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1 Introduction

In the recent years a lot of work has been done on the study of the empiri-
cal covariance matrix, and on understanding related random matrices with
independent rows or columns. In particular, such matrices appear naturally
in two important (and distinct) directions as follows.

(1) Approximation of covariance matrices of high-dimensional distributions
by empirical covariance matrices.
(2) The Restricted Isometry Property (RIP) of sensing matrices defined in
the Compressive Sensing theory.

To illustrate, let n,N be integers. For 1 ≤ m ≤ N by Um = Um(RN) we
denote the set of m-sparse unit vectors, that is, vectors x ∈ SN−1 with at
most m non-zero coordinates. For any n×N random matrix A, treating A as

a linear operator A : RN → Rn we define δm(A) by δm(A) = supx∈Um

∣∣∣|Ax|2−
E|Ax|2

∣∣∣. (Here | · | denotes the Euclidean norm on Rn.)

Now let X ∈ RN be a centered random vector with the covariance matrix
equal to the identity, that is, EX⊗X = Id; such vectors are called isotropic.
Consider n independent random vectors X1, . . . , Xn distributed as X and let
A be the n×N matrix whose rows are X1, . . . , Xn. Then

δm

( A√
n

)
= sup

x∈Um

∣∣ 1
n

(
|Ax|2 − E|Ax|2

)∣∣
= sup

x∈Um

∣∣∣ 1
n

n∑
i=1

(
|〈Xi, x〉|2 − E|〈Xi, x〉|2

) ∣∣∣. (1.1)

In the particular case of m = N it is also easy to check that

δN

( A√
n

)
=
∥∥∥ 1

n

n∑
i=1

(Xi ⊗Xi − EX ⊗X)
∥∥∥. (1.2)

We first discuss the case n ≥ N . In this case we will work only with the
parameter δN(A/

√
n). By the law of large numbers, under some moment

hypothesis, the empirical covariance matrix 1
n

∑n
i=1Xi ⊗ Xi converges to

EX ⊗X = Id in the operator norm, as n → ∞. A natural goal important
for many classes of distributions is to get quantitative estimates of the rate
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of this convergence, in other words, to estimate the error term δN(A/
√
n)

with high probability, as n→∞.
This question was raised and investigated in [17] motivated by a problem

of complexity in computing volume in high dimensions. In this setting it was
natural to consider uniform measures on convex bodies, or more generally,
log-concave measures (see below for all the definitions). Partial solutions
were given in [10] and [26] soon after the question was raised, and in the
intervening years further partial solutions were produced. A full and optimal
answer to the Kannan-Lovász-Simonovits (K-L-S) question was given in [5]
and [7]. For recent results on similar questions for other distributions, see
e.g., [29] and [27].

The answer from [5] and [7] to the K-L-S question on the rate of conver-
gence stated that:

P

(
sup

x∈SN−1

∣∣∣ 1
n

n∑
i=1

(
|〈Xi, x〉|2 − 1

) ∣∣∣ ≤ C

√
N

n

)
≥ 1− e−c

√
N , (1.3)

where C and c are absolute positive constants. The proofs are based on an
approach initiated by J. Bourgain [10] where the following norm of a matrix
played a central role. Let 1 ≤ k ≤ n, then

Ak,N = sup
J⊂{1,...,n}

|J|=k

sup
x∈SN−1

(∑
j∈J

|〈Xj, x〉|2
)1/2

= sup
J⊂{1,...,n}

|J|=k

sup
x∈SN−1

|PJAx|, (1.4)

where for J ⊂ {1, . . . , n}, PJ denotes the orthogonal projection on the coor-
dinate subspace RJ of Rn.

To understand the role of Ak,N for estimating δN(A/
√
n), let us explain

the standard approach. For each individual x on the sphere, the rate of con-
vergence may be estimated via some probabilistic concentration inequality.
The method consists of a discretisation of the sphere and then the use of an
approximation argument to complete the proof. This approach works per-
fectly as long as the trade-off between complexity and concentration allows
it.

Thus when the random variables 1
n

∑n
i=1 |〈Xi, x〉|2 satisfy a good concen-

tration inequality sufficient to handle uniformly exponentially many points,
the method works. This is the case, for instance, when the random variables
〈X, x〉 are sub-gaussian or bounded, due to Bernstein inequalities. In the
general case, we decompose the function |〈Xi, x〉|2 as the sum of two terms,
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the first being its truncation at the level B2, for some B > 0. Now, let us
discuss the second term in the decomposition of

∑n
i=1 |〈Xi, x〉|2. Let

EB = EB(x) = {i ≤ n : |〈Xi, x〉| > B}.

For simplicity, let us assume that the maximum cardinality of the sets of the
family {EB(x) : x ∈ SN−1} is a fixed non-random number k, then clearly
the second term is controlled by∑

i∈EB

|〈Xi, x〉|2 ≤ A2
k,N .

In order to estimate k, let x be such that k = |EB(x)| = |EB|, then

B2k = B2|EB| ≤
∑
i∈EB

|〈Xi, x〉|2.

Thus, we get the implicit relation A2
k,N ≥ B2k. From this relation and an

estimate of the parameter Ak,N we eventually deduce an upper bound for
k. To conclude the argument of Bourgain the bounded part is uniformly
estimated by a classical concentration inequality and the rest is controlled
by the parameter Ak,N .

Note that we only need tail inequalities to estimate Ak,N , that is, to
control uniformly the norms of sub-matrices of A. This is still a difficult
task, however, because of a high complexity of the problem and the lack of
matching probability estimates; and a more sophisticated argument has been
developed in [5] to handle it.

We now pass to the complementary case n < N , which is one of central
points of the present paper, and was announced in [4].

Let A be an n × N random matrix with rows X1, . . . , Xn which are in-
dependent random centered vectors and with covariance matrices equal to
the identity, but not necessarily identically distributed. Clearly, A is then
not invertible. The uniform concentration on the sphere UN = SN−1 (which
appeared in the definition of δm(A/

√
n) for m = N) does not hold and the

expressions in (1.1) are not uniformly small on UN = SN−1. The best one
can hope for is that A may be “almost norm-preserving” on some subsets
of SN−1. This is true for subsets Um, for some 1 ≤ m ≤ N and is indeed
measured by δm(A/

√
n).

4



The parameter δm plays a major role in the Compressive Sensing theory
and an important question is to bound it from above with high probability, for
some (fixed) m. For example, it can be directly used to express the so-called
RIP (introduced by E. Candes and T. Tao in [12]), which in turn ensures
that every m-sparse vector x can be reconstructed from its compression Ax
with n� N by the so-called `1-minimization method.

For matrices with independent rows X1, . . . , Xn, questions on the RIP
were understood and solved in the case of Gaussian and sub-gaussian mea-
surements (see [12], [23] and [8]). When X1, . . . , Xn are independent log-
concave isotropic random vectors, these questions remained open and this is
one of our motivation for this article.

