say C = 4), the upper bound for δm
becomes larger than 1, so Theorem 3.2 follows easily from Theorem 3.13 in
[1].

Note that bounds provided by Theorem 3.2 are interesting only if, firstly
the bound on δm is smaller than 1 (which immediately implies the restriction
m ≤ min(N, n)), and secondly, if it holds with positive probability. In fact,
the former condition is equivalent to the restricted isometry property of order
m. This leads to considerations of models of random n × N matrices that
satisfy the following two conditions. Let 1 ≤ r ≤ 2, ψ > 0 and λ ∈ (0, 1).
Let X1, . . . , XN ∈ Rn be independent ψr random vectors and let A be the
matrix with X1, . . . , XN as columns.

• Condition H1(r, ψ): Linear forms obey a uniform ψr estimate:

‖Xi‖ψr = sup
y∈Sn−1

‖〈Xi, y〉‖ψr ≤ ψ for all 1 ≤ i ≤ N. (3.3)
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• Condition H2(λ): |Xi|’s are concentrated around their average:

P

(
max
i≤N

∣∣∣∣ |Xi|2

n
− 1

∣∣∣∣ ≥ √
2− 1

2

)
< λ. (3.4)

As already mentioned in the Introduction, a condition such as H2(λ) is
necessary to have the restricted isometry property. Indeed, if the matrix
A/
√
n has RIP1((

√
2− 1)/2) with probability λ then H2(λ) is satisfied.

3.2 Examples

We now specialize Theorem 3.2 to some specific classes of matrices, verifying
conditions (3.3) and (3.4).

3.2.1 The Log-Concave Ensemble

We start by considering the “log-concave setting”, where X1, . . . , XN ∈ Rn

are independent isotropic vectors with log-concave densities.

Lemma 3.3. Assume the above “log-concave setting”. There exist universal
constants ψ,C, c > 0 such that conditions H1(1, ψ) and H2(C exp(−cnc1))
are satisfied whenever N ≤ exp (cnc1), where c1 is given in Lemma 2.6.

The proof is immediate from Lemmas 2.5 and 2.6.

Applying Theorem 3.2 (with r = 1) together with Lemmas 3.3 and 2.7 to
the Log-Concave Ensemble, we get that for every N ≤ exp(cnc1),

δm

(
A√
n

)
≤ C

√
m

n
log

(
eN

m
√

m
n

)
+

√
2− 1

2
(3.5)

holds with probability larger than

1− exp

(
−c
√
m log

(
eN

m
√

m
n

))
− e−c

√
n − exp(−cnc1),

where C, c > 0 are universal constants and c1 is given in Lemma 2.6.
It might be worthwhile to note that using directly Lemma 2.6 one can

replace the second term in estimate (3.5) by a term tending to 0 when
n → ∞, but this would require an adjustment in probability. For example
1/nc1/2c0 works with the probability estimate in which exp(−cnc1) is replaced
by exp(−cnc1/2). (Here c0 is given in Lemma 2.6.)
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3.2.2 Matrices with independent ψr entries

In this section we consider the “ψr setting”, where the entries aij of the
matrix A are independent centered, with variance one, random ψr variables
(with r ∈ [1, 2]). Although the argument is rather standard, we did not
find it in literature, so we provide full proofs for completeness. We set ψ =
maxij ‖aij‖ψr .

Lemma 3.4. Assume the above “ψr setting” with r ∈ [1, 2]. Then con-
ditions H1(r, Cψ) and H2(2 exp(−cnr/2/ψ2r)) are satisfied whenever N ≤
exp(cnr/2/ψ2r), where C, c are absolute positive constants.

Proof. To prove that the columns of the matrix A are ψr vectors we will
estimate the p-th moments of random variables

∑n
i=1 yiaij, for any y = (yi) ∈

Rn and any p ≥ 1. This will be done by using Talagrand’s concentration
inequality for linear combinations of symmetric Weibull variables together
with some symmetrization and truncation arguments.

The following Lemma is a combination of Corollaries 2.9 and 2.10 of [29].

Lemma 3.5. Let r ∈ [1, 2] and Y1, . . . , Yn be independent symmetric random
variables satisfying P(|Yi| ≥ t) = exp(−tr). Then for every vector a =
(a1, . . . , an) ∈ Rn and every t ≥ 0,

P
(∣∣∣ n∑

i=1

aiYi

∣∣∣ ≥ t
)
≤ 2 exp

(
− cmin

( t2

‖a‖2
2

,
tr

‖a‖rr∗

))
,

where 1/r∗ + 1/r = 1 and ‖a‖q = (|a1|q + . . .+ |an|q)1/q, for 1 ≤ q <∞.

The behavior of general centered ψr variables can be easily reduced to
symmetric Weibull variables. The argument is quite standard, we sketch it
here for the sake of completeness.

Assume thus that Z1, . . . , Zn are independent mean zero random variables
with ‖Zi‖ψr ≤ 1. Let β = (log 2)1/r and set Ui = (|Zi|−β)+. Let Yi be defined
as in Lemma 3.5.

We have for t > 0,

P(Ui ≥ t) ≤ P(|Zi| ≥ t+ β) ≤ 2 exp(−(t+ β)r)

≤ 2 exp(−tr − βr) = P(|Yi| ≥ t).
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We will use the above observation together with symmetrization and the
contraction principle to estimate moments of linear combinations of variables
Zi. We have for p ≥ 1,∥∥∥ n∑

i=1

aiZi

∥∥∥
p
≤ 2
∥∥∥ n∑
i=1

aiεiZi

∥∥∥
p

(symmetrization)

= 2
∥∥∥ n∑
i=1

aiεi|Zi|
∥∥∥
p

≤ 2
∥∥∥ n∑
i=1

aiεi(β + Ui)
∥∥∥
p

(the contraction principle)

≤ 2
∥∥∥ n∑
i=1

aiεiβ
∥∥∥
p

+ 2
∥∥∥ n∑
i=1

aiεiUi

∥∥∥
p

≤ C
√
pβ‖a‖2 + 2

∥∥∥ n∑
i=1

aiεiYi

∥∥∥
p

≤ C
√
p‖a‖2 + Cp1/r‖a‖r∗ ,

where to get the last two inequalities we used Khinchine’s inequality, Lemma
3.5 and integration by parts to pass from tail to moment estimates.