For an n×N matrix A and m ≤ N , the definition of δm(A/
√
n) implies

a uniform control of the norms of all sub-matrices of A/
√
n with n rows and

m columns. Passing to transposed matrices, it implies a uniform control of
|PIXi| over all I ⊂ {1, 2, · · · , N} of cardinality m and 1 ≤ i ≤ n. In order to
verify a necessary condition that for some m, δm(A/

√
n) is small with high

probability, one needs to get an upper estimate for sup{|PIX| : |I| = m}
valid with high probability.

The probabilistic inequality from [24]

P
(
|PIX| ≥ C t

√
m
)
≤ e−t

√
m (1.5)

valid for t ≥ 1, is optimal for each individual I, but it does not allow one
to get directly (by a union bound argument) a uniform estimate because the
probability estimate does not match the cardinality of the family of the I’s.
Thus, the first natural goal we address in this paper is to get uniform tail
estimates for some norms of log-concave random vectors.

This heuristic analysis points out to the main objective and novelty of the
present paper; namely the study of high-dimensional log-concave measures
and a deeper understanding of such measures and their convolutions via new
tail estimates for norms of sums of projections of log-concave random vectors.

To emphasize a uniform character of our tail estimates, for an integer
N ≥ 1, an N -dimensional random vector Z, an integer 1 ≤ m ≤ N , and
t ≥ 1, we consider the event

Ω(Z, t,m,N) =
{

sup
I⊂{1,...,N}

|I|=m

|PIZ| ≥ Ct
√
m log

(eN
m

)}
, (1.6)
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where C is a sufficiently large absolute constant. Note that the cut-off level
in this definition is of the order of the median of the supremum for the
exponential random vector (see e.g. Lemma 4.1 in [3]).

Recall that X,X1, . . . , Xn denote N -dimensional independent log-concave
isotropic random vectors, andA is the n×N matrix whose rows areX1, . . . , Xn.
A chain of main results of this paper provides estimates for P(Ω(Z, t,m,N))
in the cases when

(i) Z = X; and, more generally,

(ii) Z = Y is a weighted sum Y =
∑n

1 xiXi, where x = (xi)
n
1 ∈ Rn, with

control of the Euclidean and supremum norms of x,

(iii) a uniform version of (ii) in the form of tail estimates for operator norms
of sub-matrices of A.

Our first main theorem answers the question of uniform tail estimates for
projections of a log-concave random vector discussed above.

Theorem 1.1. Let X be an N-dimensional log-concave isotropic random
vector. For any 1 ≤ m ≤ N and t ≥ 1,

P
(

Ω(X, t,m,N)
)
≤ exp

(
− t

√
m log

(eN
m

)
/
√

log(em)
)
.

The proof of the theorem is based on tail estimates for order statistics
of isotropic log-concave vectors. By (X∗(i))i, we denote the non-increasing
rearrangement of (|X(i)|)i. Combining (1.5) with methods of [18] and the

formula sup I⊂{1,...,N}
|I|=m

|PIX| = (
∑m

i=1X
∗(i)2)

1/2
will complete the argument.

Let us also mention that further applications (in Section 4) of inequality
of this type require a stronger probability bound that involves a natural
parameter σX(p), defined in (3.3), determined by a “weak Lp” behavior of
the random vector X.

More generally, the next step provides tail estimates for Euclidean norms
of weighted sums of independent isotropic log-concave random vectors. Let
x = (xi)

n
1 ∈ Rn and set Y =

∑n
1 xiXi = A∗x. The key estimate used later,

Theorem 4.3, provides uniform estimates for the Euclidean norm of projec-

tions of Y . Namely, for every x ∈ Rn, P
(

Ω(Y, t,m,N)
)

is exponentially
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small with specific estimates depending on whether the ratio ‖x‖∞/|x| is
larger or smaller than 1/

√
m. Since precise formulations of probability es-

timates are rather convoluted we do not state them here and we refer the
reader to Section 4.

The last step of this chain of results estimating probabilities of (1.6) is
connected with the family of parameters Ak,m, with 1 ≤ k ≤ n and 1 ≤ m ≤
N , defined by

Ak,m = sup
J⊂{1,...,n}

|J|=k

sup
x∈Um

(∑
j∈J

|〈Xj, x〉|2
)1/2

= sup
J⊂{1,...,n}

|J|=k

sup
x∈Um

|PJAx|. (1.7)

That is, Ak,m is the maximal operator norm over all sub-matrices of A with
k rows and m columns (and for m = N it obviously coincides with (1.4)).

Finding bounds on deviation of Ak,m is one of our main goals. To develop
an intuition of this result we state it below in a slightly less technical form.
Full details are contained in Theorem 5.1.

Theorem 1.2. For any t ≥ 1 and n ≤ N we have

P
(
Ak,m ≥ Ctλ

)
≤ exp(−tλ/

√
log(3m)),

where λ =
√

log log(3m)
√
m log(eN/m) +

√
k log(en/k) and C is a universal

constant.

The threshold value λ is optimal, up to the factor of
√

log log(3m). As-
suming additionally unconditionality of the distributions of rows (or columns),
this factor can be removed to get a sharp estimate (see [3]).

We make several comments about the proof. Set Γ = A∗. Then

Ak,m = sup
I⊂{1,...,N}

|I|=m

sup
x∈Uk(Rn)

|PIΓx| = sup
I⊂{1,...,N}

|I|=m

sup
x∈Uk(Rn)

∣∣∣(∑ xiPIXi

)∣∣∣.
To bound Ak,m one has then to prove uniformity with respect to two families
of different character: one coming from the cardinality of the family {I ⊂
{1, . . . , N} : |I| = m}; and the other, from the complexity of Uk(Rn). This
leads us to distinguishing two cases, depending on the relation between k
and the quantity

k′ = inf{` ≥ 1: m log(eN/m) ≤ ` log(en/`)}.
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First, if k ≥ k′, we adjust the chaining argument similar to the one from [5]
to reduce the problem to the case k ≤ k′. In this step we use the uniform tail
estimate from Theorem 3.4 for the Euclidean norm of the family of vectors
{PIX : |I| = m}. Next, we use a different chain decomposition of x and
apply Theorem 4.3.

As already alluded to, an independent interest of this paper lies in upper
bounds for δm(A/

√
n) where A is our n × N random matrix. We presently

return to this subject to explain the connections.

The family Ak,m plays a very essential role in studies of the restricted
isometry constant, which in fact applies even in a more general setting.
Namely, for an arbitrary subset T ⊂ RN and 1 ≤ k ≤ n define the parameter
Ak(T ) by

Ak(T ) = sup
I⊂{1,...,n}

|I|=k

sup
y∈T

(∑
i∈I

|〈Xi, y〉|2
)1/2

. (1.8)

Thus, Ak,m = Ak(Um). The parameter Ak(T ) was studied in [22] by means
of Talagrand’s γ-functionals.

The following lemma reduces a concentration inequality to a deviation
inequality and hence is useful in studies of the RIP. It is based on an argument
of truncation similar to Bourgain’s approach presented earlier. Its proof will
be presented in Section 6.

Lemma 1.3. Let X1, . . . , Xn be independent isotropic random vectors in RN .
Let T ⊂ SN−1 be a finite set. Let 0 < θ < 1 and B ≥ 1. Then with probability
at least 1− |T | exp (−3θ2n/8B2) one has

sup
y∈T

∣∣∣∣∣ 1n
n∑
i=1

(|〈Xi, y〉|2 − E|〈Xi, y〉|2)

∣∣∣∣∣ ≤ θ +
1

n

(
Ak(T )2 + EAk(T )2

)
,

where k ≤ n is the largest integer satisfying k ≤ (Ak(T )/B)2.

In this paper, we focus on the compressive sensing setting where T is the
set of sparse vectors. The lemma above shows that after a suitable discretisa-
tion, estimating δm or checking the RIP, can be reduced to estimating Ak,m.
This generalizes naturally Bourgain’s approach explained above for m = N .
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Using the lemma, we can show that if 0 < θ < 1, B ≥ 1, and m ≤
N satisfy m log(CN/m) ≤ 3θ2n/16B2, then with probability at least 1 −
exp (−3θ2n/16B2) one has

δm(A/
√
n) ≤ θ +

1

n

(
A2
k,m + EA2

k,m

)
,

where k ≤ n is the largest integer satisfying k ≤ (Ak,m/B)2 (note that k is a
random variable).

Combining this with tail inequalities from Theorem 1.2 allows us to prove
the following result on the RIP of matrices with independent isotropic log-
concave rows.

Theorem 1.4. Let 0 < θ < 1, 1 ≤ n ≤ N . Let A be an n × N random
matrix with independent isotropic log-concave rows. There exists c(θ) > 0
such that δm(A/

√
n) ≤ θ with an overwhelming probability, whenever

m log2(2N/m) log log 3m ≤ c(θ)n.

The result is optimal, up to the factor log log 3m, as shown in [6]. As for
Theorem 5.1, assuming unconditionality of the distributions of the rows, this
factor can be removed (see [3]).

The paper is organized as follows. In the next section we collect the no-
tation and necessary preliminary tools concerning log-concave random vari-
ables. In Section 3, given an isotropic log-concave random vector X, we
present several uniform tail estimates for Euclidean norms of the whole fam-
ily of projections of X on coordinate subspaces of dimension m. As already
mentioned, these estimates are based on tail estimates for order statistics of
X. The main result, Theorem 3.4, provides a strong probability bound in
terms of the “weak Lp” parameter σX(p) defined in (3.3). The proofs of the
main technical results, Theorems 3.2 and 3.4, are given in Section 7. Section 4
provides tail estimates for Euclidean norms of projections of weighted sums
of independent isotropic log-concave random vectors. The proof of the main
Theorem 4.3 is a combination of Theorem 3.4 and one-dimensional Propo-
sition 4.3. In Section 5, we prove the result announced above on deviation
of Ak,m. Section 6 treats the Restricted Isometry Property and estimates of
δm(A/

√
n). The last Section 7 is devoted to the proofs of technical results of

Section 3.
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2 Notation and preliminaries

Let L be an origin symmetric convex compact body in Rd. It is the unit ball
of a norm that we denote by ‖ · ‖L. Let K ⊂ Rd. We say that a set Λ ⊂ K
is an ε-net of K with respect to the metric corresponding to L if

K ⊂
⋃
z∈Λ

(z + εL).

In other words, for every x ∈ K there exists z ∈ Λ such that ‖x − z‖L ≤ ε.
We will mostly use ε-nets in the case K = L. It is well known (and follows
by the standard volume argument) that for every symmetric convex compact
body K in Rd and every ε > 0 there exists an ε-net Λ of K with respect to
the metric corresponding to K, of cardinality not exceeding (1 + 2/ε)d. It is
also easy to see that Λ ⊂ K ⊂ (1− ε)−1 convΛ. In particular, for any convex
positively 1-homogenous function f one has

sup
x∈K

f(x) ≤ (1− ε)−1 sup
x∈Λ

f(x).

A random vector X in Rn is called isotropic if

E〈X, y〉 = 0, E |〈X, y〉|2 = |y|2 for all y ∈ Rn,

in other words, if X is centered and its covariance matrix EX ⊗ X is the
identity.

A random vectorX in Rn is called log-concave if for all compact nonempty
sets A,B ⊂ Rn and θ ∈ [0, 1], P(X ∈ θA + (1 − θ)B) ≥ P(X ∈ A)θP(X ∈
B)1−θ. By the result of Borell [9] a random vector X with full dimensional
support is log-concave if and only if it admits a log-concave density f , i.e.
such density for which

f(θx+ (1− θ)y) ≥ f(x)θf(y)1−θ for all x, y ∈ Rn, θ ∈ [0, 1].
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It is known that any affine image, in particular any projection, of a log-
concave random vector is log-concave. Moreover, if X and Y are independent
log-concave random vectors then so is X + Y (see [9, 14, 25]).

One important and simple model of a centered log-concave random vari-
able with variance 1 is the symmetric exponential random variable E which
has density f(t) = 2−1/2 exp(−

√
2|t|). In particular for every s > 0 we have

P(|E| ≥ s) = exp(−
√

2s).
Every centered log-concave random variable Z with variance 1 satisfies a

sub-exponential inequality:

for every s > 0, P(|Z| ≥ s) ≤ C exp(−s/C), (2.1)

where C ≥ 1 is an absolute constant (see [9]).

Definition 2.1. For a random variable Z we define the ψ1-norm by

‖Z‖ψ1 = inf {C > 0 : E exp (|Z|/C) ≤ 2}

and we say that Z is ψ1 with constant ψ, if ‖Z‖ψ1 ≤ ψ.

A consequence of (2.1) is that there exists an absolute constant C > 0
such that any centered log-concave random variable with variance 1 is ψ1

with constant C.
It is well known that the ψ1-norm of a random variable may be estimated

from growth of its moments. More precisely, if a random variable Z is such
that for any p ≥ 1, ‖Z‖p ≤ pK, for some K > 0, then ‖Z‖ψ1 ≤ cK where c
is an absolute constant.

By | · | we denote the standard Euclidean norm on Rn as well as the
cardinality of a set. By 〈·, ·〉 we denote the standard inner product on Rn.
We denote by Bn

2 and Sn−1 the standard Euclidean unit ball and the standard
unit sphere in Rn.

A vector x ∈ Rn is called sparse or k-sparse for some 1 ≤ k ≤ n if the
cardinality of its support satisfies |supp x| ≤ k.