We are now ready to prove condition H1(r, Cψ). Fix y ∈ Sn−1 and
consider the linear combination

∑n
i=1 yiaij. Since ‖aij‖ψr ≤ ψ and ‖y‖r∗ ≤

‖y‖2 = 1 for r ∈ [1, 2], we obtain by homogeneity∥∥∥ n∑
i=1

yiaij

∥∥∥
p
≤ Cψ(

√
p‖y‖2 + Cp1/r‖y‖r∗) ≤ 2Cψp1/r.

The growth condition on the moments of the random variable
∑n

i=1 yiaij
implies that its ψr norm is bounded by C̃ψ.

The proof of condition H2 goes along similar lines. Instead of Lemma 3.5
we will now use the following lemma, which is an easy consequence of The-
orem 6.2 in [16] and the observation that the p-th moment of a Weibull
variable with parameter s is of order Csp

1/s, where Cs remains bounded for
s away from 0.

Lemma 3.6. If 0 < s < 1 and Y1, . . . , Yn are independent symmetric random
variables satisfying P(|Yi| ≥ t) = exp(−ts), then for a = (a1, . . . , an) ∈ Rn
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and p ≥ 2, ∥∥∥ n∑
i=1

aiYi

∥∥∥
p
≤ C

√
p‖a‖2 + Csp

1/s‖a‖p.

Moreover, for s ≥ 1/2, Cs is bounded by some absolute constant.

Using similar arguments as in the proof of condition H1 we can infer
from the above lemma that if Z1, . . . , Zn are independent mean zero random
variables with ‖Zi‖ψs ≤ b (s ∈ [1/2, 1)), then for p ≥ 2,∥∥∥ n∑

i=1

aiZi

∥∥∥
p
≤ Cb(

√
p‖a‖2 + p1/s‖a‖p).

Therefore, for any p ≥ 2 by the Chebyshev inequality in Lp,

P
(∣∣∣ n∑

i=1

Zi

∣∣∣ ≥ Cb(
√
np+ p1/sn1/p)

)
≤ exp(−p).

For p ≥ 3 we have

√
np+ p1/sn1/p ≤ C̃(

√
np+ p1/s)

with C̃ universal for s ≥ 1/2, so the above inequality yields

P
(∣∣∣ n∑

i=1

Zi

∣∣∣ ≥ Cb(
√
np+ p1/s)

)
≤ e3 exp(−p)

for some (new) universal constant C or equivalently

P
(∣∣∣ n∑

i=1

Zi

∣∣∣ ≥ t
)
≤ 2 exp

(
− cmin

[ t2
nb2

,
( t
b

)s])
. (3.6)

For fixed j we apply this inequality with s = r/2 to variables Zi = a2
ij−1.

Note that EZi = 0 and

‖Zi‖ψr/2
≤ C(1 + ‖a2

ij‖ψr/2
)

= C(1 + ‖aij‖2
ψr

) ≤ C̃ψ2.

(The additional constants appearing above stem from the fact that under
the standard definition for s < 1, ‖ · ‖ψs is not a norm but only a quasi-norm
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and additionally ‖1‖ψr/2
6= 1. One can modify the function x 7→ ex

r − 1 so
that it is convex. For r away from zero, this modification changes the norm
by an absolute constant). Therefore, applying (3.6) with t = εn yields

P
(∣∣∣ 1
n

n∑
i=1

a2
ij − 1

∣∣∣ ≥ ε
)
≤ 2 exp

(
− cmin

[ε2n

ψ4
,
(εn
ψ2

)r/2])
≤ 2 exp

(
− c̃

εrnr/2

ψ2r

)
.

For r = 2 the proof is similar, but uses Lemma 3.5, which in this case
reduces to Bernstein’s ψ1 inequality (Lemma 2.3), instead of Lemma 3.6.
The argument is simpler since in this case the involved norms of the vector
a do not depend on p and we get (3.6) directly.

The lemma follows now by the union bound. 2

Applying Theorem 3.2 together with Lemma 3.4 to the “ψr setting”, we
get that for every N ≤ exp(cnr/2/ψ2r),

δm

(
A√
n

)
≤ Cψ2

√
m

n
log1/r

(
eN

m
√

m
n

)
+

√
2− 1

2

holds with probability at least

1− exp

(
−c
√
m log

(
eN

m
√

m
n

))
− 3 exp(−cnr/2/ψ2r),

where C, c > 0 are universal constants.

3.2.3 Vectors on a sphere

Another interesting case is when the vectors X1, . . . , XN lie on a common
sphere. To keep the same normalization as in the previous cases we assume
that the sphere has the radius

√
n. Then condition (3.4) becomes empty. Let

1 ≤ r ≤ 2 and assume that the vectors are ψr and let ψ = maxi≤N ‖Xi‖ψr .
Let K ≥ 1 and set ξ = ψK. Then Theorem 3.2 immediately gives that

δm

(
A√
n

)
≤ Cξ2

√
m

n
log1/r

(
eN

m
√

m
n

)
(3.7)

15



with probability larger than

1− exp

(
−cKr

√
m log

(
eN

m
√

m
n

))

where C, c > 0 are universal constants.