We let
Uk = Uk(Rn) := {x ∈ Sn−1 : x is k-sparse}. (2.2)

For any subset I ⊂ {1, . . . , N} let PI denote the orthogonal projection
on the coordinate subspace RI := {y ∈ RN : supp y ⊂ I}.

We will use the letters C,C0, C1, . . ., c, c0, c1, . . . to denote positive abso-
lute constants whose values may differ at each occurrence.

11



3 New bounds for log-concave vectors

In this section we state several new estimates for Euclidean norms of log-
concave random vectors. Proofs of Theorems 3.2 and 3.4 are given in Sec-
tion 7.

We start with the following theorem, which was essentially proved by
Paouris in [24]. Indeed, it is a consequence of Theorem 8.2 combined with
Lemma 3.9 in that paper, after checking that Lemma 3.9 holds not only for
convex bodies but for log-concave measures as well.

Theorem 3.1. For any N-dimensional log-concave random vector X and
any p ≥ 1 we have

(E|X|p)1/p ≤ C
(

(E|X|2)1/2 + sup
t∈SN−1

(E|〈t,X〉|p)1/p
)
, (3.1)

where C is an absolute constant.

Remarks. 1. It is well known (cf. [9]) that if Z is a log-concave random
variable then

(E|Z|p)1/p ≤ C
p

q
(E|Z|q)1/q for p ≥ q ≥ 2.

If Z is symmetric one may in fact take C = 1 (cf. Proposition 3.8 in [20])
and if Z is centered then denoting by Z ′ an independent copy of Z we get
for p ≥ q ≥ 2,

(E|Z|p)1/p ≤ (E|Z − Z ′|p)1/p ≤ p

q
(E|Z − Z ′|q)1/q ≤ 2

p

q
(E|Z|q)1/q.

Therefore, if X ∈ RN is isotropic log-concave, then

sup
t∈SN−1

(E|〈t,X〉|p)1/p ≤ p sup
t∈SN−1

(E|〈t,X〉|2)1/2 = p.

Also note that (E|X|2)1/2 =
√
N . Combining these estimates together with

inequality (3.1), we get that (E|X|p)1/p ≤ C(
√
N + p). Using Chebyshev’s,

inequality we conclude that there exists C > 0 such that for every isotropic
log-concave random vector X ∈ RN and every s ≥ 1,

P
(
|X| ≥ C s

√
N
)
≤ e−s

√
N (3.2)
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which is Theorem 1.1 from [24].

2. It is well known and it follows from [9] that for any p ≥ 1, (E|X|2p)1/2p ≤
C(E|X|p)1/p, where C is an absolute constant. From the comparison between
the first and second moments it is clear that inequality (3.1) is an equivalence.
Moreover, there exists C > 0 such that

P
(
|X| ≥ C

(
(E|X|2)1/2 + sup

t∈SN−1

(E|〈t,X〉|p)1/p
))

≤ e−p

and

P
(
|X| ≥ 1

C

(
(E|X|2)1/2 + sup

t∈SN−1

(E|〈t,X〉|p)1/p
))

≥ min
{ 1

C
, e−p

}
.

The upper bound follows trivially from Chebyshev’s inequality. The lower
bound is a consequence of Paley-Zygmund’s inequality and comparison be-
tween the p-th and (2p)-th moments of |X|.
3. Since, for any Euclidean norm ‖ · ‖ on RN , there exists a linear
map T such that ‖x‖ = |Tx| and the class of log-concave random vectors
is closed under linear transformations, Theorem 3.1 implies that for any N -
dimensional log-concave vector X, any Euclidean norm ‖·‖ on RN and p ≥ 1
we have

(E‖X‖p)1/p ≤ C
(

(E‖X‖2)1/2 + sup
‖t‖∗≤1

(E|〈t,X〉|p)1/p
)
,

where (RN , ‖·‖∗) is the dual space to (RN , ‖·‖). It is an open problem whether
such an inequality holds for arbitrary norms, see [19] for a discussion of this
question and for related results.

We now introduce our main technical notation. For a random vector
X = (X(1), . . . , X(N)) in RN , p ≥ 1 and t > 0 consider the functions

σX(p) = sup
t∈SN−1

(E|〈t,X〉|p)1/p (3.3)

and

NX(t) =
N∑
i=1

1{X(i)≥t}.
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That is, NX(t) is equal to the number of coordinates of X larger than or
equal to t. Note that σX(·) is an increasing function and denote its inverse
by σ−1

X , i.e.,
σ−1
X (s) = sup{t : σX(t) ≤ s}.

Remark 1 following Theorem 3.1 implies that for isotropic vectors X,

∀t ≥ 1, p ≥ 2 σX(tp) ≤ 2tσX(p) and σX(p) ≤ p, (3.4)

hence

∀t ≥ 1, s ≥ 1 σ−1
X (2ts) ≥ tσ−1

X (s) and ∀p ≥ 2 σ−1
X (p) ≥ p. (3.5)

We also denote a non-increasing rearrangement of |X(1)|, . . . , |X(N)| by
X∗(1) ≥ X∗(2) ≥ . . . ≥ X∗(N).

One of the main technical tools of this paper says:

Theorem 3.2. For any N-dimensional log-concave isotropic random vector

X, p ≥ 2 and t ≥ C log
(
Nt2/σ2

X(p)
)

we have

E(t2NX(t))p ≤ (CσX(p))2p,

where C is an absolute positive constant.

We apply Theorem 3.2 to obtain probability estimates on order statistics
X∗(i)’s.

Theorem 3.3. For any N-dimensional log-concave isotropic random vector
X, any 1 ≤ ` ≤ N and t ≥ C log(eN/`),

P(X∗(`) ≥ t) ≤ exp
(
− σ−1

X

( 1

C
t
√
`
))
,

where C is an absolute positive constant.

Proof. Observe that σ−X(p) = σX(p) and that X∗(`) ≥ t implies that
NX(t) ≥ `/2 or N−X(t) ≥ `/2. So by Chebyshev’s inequality and Theo-
rem 3.2,

P(X∗(`) ≥ t) ≤
(2

`

)p
(ENX(t)p + EN−X(t)p) ≤

(C ′σX(p)

t
√
`

)2p

provided that t ≥ C ′′ log(Nt2/σ2
X(p)), where C ′, C ′′ are absolute positive

constants. To conclude the proof it is enough to take p = σ−1
X (t

√
`/(C ′e)) and

to note that the restriction on t follows by the condition t ≥ C log(eN/`).
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We can now state one of the main results of this paper.

Theorem 3.4. Let X be an isotropic log-concave random vector in RN and
m ≤ N . For any t ≥ 1,

P

(
sup

I⊂{1,...,N}
|I|=m

|PIX| ≥ Ct
√
m log

(eN
m

))
≤ exp

(
−σ−1

X

(
t
√
m log

(
eN
m

)√
log(em/m0)

))
,

where C is an absolute positive constant and

m0 = m0(X, t) = sup
{
k ≤ m : k log

(eN
k

)
≤ σ−1

X

(
t
√
m log

(eN
m

))}
.