4 The geometry of faces of random polytopes

In this Section we discuss the geometry of random polytopes. Let A be an
n × N matrix. We denote by K+(A) (resp. K(A)) the convex hull (resp.,
the symmetric convex hull) of the N columns of A.

4.1 Neighborly polytopes

For an integer 1 ≤ m ≤ n, a polytope is called m-neighborly if any set of less
than m vertices is the vertex set of a face. In the symmetric setting, a cen-
trally symmetric convex polytope is m-centrally-neighborly if any set of less
than m vertices containing no-opposite pairs is the vertex set of a face. We
refer the reader to the books [15] and [31] for classical details on neighborly
polytopes. (Some new quantitative invariants related to neighborliness were
recently developed in [22].)

The relation between the problem of reconstruction and neighborly poly-
topes was discovered in [10].

Theorem 4.1. ([10], Theorem 1) Let 1 ≤ m ≤ n ≤ N and A be an n × N
matrix. The following two assertions are equivalent.

i) The polytope K(A) has 2N vertices and is m-centrally-neighborly.

ii) Whenever y = Az has a solution z having at most m non-zero coordi-
nates, z is the unique solution of the optimization problem (P ):

(P ) min ‖t‖`1 , At = Az,

We will also use the following result from [5] (which could be replaced by
a similar result from [8]).
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Lemma 4.2. [5] Assume that δ2m(A/
√
n) <

√
2−1. Then whenever y = Az

has a solution z having at most m non-zero coordinates, z is the unique
solution of the `1 minimization problem (P ).

We are now ready to state the main result on neighborly random poly-
topes.

Theorem 4.3. Let 1 ≤ m ≤ n ≤ N be integers. Let 1 ≤ r ≤ 2. Let ψ ≥ 1
and λ ∈ (0, 1/2). Let X1, . . . , XN be independent random vectors satisfying
H1(r, ψ) and H2(λ). Let A be the n×N matrix with X1, . . . , XN as columns.
Then, with probability larger than

1− 2λ− exp(−c
√
n/ψ2)

the polytopes K+(A) and K(A) are m-neighborly and m-centrally-neighborly,
respectively, whenever

m ≤ cn
/
ψ4 log2/r(Cψ6N/n),

where C, c > 0 are universal constants.

Observe that the probability is positive for n large enough provided that
λ < 1/2.

Proof. Theorem 3.2 and the definition of property H1(r, ψ) imply that for
arbitrary θ′ ∈ (0, 1), and K,K ′ ≥ 1, setting ξ = ψK +K ′, the estimate

δm

(
A√
n

)
≤ Cξ2

√
m

n
log1/r

(
eN

m
√

m
n

)
+ θ′ (4.1)

holds with probability larger than

1 − exp

(
−cKr

√
m log

(
eN

m
√

m
n

))

− P
(

max
i≤N

|Xi| ≥ K ′√n
)
− P

(
max
i≤N

∣∣∣∣ |Xi|2

n
− 1

∣∣∣∣ ≥ θ′
)
. (4.2)

In view of Lemma 4.2, we look for m and θ′ to ensure δ2m(A/
√
n) <

√
2− 1.

For instance, we let θ′ = (
√

2− 1)/2 and note that (3.4) implies

P

max
i≤N

|Xi| ≥

(√
2− 1

2
+ 1

)1/2
√
n

 < λ. (4.3)
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So we take K ′ =
(√

2−1
2

+ 1
)1/2

and K = 1 which determines ξ = ψK+K ′ in

terms of ψ. We shall use the fact that 1 ≤ ξ/ψ ≤ C̃, where C̃ is a universal
constant.

Now set m0 = [c′n
/
ψ4 log2/r(C ′ψ6N/n)] (for some new constants C ′, c′ >

0). Adjusting the constants C ′, c′ > 0 and writing m for m0, we obtain

Cξ2

√
m

n
log1/r

(
eN

m
√

m
n

)
< (

√
2− 1)/2.

Combining this with the choice of θ′, passing from m to 2m and adjusting the

constants again if necessary, we conclude by (4.1) that δ2m

(
A√
n

)
<
√

2 − 1

with probability larger than

1− exp

(
−c′′

√
m log

(
eN

m
√

m
n

))
− 2λ.

The last estimate follows from (4.2) by applying (3.4) and (4.3) to the last
two terms, respectively; and where c′′ > 0 is again a new positive constant.
Then, by Lemma 4.2 and Theorem 4.1, with the same probability, K(A) is
m-centrally-neighborly and has 2N vertices.

In general, K(A) being m-centrally-neighborly does not imply K+(A) be-
ing m-neighborly. However this is true when K(A) has 2N vertices. Indeed,
this means that no two columns of A form a pair of opposite vertices. So by
m-central-neighbourliness, every set of m column vectors is a face of K(A).
Consequently there is a supporting hyperplane so that all other vertices of
K(A) are on one side. In particular this plane is a supporting hyperplane for
K+(A), which is our witness that K+(A) is m-neighbourly. 2

4.2 Examples

We will now apply Theorem 4.3 in the three different settings introduced in
the previous section.

4.2.1 The Log-Concave Ensemble

Applying Theorem 4.3 and Lemma 3.3 we obtain the following theorem for
independent isotropic vectors with log-concave densities (this is for instance
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the case if X1, . . . , XN are i.i.d. random vectors uniformly distributed on an
isotropic convex body).

Theorem 4.4. Let 1 ≤ m ≤ n ≤ N be integers. Let X1, . . . , XN be in-
dependent isotropic vectors with log-concave densities. Then, for any N ≤
exp(cnc1/2), with probability at least 1−C exp(−cnc1/2), the polytopes K+(A)
and K(A) are m-neighborly and m-centrally-neighborly, respectively, when-
ever

m ≤ cn
/

log2(CN/n),

where C, c > 0 are universal constants and c1 is given in Lemma 2.6.

Remark 1. We believe that the estimate of the degree of neighborliness in
Theorem 4.4 is not optimal and we conjecture that the log2 may be replaced
by log as it is in the Gaussian case (see Remark 1 following Theorem 4.6).

Remark 2. It is known ([2]) that there is a universal constant ψ such
that the uniform probability measure on the ball {x ∈ Rn :

∑n
i=1 |xi|r ≤

1} satisfies H1(r, ψ) for 1 ≤ r ≤ 2 and satisfies H(2, ψ) for r ≥ 2. Of
course, since it is log-concave, the concentration property H2 is also satisfied.
Applying Theorem 4.3 to these examples, we get a better estimate of the level
of neighborliness than in Theorem 4.4. We get now m ∼ cn

/
log2/r(CN/n)

for 1 ≤ r ≤ 2 and m ∼ cn
/

log(CN/n) for 2 ≤ r ≤ ∞.

4.2.2 Matrices with independent ψr entries

In a similar way as above, Theorem 4.3 and Lemma 3.4 imply the following
theorem (note that its conclusion becomes empty if N ≥ exp(cnr/2/ψ2r) and
that ψ ≥ 1, since variances are 1).

Theorem 4.5. Let A be a matrix with entries that are independent centered
variance one random variables. Let 1 ≤ r ≤ 2 and assume that the ψr
norms of the entries are bounded by some constant ψ. Then, for any N ≤
exp(cnr/2/ψ2r), with probability at least 1 − C exp(−c

√
n/ψ2), the polytopes

K+(A) and K(A) are m-neighborly and m-centrally-neighborly, respectively,
whenever 1 ≤ m ≤ n satisfies

m ≤ cn
/
ψ4 log2/r(Cψ6N/n),

where C, c > 0 are universal constants.
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4.2.3 Vectors on a sphere

Finally assume that the vectors are on a sphere of radius
√
n. Using bound

(3.7) and repeating the proof of Theorem 4.3 with obvious modifications we
obtain:

Theorem 4.6. Let 1 ≤ m ≤ n ≤ N be integers. Let 1 ≤ r ≤ 2 and
ψ ≥ 1. Let X1, . . . , XN be independent vectors on a sphere of radius

√
n

and satisfying H1(r, ψ). Then, with probability at least 1 − exp(−c
√
n/ψ2),

the polytopes K+(A) and K(A) are m-neighborly and m-centrally-neighborly,
respectively, whenever

m ≤ cn
/
ψ4 log2/r(Cψ6N/n),

where C, c > 0 are universal constants.

Remark 1. For the matrix A with i.i.d. Gaussian N(0, 1) entries (the case
considered in Section 3.2.2 above when r = 2), it is known that with over-
whelming probability, K(A) is m-centrally-neighborly, whenever 1 ≤ m ≤ n
satisfies

m ≤ cn
/

log(CN/n),

where C, c > 0 are universal constants, (see [8], [11],[21],[24],[27]). The pre-
cise asymptotic dependence of m on n and N has been well studied in [12]
when n/N → δ ∈ (0, 1) and in [13] when n/N → 0.

Remark 2. The restricted isometry property was proved in [24] for ma-
trices with independent rows (rather than columns), under a sub-gaussian
hypothesis. It is worth noting that the corresponding result for matrices
with independent isotropic sub-gaussian columns is not true in general. One
can see it by considering the matrix with columns Xi =

√
2δi(ε1i, . . . , εni),

where δi are independent random variables, P(δi = 1) = P(δi = 0) = 1/2 and
εji are independent Bernoulli variables, independent of δi’s. The vectors Xi

are then isotropic and sub-gaussian, but P(Xi = 0) = 1/2. As a consequence,
the concentration hypothesis and thus the restricted isometry property are
not satisfied.

5 Main technical result

In this Section, X1, . . . , XN ∈ Rn are independent ψr random vectors for
some (fixed) 0 < r ≤ 2. Let 1 ≤ m ≤ N . We shall consider three quantities
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Am, Bm and Cm depending on X1, . . . , XN . Recall that Bm has been defined
in (3.1) as

Bm = sup
z∈Um

∣∣∣∣∣∣
∣∣∣∣∣∑
i≤N

ziXi

∣∣∣∣∣
2

−
∑
i≤N

z2
i |Xi|2

∣∣∣∣∣∣
1/2

and define the other two quantities as follows:

Am = sup
z∈Um

∣∣∣∣∣∑
i≤N

ziXi

∣∣∣∣∣ , Cm = max
i≤N

|Xi|.

We clearly have
|A2

m −B2
m| ≤ C2

m.

Given a real number s, we will denote max(s, 0) by s+.

The main purpose of this Section is to prove Theorem 3.1. In fact we will
prove a stronger technical result, Theorem 5.1, from which Theorem 3.1 will
follow.

Theorem 5.1. Let 0 < r ≤ 2. Let n ≥ 1 and 1 ≤ m ≤ N be integers. Let
X1, . . . , XN ∈ Rn be independent ψr vectors with ψ = maxi≤N ‖Xi‖ψr . For
every 1 ≤ m ≤ N , θ ∈ (0, 1/4), and K ≥ 1 one has

P
(
B2
m ≥ max{B2, CmB, 24 θ C2

m}
)

≤ (1 + 3 logm) exp

(
−2Krm(1+s)/2 log

2N

θm

)
, (5.1)

with s = (1− r)+ and

B = C
1/r
0 ψK mq−1/2

(
log

2N

θm

)1/r

,

where C0 is an absolute constant and q = max{1, 1/r}.