Remark. We believe that the probability estimate should not contain any
logarithmic term in the denominator, but it seems that our methods fail to
show it. However, it is not crucial in the sequel.

We prove Theorems 3.2 and 3.4 in Section 7.

Since by (3.4) σX(p) ≤ p, Theorem 1.1 is an immediate consequence of
Theorem 3.4.

4 Tail estimates for projections of sums of

log-concave random vectors

We shall now study consequences that the results of Section 3 have for
tail estimates for Euclidean norms of projections of sums of log-concave
random vectors. Namely, we investigate the behavior of a random vector
Y = Yx =

∑n
i=1 xiXi, where X1, . . . , Xn are independent isotropic log-

concave random vectors in RN and x = (xi)
n
1 ∈ Rn is a fixed vector. We

provide uniform bounds on projections of such a vector. We start with the
following proposition.

Proposition 4.1. Let X1, . . . , Xn be independent isotropic log-concave ran-
dom vectors in RN , x = (xi)

n
1 ∈ Rn, and Y =

∑n
i=1 xiXi. Then for every

p ≥ 1 one has

σY (p) = sup
t∈SN−1

(E|〈t, Y 〉|p)1/p ≤ C(
√
p|x|+ p‖x‖∞),

where C is an absolute positive constant.
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Proof. For every t ∈ SN−1 we have

〈t, Y 〉 =
n∑
i=1

xi〈t,Xi〉.

Let Ei be independent symmetric exponential random variables with variance
1. Let t ∈ SN−1 and x = (xi)

n
1 ∈ Rn. The variables Zi = 〈t,Xi〉 are one-

dimensional centered log-concave with variance 1, therefore by (2.1) for every
s > 0 one has

P (|Zi| ≥ s) ≤ C0 P (|Ei| ≥ s/C0) .

Let (εi) be independent Bernoulli ±1 random variables, independent also
from (Zi). A classical symmetrization argument and Lemma 4.6 of [21] imply
that there exists C such that

(E|〈t, Y 〉|p)1/p ≤ 2
(
E
∣∣∣ n∑
i=1

xiεiZi

∣∣∣p)1/p

≤ C
(
E
∣∣∣ n∑
i=1

xiEi

∣∣∣p)1/p

.

The well-known estimate (which follows e.g. from Theorem 1 in [16])(
E
∣∣∣ n∑
i=1

xiEi

∣∣∣p)1/p

≤ C(
√
p|x|+ p‖x‖∞)

concludes the proof.

Corollary 4.2. Let X1, . . . , Xn, x and Y be as in Proposition 4.1 and 1 ≤
` ≤ N . Then for any t ≥ C|x| log

(
eN
`

)
one has

P(Y ∗(`) ≥ t) ≤ exp

(
− 1

C
min

{
t2`

|x|2
,
t
√
`

‖x‖∞

})
,

where C is an absolute positive constant.

Proof. The vector Z = Y/|x| is isotropic and log-concave. Moreover by
Proposition 4.1 we have

σZ(p) =
1

|x|
σY (p) ≤ C1

(√
p+ p

‖x‖∞
|x|

)
.
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Therefore for every t ≥ C1,

σ−1
Z (t) ≥ 1

C2

min
{
t2,

|x|
‖x‖∞

t
}

and by Theorem 3.3 we get for every t ≥ C3|x| log
(
eN
`

)
,

P(Y ∗(`) ≥ t) = P
(
Z∗(`) ≥ t

|x|

)
≤ exp

(
− σ−1

Z

( t
√
`

C4|x|

))
≤ exp

(
− 1

C
min

{ t2`
|x|2

,
t
√
`

‖x‖∞

})
.

The next theorem provides uniform estimates for the Euclidean norm of
projections of sums Yx, considered above, in terms of the Euclidean and `∞
norms of the vector x ∈ Rn.

Theorem 4.3. Let X1, . . . , Xn be independent isotropic log-concave random
vectors in RN , x = (xi)

n
1 ∈ Rn, and Y =

∑n
i=1 xiXi. Assume that |x| ≤ 1,

‖x‖∞ ≤ b ≤ 1 and let 1 ≤ m ≤ N .

i) If b ≥ 1√
m

then for any t ≥ 1,

P

(
sup

I⊂{1,...,N}
|I|=m

|PIY | ≥ Ct
√
m log

(eN
m

))
≤ exp

(
−
t
√
m log

(
eN
m

)
b
√

log(e2b2m)

)
;

ii) if b ≤ 1√
m

then for any t ≥ 1,

P

(
sup

I⊂{1,...,N}
|I|=m

|PIY | ≥ Ct
√
m log

(eN
m

))

≤ exp
(
−min

{
t2m log2

(eN
m

)
,
t

b

√
m log

(eN
m

)})
,

where C is an absolute positive constant.

Remark. Basically the same proof as the one given below shows that in i)
the term

√
log(e2b2m) may be replaced by

√
log(e2b2m/t2) and the condition

b ≥ 1√
m

by b ≥ t√
m

. We omit the details.
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The proof of Theorem 4.3 is based on Theorem 3.4. Let us first note
that we may assume that vector Y is isotropic, i.e. |x| = 1. Indeed, we
may find vector y = (y1, . . . , y`) such that ‖y‖∞ ≤ b and |x|2 + |y|2 = 1 and
take Y ′ =

∑`
i=1 yiGi, where Gi are i.i.d. canonical N -dimensional Gaussian

vectors, independent of vectors Xi’s. Then the vector Y + Y ′ is isotropic,
satisfies the assumptions of the theorem and for any u > 0,

P
(

sup
I⊂{1,...,N}

|I|=m

|PIY | ≥ u

)
≤ 2P

(
sup

I⊂{1,...,N}
|I|=m

|PI(Y + Y ′)| ≥ u

)
.

Similarly as in the proof of Corollary 4.2, for t ≥ C we have

σ−1
Y (t) ≥ 1

C
min

{
t2,

t

‖x‖∞

}
. (4.1)

This allows us to estimate the quantity m0 in Theorem 3.4. For 1/
√
m ≤

b ≤ 1 define m1 = m1(b) > 0 by the equation

m1(b) log

(
eN

m1(b)

)
=

√
m

b
log
(eN
m

)
. (4.2)

One may show that m1(b) ∼
√
m
b

log( eN
m

)/ log( eNb√
m

), we will however need
only the following simple estimate.

Lemma 4.4. If 1/
√
m ≤ b ≤ 1 then log(m/m1(b)) ≤ 2 log(eb

√
m).

Proof. Let f(z) = z log(eN/z). Using 1/
√
m ≤ b we observe

f
( 1

e2b2

)
=

1

e2b2

(
log
(eN
m

)
+ log(me2b2)

)
≤
√
m

e2b
log
(eN
m

)
+

1

e2b2
√
meb

≤
√
m

b
log
(eN
m

)( 1

e2
+

1

e

)
<

√
m

b
log
(eN
m

)
= f(m1(b)).