Remark. In fact we shall prove a stronger statement: with the notation of
Theorem 5.1, for every 1 ≤ m ≤ N , θ ∈ (0, 1/4), and K ≥ 1, and for every
0 ≤ ` ≤ log2m, one has

P
(
B2
m ≥ max{B2

, CmB, 24 θ C2
m}
)

≤ (1 + 2`) exp

(
−2Krm

2`
log

12eN2`

θm

)
, (5.2)
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where

B = C1/rψK

((m
2`

)q (
log

2N2`

θm

)1/r

+mq−1/2

(
log

2N

θm

)1/r
)
,

C is an absolute constant and q = max{1, 1/r}.

Before starting the proof of the theorem we show how it implies Theorem
3.1, stated in Section 3.

5.1 Proof of Theorem 3.1

Fix K1 ≥ 1 and let K ≥ K1 be such that

K2m log2/r 2N

θm
= K2

1θ
2n.

By Theorem 5.1 with r ≥ 1, and the condition on m,

P
(
B2
m ≥ max{B2, CmB, 24θC2

m}
)

≤ (1 + 3 logm) exp

(
−2Kr

√
m log

2N

θm

)
≤ exp

(
−Kr

1

√
m log

2N

θm

)
,

where

B = C0ψK
√
m log1/r 2N

θm
= C0ψK1θ

√
n,

and c is an absolute positive constant. Thus, if Cm ≤ K2

√
n for some K2,

then

max{B2, CmB, 24θC2
m} ≤ C1θnmax{ψ2K2

1 , ψK1K2, K
2
2}

≤ C1θn (ψK1 +K2)
2 ,

where C1 is an absolute constant. This concludes the proof. 2
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5.2 Proof of Theorem 5.1

We will prove the theorem in a stronger form (5.2). Then (5.1) follows by
choosing 0 ≤ ` ≤ log2m to be the largest integer satisfying

1

2q`

(
log

2N2`

θm

)1/r

≥ m−1/2

(
log

2N

θm

)1/r

.

The proof will use the same construction as in [1], which however re-
quires some modifications. For completeness and the reader’s convenience
we provide details of the argument.

We require the following two lemmas proved in [1] with r = 1. Since the
proofs for general r repeat the same arguments, we leave them for the reader.
Recall that for every E ⊂ {1, ..., N} of cardinality m, every ε, α ∈ (0, 1] we
selected an ε-net (in the Euclidean metric) in BN

2 ∩αBN
∞ ∩RE of cardinality

not exceeding (3/ε)m and denoted it by N (E, ε, α).

Lemma 5.2. Let 0 < r ≤ 2 and X1, . . . , XN ∈ Rn be independent ψr vectors
with ψ = maxi≤N ‖Xi‖ψr . Let m ≤ N , ε, α ∈ (0, 1]. Let q = max{1, 1/r}
and L ≥ mq

(
2 log 12eN

mε

)1/r
. Then

P

 sup
F⊂{1,...,N}
|F |≤m

sup
E⊂F

sup
z∈N (F,ε,α)

∑
i∈E

∣∣∣∣∣∣
〈
ziXi,

∑
j∈F\E

zjXj

〉∣∣∣∣∣∣ ≥ ψ αLAm


≤ exp

(
−1

2
Lr m−(r−1)+

)
.

Lemma 5.3. Let 0 < r ≤ 2 and X1, . . . , XN ∈ Rn be independent ψr vectors
with ψ = maxi≤N ‖Xi‖ψr . Let 1 ≤ k,m ≤ N , ε, α ∈ (0, 1], β > 0, and L > 0.
Let B(m,β) denote the set of vectors x ∈ βBN

2 with | supp x| ≤ m and let B
be a subset of B(m,β) of cardinality M . Then

P

 sup
F⊂{1,...,N}

|F |≤k

sup
x∈B

sup
z∈N (F,ε,α)

∑
i∈F

∣∣∣∣∣
〈
ziXi,

∑
j 6∈F

xjXj

〉∣∣∣∣∣ ≥ ψαβLAm

)

≤ M

(
6eN

kε

)k
exp

(
−1

2
Lr k−(r−1)+

)
.

The following formula is well known and the proof is in its statement.
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Lemma 5.4. Let x1, . . . , xN ∈ Rn, then∑
i6=j

〈xi, xj〉 = 4 · 2−N
∑

E⊂{1,...,N}

∑
i∈E

∑
j∈Ec

〈xi, xj〉 .

We are now ready to start the proof of Theorem 5.1.
Proof of Theorem 5.1. As in [1], the construction splits into two cases.

If ` = 0 we set
M(θ) =

⋃
E⊂{1,...N}
|E|=m

N (E, θ/4, 1).

Otherwise, define positive integers a0, a1, . . . , a` by ak := [m 2−k+1]− [m 2−k]
for 1 ≤ k ≤ ` and a0 := [m 2−` ]. Observe that ak ≤ m 2−k+1 for 1 ≤ k ≤ `,
a0 ≤ m 2−` and

∑`
k=0 ak = m. Recall that for E ⊂ {1, . . . , N} we identify

RE with the subspace of vectors in RN with coordinates supported by E.
We consider (` + 1)-tuples ((E0, x0), . . . , (E`, x`)) where (Ek)0≤k≤` are

mutually disjoint subsets of {1, . . . N}, |Ek| ≤ ak, xk ∈ REk for all 0 ≤ k ≤ `.
A (`+ 1)-tuple ((E0, x0), . . . , (E`, x`)) is said to be admissible if

xk ∈ N

(
Ek, θ2

−k,

√
2k

m

)
for 1 ≤ k ≤ `, x0 ∈ N (E, θ/4, 1) ,

∣∣∣∣∣∑̀
k=0

xk

∣∣∣∣∣ ≤ 2.

The set of all vectors x =
∑`

k=0 xk associated to admissible (`+ 1)-tuples
((E0, x0), . . . , (E`, x`)) will be denoted by M(θ).

We shall consider the details of the case ` > 0, the other case can be
treated similarly.

Fix ((F0, x0), . . . , (F`, x`)) to be admissible and let x =
∑`

k=0 xk ∈M(θ).
Denote the coordinates of x by x(i), i ≤ N , then

|Ax|2 =

〈∑
i≤N

x(i)Xi,
∑
i≤N

x(i)Xi

〉
=
∑
i≤N

x(i)2|Xi|2 +
∑
i6=j

〈x(i)Xi, x(j)Xj〉 .

So ∣∣∣∣∣|Ax|2 −∑
i≤N

x(i)2|Xi|2
∣∣∣∣∣ = |Dx|

where
Dx =

∑
i6=j

〈x(i)Xi, x(j)Xj〉 .

24



Now we split Dx according to the structure of x. Namely we let

D′
x :=

∑̀
k=0

∑
i,j∈Fk

i6=j

〈x(i)Xi, x(j)Xj〉 ,

and

D′′
x :=

∑̀
k=0

∑
i∈Fk
j 6∈Fk

〈x(i)Xi, x(j)Xj〉 ,

so that we have∣∣∣∣∣|Ax|2 −∑
i≤N

x(i)2|Xi|2
∣∣∣∣∣ = |D′

x +D′′
x| ≤ |D′

x|+ |D′′
x| .

We first estimate D′
x. By Lemma 5.4 we have

D′
x =

∑̀
k=0

∑
i,j∈Fk

i6=j

〈x(i)Xi, x(j)Xj〉

= 4
∑̀
k=0

2−|Fk|
∑
E⊂Fk

∑
i∈E

∑
j∈Fk\E

〈x(i)Xi, x(j)Xj〉 .

Thus

|D′
x| ≤ 4

∑̀
k=0

2−|Fk|
∑
E⊂Fk

∣∣∣∣∣∣
∑
i∈E

∑
j∈Fk\E

〈x(i)Xi, x(j)Xj〉

∣∣∣∣∣∣
≤ 4

∑̀
k=0

sup
E⊂Fk

∣∣∣∣∣∣
∑
i∈E

∑
j∈Fk\E

〈x(i)Xi, x(j)Xj〉

∣∣∣∣∣∣
and using the fact that |Fk| ≤ ak for 0 ≤ k ≤ `, we arrive at

|D′
x| ≤ 4

∑̀
k=0

sup
F⊂{1,...,N}
|F |≤ak

sup
E⊂F

∑
i∈E

∣∣∣∣∣∣
〈
x(i)Xi,

∑
j∈F\E

x(j)Xj

〉∣∣∣∣∣∣ .
We now set q = max{1, 1/r} and apply Lemma 5.2 to each summand in

the sum above with the parameters

a0, ε = θ/4, α = 1, and L = K
(m

2`

)q (
4 log

48eN2`

θm

)1/r
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for k = 0 and

ak, ε = θ2−k, α =

√
2k

m
, and L = K

(m
2k

)q (
4 log

12eN4k

θm

)1/r

for 1 ≤ k ≤ ` (note also that m from the lemma is substituted with m/2`

and m/2k respectively). By the union bound we obtain that the probability
of the event

sup
x∈M(θ)

|D′
x| ≥ ψAmK

((m
2`

)q (
4 log

48eN2`

θm

)1/r

+
∑̀
k=1

(m
2k

)q−1/2
(

4 log
12eN4k

θm

)1/r
)

is not larger than

exp

(
−Kr 2m

2`
log

48eN2`

θm

)
+
∑̀
k=1

exp

(
−Kr 2m

2k
log

12eN4k

θm

)
.

Therefore the probability of the event

sup
x∈M(θ)

|D′
x| ≥ ψAmK

((m
2`

)q (
4 log

48eN2`

θm

)1/r

+ C
1/r
1 mq−1/2

(
log

2N

θm

)1/r
)

is not larger than

(1 + `) exp

(
−Kr 2m

2`
log

12eN2`

θm

)
,

where C1 is an absolute constant.
We now pass to the estimate for D′′

x which essentially follows the same
lines.

For every 1 ≤ k ≤ ` we consider Mk(θ) = M′
k(θ) ∩ 2BN

2 , where M′
k(θ)

consists of all vectors of the form v = v0 +
∑`

s=k+1 vs, where vi’s (i = 0, k =
1, . . . , `) have pairwise disjoint supports and

v0 ∈
⋃

E⊂{1,...N}
|E|≤a0

N (E, θ/4, 1), vs ∈
⋃

E⊂{1,...N}
|E|≤as

N

(
E, θ 2−s,

√
2s

m

)
for s ≥ k + 1.
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Then Mk(θ) ⊂ 2BN
2 and (similarly as in [1]) we can estimate the cardinality

|Mk(θ)| ≤
(

12

θ

)a0
(∑
i≤a0

(
N

i

)) ∏̀
s=k+1

(
3 · 2s

θ

)as
(∑
i≤as

(
N

i

))

≤
(

12eN

a0θ

)a0 ∏̀
s=k+1

(
3 · 2seN
θas

)as

≤ exp

(
`+1∑

s=k+1

2m

2s
log

3e4sN

2θm

)
≤ exp

(
4m

2k
log

6e4kN

θm

)
.