Since f increases on (0, N ], we obtain m1(b) ≥ (eb)−2, which implies the
result.

Proof of Theorem 4.3. As we noticed after remark following Theorem 4.3,
without loss of generality, we may assume that |x| = 1, that is, Y is isotropic.

i) Assume b ≥ 1/
√
m. By (4.1) for every t ≥ C/(

√
m log(eN/m)) we have

σ−1
Y

(
t
√
m log

(eN
m

))
≥ t

Cb

√
m log

(eN
m

)
. (4.3)
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By (4.2), it follows that for every t ≥ |x| = 1,

m1(b) log
( eN

m1(b)

)
≤ σ−1

Y

(
Ct
√
m log

(eN
m

))
.

By the definition of m0, given in Theorem 3.4, this implies that m0(Y,Ct) ≥
bm1(b)c, and sincem0(Y,Ct) ≥ 1 we getm0(Y,Ct) ≥ m1(b)/2. By Lemma 4.4
this yields log(em/m0(Y,Ct)) ≤ 2 + 2 log(eb

√
m) ≤ 4 log(eb

√
m).

Writing t = t′
√

2 log(e2b2m) and applying (4.3) we obtain

σ−1
Y

t√m log
(
eN
m

)√
log em

m0(Y,Ct)

 ≥ σ−1
Y

(
t′
√
m log

(
eN

m

))
≥ t′

Cb

√
m log

(eN
m

)
.

Theorem 3.4 applied to Ct instead of t implies the result (one needs to adjust
absolute constants).

ii) Assume b ≤ 1/
√
m. By (4.1) for every t ≥ C|x| we have

σ−1
Y

(
t
√
m log

(eN
m

))
≥ 1

C
min

{
t2m log2

(eN
m

)
,
t

b

√
m log

(eN
m

)}
≥ t

C
m log

(eN
m

)
,

which by the definition of m0 implies that m0(Y,Ct) = m. As in part i),
Theorem 3.4 implies the result.

5 Uniform bounds for norms of submatrices

In this section, we establish uniform estimates for norms of submatrices of a
random matrix, namely for the quantity Ak,m defined below.

Fix integers n and N . Let X1, . . . , Xn ∈ RN be independent log-concave
isotropic random vectors. Let A be the n × N random matrix with rows
X1, . . . , Xn.

For any subsets J ⊂ {1, . . . , n} and I ⊂ {1, . . . , N}, by A(J, I) we denote
the submatrix of A consisting of the rows indexed by elements from J and
the columns indexed by elements from I.

Let k ≤ n and m ≤ N . We define the parameter Ak,m by

Ak,m = sup ‖A(J, I)‖`m2 →`k2
, (5.1)
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where the supremum is taken over all subsets J ⊂ {1, . . . , n} and I ⊂
{1, . . . , N} with cardinalities |J | = k, |I| = m. That is, Ak,m is the max-
imal operator norm of a submatrix of A with k rows and m columns.

It is often more convenient to work with matrices with log-concave columns
rather than rows, therefore, in this section, we fix the notation

Γ = A∗.

Thus, Γ is an N × n matrix with columns X1, . . . , Xn. In particular, given
x ∈ Rn the sum Y =

∑n
i=1 xiXi considered in Section 4 satisfies Y = Γx.

Clearly,

Γ(I, J) =
(
A(J, I)

)∗
so that, recalling that Uk was defined in (2.2), we have

Ak,m = Γm,k = sup{|PIΓx| : I ⊂ {1, . . . , N}, |I| = m, x ∈ Uk}. (5.2)

Define λk,m and λm by

λk,m =
√

log log(3m)
√
m log

(emax{N, n}
m

)
+
√
k log

(en
k

)
, (5.3)

and

λm =

√
log log(3m)

√
m√

log(3m)
log
(emax{N, n}

m

)
. (5.4)

The following theorem is our main result providing estimates for the op-
erator norms of submatrices of A (and of Γ). Its first part in the case n ≤ N
was stated as Theorem 1.2.

Theorem 5.1. There exists a positive absolute constant C such that for any
positive integers n,N , k ≤ n, m ≤ N , for any n × N random matrix A,
whose rows X1, . . . , Xn are independent log-concave isotropic random vectors
in RN , and for any t ≥ 1 one has

P (Ak,m ≥ Ctλk,m) ≤ exp

(
− tλk,m√

log(3m)

)
.

In particular, there exists an absolute positive constant C1 such that for every
t ≥ 1 and for every m ≤ N one has

P (∃k Ak,m ≥ C1tλk,m) ≤ exp (−tλm) . (5.5)
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First we show the “in particular” part, which is easy.

Proof of inequality (5.5). The main part of the theorem implies that for every
t ≥ 1

pm := P (∃k Ak,m ≥ Ctλk,m) ≤
n∑
k=1

exp
(
−tλk,m/

√
log(3m)

)
.

Note that

λk,m/
√

log(3m) ≥ λm ≥ cm1/4 log

(
emax{n,N}

m

)
≥ c

4
log(en),

where c is an absolute positive constant. Therefore for t ≥ 8/c one has

pm ≤ n exp (−tλm) ≤ exp (−(t/2) λm) .

The result follows by writing t = (8/c)t′ and by adjusting absolute constants.

Now we prove the main part of the theorem. Its proof consists of two
steps that depend on the relation between m and k. Step I is applicable if

m log
(
eN
m

)
< k log

(
en
k

)
, and it reduces this case to the second complemen-

tary case m log
(
eN
m

)
≥ k log

(
en
k

)
. The latter case will then be treated in

Step II. To make this reduction we define k′ as follows

k′ := inf
{

1 ≤ k̃ ≤ n : k̃ log
(en
k̃

)
≥ m log

(eN
m

)}
(5.6)

(of course if the set in (5.6) is empty, we immediately pass to Step II).

5.1 Step I: k log
(

en
k

)
> m log

(
eN
m

)
, in particular k ≥ k′.

Proposition 5.2. Let n,N , k ≤ n, m ≤ N be positive integers. Let A be an
n × N random matrix, whose rows X1, . . . , Xn are independent log-concave
isotropic random vectors in RN . Assume that k ≥ k′. Then for any t ≥ 1
we have

sup
I⊆{1,...,N}

|I|=m

sup
x∈Uk

|PIΓx| ≤ C
(

sup
I⊆{1,...,N}

|I|=m

sup
x∈Uk′

|PIΓx|

+ t
√
m log

(eN
m

)
+ t

√
k log

(en
k

))
(5.7)
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with probability at least

1−n exp
(
−t

√
m log(eN/m) +

√
k log(en/k)√

log em

)
−exp

(
−tk′ log

(en
k′

))
, (5.8)

where C is a positive absolute constant.