Recalling that x =
∑`

k=0 xk ∈ M(θ) for some admissible (` + 1)-tuple
((F0, x0), . . . , (F`, x`)) and setting Gk = {0, k + 1, k + 2, . . . , `}, we observe
that

|D′′
x| =

∣∣∣2∑̀
k=1

∑
i∈Fk

〈
x(i)Xi,

∑
r∈Gk

∑
j∈Fr

x(j)Xj

〉∣∣∣
≤ 2

∑̀
k=1

sup
F⊂{1,...,N}
|F |≤2m/2k

sup
u∈N (F,2−k,

√
2k/m)

sup
v∈Mk(θ)

∑
i∈F

∣∣∣∣∣
〈
u(i)Xi,

∑
j 6∈F

v(j)Xj

〉∣∣∣∣∣ .
Now we apply Lemma 5.3 to each summand k = 1, . . . , `, with parameters

ε = θ2−k, α =

√
2k

m
,β = 2,B = Mk(θ) and L = K

(m
2k

)q (
12 log

12eN4k

θm

)1/r

.

Using the union bound we obtain

P

(
|D′′

x| ≥ 2ψAmK
∑̀
k=1

(m
2k

)q−1/2
(

12 log
12eN4k

θm

)1/r
)

≤
∑̀
k=1

exp

(
4m

2k
log

12e4kN

θm
+

2m

2k
log

3e4kN

θm
−Kr 12m

2k
log

12eN4k

θm

)

≤
∑̀
k=1

exp

(
−Kr 6m

2k
log

12eN4k

θm

)
≤ ` exp

(
−Kr 6m

2`
log

12eN4`

θm

)
.
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Thus

P

(
sup

x∈M(θ)

|D′′
x| ≥ C

1/r
2 ψAmKm

q−1/2

(
log

2N

θm

)1/r
)

≤ ` exp

(
−Kr 6m

2`
log

12eN4`

θm

)
,

where C2 is the an absolute constant.

Since Dx = D′
x +D′′

x, then

P

(
sup

x∈M(θ)

|Dx| ≥ Amγ

)
≤ (1 + 2`) exp

(
−Kr 2m

2`
log

12eN2`

θm

)
, (5.3)

where

γ = C
1/r
3 ψK

((m
2`

)q (
log

2N2`

θm

)1/r

+mq−1/2

(
log

2N

θm

)1/r
)

for some absolute constant C3 > 0.

Passing now to the approximation argument, pick an arbitrary z ∈ SN−1

with | supp z| ≤ m. Define the following subsets of {1, . . . , N} depending on
z. Denote the coordinates of z by z(i) (i = 1, . . . , N). Let n1, . . . , nN be such
that |z(n1)| ≥ |z(n2)| ≥ . . . ≥ |z(nN)|, so that z(ni) = 0 for i > m (since

| supp z| ≤ m). If ` = 0, we denote the support of z by Ẽ0 and consider only

this Ẽ0. Otherwise we set

Ẽ0 = {ni}1≤i≤m/2`

and

Ẽ1 = {ni}m/2<i≤m, Ẽ2 = {ni}m/4<i≤m/2, . . . , Ẽ` = {ni}m/2`<i≤m/2`−1 .

Recall that integers a0, a1, . . . , a` have been defined at the beginning of this
proof. Then, clearly,

a0 = |Ẽ0| ≤ m/2`, ak = |Ẽk| ≤ m/2k + 1 ≤ m/2k−1 for every 1 ≤ k ≤ `,

and
∑`

i=0 ai = m. Also observe that, since z ∈ SN−1, then for every k ≥ 1,

‖P eEk
z‖∞ ≤ |z(ns)| ≤

√
2k

m
,
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where s = [m/2k].
For every k ≥ 1 the vector P eEk

z can be approximated by a vector from

N
(
Ẽk, θ2

−k,
√

2k

m

)
and the vector P eE0

z can be approximated by a vector

from N (Ẽ0, θ/4, 1). Thus there exists x ∈M(θ), with a suitable representa-
tion x =

∑`
k=0 xk, such that

|z − x|2 ≤
∑̀
k=0

|P eEk
z − xk|2 ≤ θ2(2−4 +

∑̀
k=1

2−2k) < θ2 (0.4).

Moreover, x is chosen to have the same support as z, and thus w = z − x
has the support | suppw| ≤ m.

It follows from the definitions of Dz and A that

Dz = Dx + 〈Aw,Ax〉+ 〈Az,Aw〉 −
∑
i≤N

w(i) (x(i) + z(i)) |Xi|2,

(here w(i), x(i) and z(i) denote the coordinates of w, x and z, respectively).
Thus

|Dz| ≤ |Dx|+ |Aw|(|Ax|+ |Az|) + |w| |x+ z| max
i≤N

|Xi|2.

It follows that

B2
m = sup

z∈SN−1

| supp z|≤m

|Dz| ≤ sup
x∈M(θ)

|Dx|+2θ
(
A2
m + C2

m

)
≤ sup

x∈M(θ)

|Dx|+2θ
(
B2
m + 2C2

m

)
.

Thus, by (5.3) and using again Am ≤
√
B2
m + C2

m ≤ Bm + Cm we obtain

P
(
(1− 2θ)B2

m ≥ 4θC2
m + Cmγ +Bmγ

)
≤ (1 + 2`) exp

(
−Kr 2m

2`
log

12eN2`

θm

)
.

Since θ ≤ 1/4, this implies

P
(
B2
m ≥ max{24θC2

m, 6Cmγ, 6γ
2}
)
≤ (1 + 2`) exp

(
−Kr 2m

2`
log

12eN2`

θm

)
,

which completes the proof. 2
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5.3 Optimality of estimates

We conclude this section by an example showing optimality, in a certain
sense, of estimates in Theorem 3.1. We will limit ourselves to the ψ1 case,
that is to r = 1. To this end we consider a special case when Xi = (Xij)

n
j=1

where Xij are i.i.d. symmetric exponential variables with variance one. We
begin by showing an optimal estimate for Am.

First, from [1] (Theorem 3.5) we have that for N ≤ exp(c
√
n) and any

K ≥ 1,

P
(
Am ≥ CK

(√
n+

√
m log

2N

m

))
≤ exp

(
−cK

√
n
)

(5.4)

where C, c > 0 are numerical constants. In the other direction, we have the
following

Proposition 5.5. For any 1 ≤ m ≤ N and t ≥ 1,

P
(
Am ≥ c

(√
n+

√
m log

(2N

m

)
+ t
))

≥ c ∧ e−t,

where c > 0 is an absolute constant.

Before we prove this proposition let us explain its relevance to Theo-
rem 3.1. Firstly, observe that the proposition implies that with probabil-
ity bounded away from zero, Am ≥ c(

√
n +

√
m log(2N/m)). This shows

that – except for allowing a change of absolute constants – one cannot ob-
tain a better bound on Am than (5.4), valid with overwhelming probability
(i.e., with probability converging to one as n → ∞). Secondly, assume
that N ≤ exp(c

√
n). By taking t = cK

√
n, we obtain that for large n,

P(Am ≥ cK
√
n) ≥ exp(−cK

√
n). We compare this with estimates for prob-

abilities in (5.4). Namely, using Lemma 2.7 (noting that the density of Xi’s
is log-concave), we can see that for m log2(2N/m) ≤ n, the theorem implies
that P(Am ≥ CK

√
n) ≤ exp(−c̃K

√
n). So in this range of m the upper

and lower bounds on probability coincide up to numerical constants in the
exponent.

Regarding Theorem 3.1, again assume that N ≤ exp(c
√
n). Using again

Lemma 2.7, we get with overwhelming probability that for all i, |Xi| ≤ C ′√n.
Now assume that for some m we have with overwhelming probability B2

m ≤
Cn. Then by the obvious bound A2

m ≤ B2
m + supz∈Um

∑
i≤N |zi|2|Xi|2, with

probability close to one we also have Am ≤ C ′′√n. On the other hand,
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as noted above, P(Am ≥ c(
√
n +

√
m log(2N/m))) is bounded away from

zero. Thus, c(
√
n +

√
m log(2N/m)) ≤ C ′′√n, which in turn implies that

for n large enough we have m log2(2N/m) ≤ Cn. This shows that the factor
log2(2N/θm) in Theorem 3.1 is of the right order.

Proof of Proposition 5.5 Since

Am = sup
α∈SN−1

| supp α|≤m

sup
β∈Sn−1

∑
ij

αiβjXij,

by general tail estimates for linear combinations of exponential variables with
vector valued coefficients (see e.g. Corollary 1 in [20]), we get

P
(
Am ≥ c

(
EAm +

√
tσ + tb

))
≥ c ∧ e−t,

where
σ2 = sup

α∈SN−1

| supp α|≤m

sup
β∈Sn−1

∑
ij

α2
iβ

2
j = 1

and
b = sup

α∈SN−1

| supp α|≤m

sup
β∈Sn−1

max
ij
|αiβj| = 1.

Therefore, it is enough to show that EAm ≥ c(
√
n +

√
m log(2N/m)).

Obviously, EAm ≥ c
√
n, since a single column of the matrix A has expected

Euclidean norm of the order
√
n. As for the other term, it is enough to

consider the first row of our matrix. We have

√
mAm ≥ sup

α∈{0,−1,+1}N

| supp α|=m

N∑
i=1

αiYi,

where to simplify the notation we set Yi = Xi1. On the right hand side
we actually have

∑m
i=1 |Y ∗

i |, where Y ∗
i is such a rearrangement of Yi that

|Y ∗
1 | ≥ |Y ∗

2 | ≥ . . . ≥ |Y ∗
n |, which can be used to derive lower bounds on the

expectation. We will however not rely on this representation, instead we will
use a Sudakov type minoration principle for exponential variables proved in
[28], Theorem 5.2.9, which we state here in a simplified version, adapted to
our purposes.
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Lemma 5.6. Let Y1, . . . , YN be independent symmetric exponential variables
with variance one. Consider T ⊆ `N2 of cardinality k and u ≥ 1. If for any
s, t ∈ T , t 6= s, √

u|t− s|+ u‖t− s‖∞ > u,

then E maxt∈T
∑N

i=1 tiYi ≥ cmin(u, log k), where c > 0 is an absolute con-
stant.

In our case, T = {α ∈ {0,−1, 1}N : | suppα| ≤ m}, so k ≥
(
N
m

)
. Also,

since ‖t− s‖∞ ≥ 1 for t, s ∈ T , t 6= s, the condition of the lemma is trivially
satisfied for any u ≥ 1, in particular for u = log k. Thus, for m ≤ N/2,
we obtain

√
mEAm ≥ log k ≥ cm log(2N/m). On the other hand we have

EAm ≥ c
√
m, so for m ≥ N/2 it is enough to adjust the constants. 2

Let M be an n×N matrix with entries Xij/
√
n, i = 1, . . . n, j = 1, . . . N ,

where Xij are i.i.d. symmetric exponential variables with variance one. It
follows from the definition 1.1 of the isometry constant of M that for any
1 ≤ m ≤ min(n,N)

A2
m

n
≤ 1 + δm.

Consequently, if M satisfies the restricted isometry property of order m with
some parameter δ ∈ (0, 1), then A2

m ≤ 2n. From Proposition 5.5 we deduce
the optimality of our result regarding the restricted isometry property.

Proposition 5.7. Let 1 ≤ m ≤ n ≤ N . Let M be a n × N matrix with
entries Xij/

√
n, i = 1, . . . n, j = 1, . . . N , where Xij are i.i.d. symmetric

exponential variables with variance one. There exist constants C > 0 and
0 < c < 1 such that if the probability that the random matrix M satisfies
the restricted isometry property of order m with some parameter δ ∈ (0, 1) is
larger than c, then

m log2

(
2N

m

)
≤ Cn.
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