The proof of Proposition 5.2 is based on the ideas from [5]. We start it
with the following fact.

Proposition 5.3. Let (Xi)i≤n be independent centered random vectors in
RN and ψ > 0 be such that

E exp
( |〈Xi, θ〉|

ψ

)
≤ 2 for all i ≤ n, θ ∈ SN−1.

Then for 1 ≤ p ≤ n and t ≥ 1 with probability at least 1−exp(−tp log(en/p))
the following holds:
for all y, z ∈ Up and all E,F ⊂ {1, . . . , n} with E ∩ F = ∅,∣∣∣〈∑

i∈E

yiXi,
∑
j∈F

zjXj

〉∣∣∣ ≤ 20tp log
(en
p

)
ψmax

i∈E
|yi|
(∑
j∈F

z2
j

)1/2

Γp,

where Γp := maxx∈Up |Γx| = maxx∈Up |
∑n

i=1 xiXi|.

Proof. In this proof we use for simplicity the notation [n] = {1, . . . , n}. First
let us fix sets E,F ⊂ [n] with E∩F = ∅. Since we consider y, z ∈ Up, without
loss of generality we may assume that |E|, |F | ≤ p. For z ∈ Up denote

YF (z) =
∑
j∈F

zjXj and ZF (z) =
YF (z)

|YF (z)|

(if YF (z) = 0 we set ZF (z) = 0). For any y, z ∈ Up we have∣∣∣〈∑
i∈E

yiXi,
∑
j∈F

zjXj

〉∣∣∣ ≤∑
i∈E

|yi|
∣∣∣〈Xi, YF (z)

〉∣∣∣
≤ max

i∈E
|yi| |YF (z)|

∑
i∈E

∣∣∣〈Xi, ZF (z)
〉∣∣∣.
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The random vector ZF (z) is independent from the vectors Xi’s, i ∈ E, more-
over |ZF (z)| ≤ 1 and |YF (z)| ≤ (

∑
j∈F z

2
j )

1/2Γp. Therefore, for any z ∈ Up
and u > 0,

P
(
∃y∈Up

∣∣∣〈∑
i∈E

yiXi,
∑
j∈F

zjXj

〉∣∣∣ > uψmax
i∈E

|yi|
(∑
j∈F

z2
j

)1/2

Γp

)
≤ P

(∑
i∈E

∣∣∣〈Xi, ZF (z)
〉∣∣∣ ≥ uψ

)
≤ e−uE exp

(∑
i∈E

|〈Xi, ZF (z)〉|
ψ

)
≤ 2|E|e−u ≤ 2pe−u.

Let NF denote a 1/2-net in the Euclidean metric in Bn
2 ∩ RF of cardinality

at most 5|F | ≤ 5p. We have

pE,F (u)

:= P
(
∃y∈Up∃z∈Up

∣∣∣〈∑
i∈E

yiXi,
∑
j∈F

zjXj

〉∣∣∣ > 2uψmax
i∈E

|yi|
(∑
j∈F

z2
j

)1/2

Γp

)
≤ P

(
∃y∈Up∃z∈NF

∣∣∣〈∑
i∈E

yiXi,
∑
j∈F

zjXj

〉∣∣∣ > uψmax
i∈E

|yi|
(∑
j∈F

z2
j

)1/2

Γp

)
≤
∑
z∈NF

P
(
∃y∈Up

∣∣∣〈∑
i∈E

yiXi,
∑
j∈F

zjXj

〉∣∣∣ > uψmax
i∈E

|yi|
(∑
j∈F

z2
j

)1/2

Γp

)
≤ 10pe−u.

Hence,

P
(
∃y∈Up∃z∈Up∃E,F⊂[n],|E|,|F |≤p,E∩F=∅∣∣∣〈∑

i∈E

yiXi,
∑
j∈F

zjXj

〉∣∣∣ > 2uψmax
i∈E

|yi|
(∑
j∈F

z2
j

)1/2

Γp

)
≤

∑
E,F⊂[n],|E|,|F |≤p,E∩F=∅

pE,F (u) ≤
(
n

p

)(
n

p

)
10pe−u ≤ e−u/2,

provided that u ≥ 10p log(ne/p). This implies the desired result.

Before formulating the next proposition we recall the following elementary
lemma (see e.g. Lemma 3.2 in [5]).
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Lemma 5.4. Let x1, . . . , xn ∈ RN , then∑
i6=j

〈xi, xj〉 ≤ 4 max
E⊂{1,...,n}

∑
i∈E

∑
j∈Ec

〈xi, xj〉.

Proposition 5.5. Let (Xi)i≤n be independent centered random vectors in
RN and ψ > 0 be such that

E exp
( |〈Xi, θ〉|

ψ

)
≤ 2 for all i ≤ n, θ ∈ SN−1.

Let p ≤ n and t ≥ 1. Then with probability at least 1− exp(−tp ln(en/p)) for
all x ∈ Up, ∣∣∣ n∑

i=1

xiXi

∣∣∣ ≤ C
(
|x|max

i
|Xi|+ tp log

(en
p

)
ψ‖x‖∞

)
,

where C is an absolute constant.

Proof. As in the previous proof, we set [n] = {1, . . . , n}. Fix α > 0 and
define

Γp(α) = sup
{∣∣∣ n∑

i=1

xiXi

∣∣∣ : x ∈ Up, ‖x‖∞ ≤ α
}
.

For E ⊂ [n] with |E| ≤ p let NE(α) denote a 1/2-net in RE ∩ Bn
2 ∩ αB∞

with respect to the metric defined by Bn
2 ∩ αB∞. We may choose NE(α) of

cardinality 5|E| ≤ 5p. Let N(α) =
⋃
|E|=pNE(α), then

|N(α)| ≤
(

5en

p

)p
and Γp(α) ≤ 2 sup

x∈N(α)

∣∣∣ n∑
i=1

xiXi

∣∣∣. (5.9)

Fix E ⊂ [n] with |E| = p and x ∈ NE(α). We have∣∣∣ n∑
i=1

xiXi

∣∣∣2 =
n∑
i=1

x2
i |Xi|2 +

∑
i6=j

〈xiXi, xjXj〉.

Therefore, Lemma 5.4 gives∣∣∣ n∑
i=1

xiXi

∣∣∣2 ≤ max
i
|Xi|2 + 4 sup

F⊂E

∣∣∣〈∑
i∈F

xiXi,
∑
j∈E\F

xjXj

〉∣∣∣.
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Note that for any F ⊂ E, maxi∈F |xi| ≤ α and |
∑

j∈E\F xjXj| ≤ Γp(α),
hence as in the proof of Proposition 5.3 we can show that

P
(∣∣∣〈∑

i∈F

xiXi,
∑
j∈E\F

xjXj

〉∣∣∣ > uψαΓp(α)
)
< 2|F |e−u.

Thus,

P
(∣∣∣ n∑

i=1

xiXi

∣∣∣2 > max
i
|Xi|2 + 4uψαΓp(α)

)
≤
∑
F⊂E

2|F |e−u ≤ 3|E|e−u.

This together with (5.9) and the union bound implies

P
(

Γp(α)2 > 4 max
i
|Xi|2 + 16uψαΓp(α)

)
≤

∑
x∈N(α)

3pe−u ≤
(15en

p

)p
e−u.

Hence

P
(

Γp(α) > 2
√

2 max
i
|Xi|+ 32uψα

)
≤
(15en

p

)p
e−u. (5.10)

Using that Γp(α) ≥ Γp(β) for α ≥ β > 0 we obtain for every ` ≥ 1,

P
(
∃x∈Up

∣∣∣ n∑
i=1

xiXi

∣∣∣ > 2
√

2 max
i
|Xi|+ uψmax{‖x‖∞, 2−`}

)
= P

(
∃2−`≤α≤1 Γp(α) > 2

√
2 max

i
|Xi|+ uψα

)
≤ P

(
∃0≤j≤`−1 Γp(2

−j) > 2
√

2 max
i
|Xi|+

1

2
uψ2−j

)
≤

`−1∑
j=0

P
(

Γp(2
−j) > 2

√
2 max

i
|Xi|+

1

2
uψ2−j

)
≤ `
(15en

p

)p
e−u/64,

where the last inequality follows by (5.10). Taking ` ≈ log p (so that ‖x‖∞ ≥
2−`|x|) and u = Ctp log(en/p), we obtain the result.

Proof of Proposition 5.2. For any I ⊂ {1, . . . , N} and any i ≤ n the vector
PIXi is isotropic and log-concave in RI , hence it satisfies the ψ1 bound with
a universal constant.
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We fix t ≥ 10. Let s ≥ 1 be the smallest integer such that k2−s < k′. Set
kµ = bk21−µc − bk2−µc for µ = 1, . . . , s and ks+1 = bk2−sc. Then

max{1, bk2−µc} ≤ kµ ≤ k21−µ, ks+1 ≤ k′, and
s+1∑
µ=1

kµ = k. (5.11)

Consider an arbitrary vector x = (x(i))i ∈ Uk and let n1, . . . , nk be pair-
wise distinct integers such that |x(n1)| ≤ |x(n2)| ≤ . . . ≤ |x(nk)| and x(i) = 0
for i /∈ {n1, . . . , nk}. For µ = 1, . . . , s + 1 let Fµ = {ni}jµ<i≤jµ+1 , where
jµ =

∑
r<µ kr (j1 = 0). Let xFµ be the coordinate projection of x onto RFµ .

Note that for each µ ≤ s we have

|xFµ| ≤ 1 and ‖xFµ‖∞ ≤ 1/
√
k − jµ+1 + 1 ≤

√
2µ/k. (5.12)

The equality x =
∑s+1

µ=1 xFµ yields that for every I ⊆ {1, . . . , N} of cardi-
nality m,

|PIΓx| ≤ |PIΓxFs+1 |+
∣∣∣ s∑
µ=1

PIΓxFµ

∣∣∣ ≤ sup
I⊆{1,...,N}

|I|=m

sup
x∈Uk′

|PIΓx|+
∣∣∣ s∑
µ=1

PIΓxFµ

∣∣∣,
where in the second inequality we used that ks+1 ≤ k′.

Taking the suprema over I of cardinality m and x ∈ Uk we obtain

Ak,m = sup
I⊆{1,...,N}

|I|=m

sup
x∈Uk

|PIΓx| ≤ sup
I⊆{1,...,N}

|I|=m

sup
x∈Uk′

|PIΓx|+ sup
I⊆{1,...,N}

|I|=m

sup
x∈Uk

∣∣∣ s∑
µ=1

PIΓxFµ

∣∣∣.
(5.13)

Note that∣∣∣ s∑
µ=1

PIΓxFµ

∣∣∣2 =
s∑

µ=1

|PIΓxFµ|2 + 2
s−1∑
µ=1

〈PIΓxFµ ,
s∑

ν=µ+1

PIΓxFν 〉. (5.14)

We are going to use Proposition 5.5 to estimate the first summand and
Proposition 5.3 to estimate the second one. First note that by the definition
of k′ and s we have(

N

m

)
≤
(
eN

m

)m
≤ exp

(
k′ log

en

k′

)
and

k

k′
< 2s ≤ 2k

k′
≤ 2n

k′
.
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Hence, using the definition of kµ’s, we observe that for t ≥ 10 we have(
N

m

) s∑
µ=1

exp
(
− tkµ log

(en
kµ

))
≤ s exp

(
k′ log

en

k′

)
exp

(
− tks log

(en
ks

))
≤ 1

2
exp

(
− tk′

2
log
(en
k′

))
.

Since xFµ ∈ Ukµ for every x ∈ Uk and µ = 1, . . . , s, the union bound and
Proposition 5.5 imply that with probability at least

1−
s∑

µ=1

(
N

m

)
exp

(
− tkµ log

(en
kµ

))
≥ 1− 1

2
exp

(
− tk′

2
log
(en
k′

))
,

for every x ∈ Uk, every I of cardinality m, and every µ ∈ {1, . . . , s} one has

|PIΓxFµ| ≤ C
(
|xFµ|max

i
|PIXi|+ tkµ log

(en
kµ

)√2µ

k

)
, (5.15)

where C is an absolute constant.
Similarly, by Proposition 5.3, with probability at least

1− 1

2
exp

(
− tk′

2
log
(en
k′

))
,

for every x ∈ Uk, every I of cardinality m and every µ ∈ {1, . . . , s} one has

〈PIΓxFµ ,
s∑

ν=µ+1

PIΓxFν 〉 ≤ Ctkµ log
(en
kµ

)√2µ

k
Ak,m, (5.16)

where we have used that
∑s

ν=µ+1 xν ∈ Ukµ ,
∑

ν |xν |2 ≤ 1, and (5.12).
Using (5.13) – (5.16), we conclude that there exists an absolute constant

C1 > 0 such that with probability at least 1− exp(−(tk′/2) log(en/k′)),

A2
k,m ≤ C

(
sup

I⊆{1,...,N}
|I|=m

sup
x∈Uk′

|PIΓx|2 +
s∑

µ=1

|xFµ|2 max
i

max
I⊆{1,...,N}

|I|=m

|PIXi|2

+ t2
s∑

µ=1

k

2µ
log2

(en2µ

k

)
+ t

s∑
µ=1

√
k

2µ
log
(en2µ

k

)
Ak,m

)
≤ C1

(
sup

I⊆{1,...,N}
|I|=m

sup
x∈Uk′

|PIΓx|2 + max
i

max
I⊆{1,...,N}

|I|=m

|PIXi|2

+ t2k log2
(en
k

)
+ t

√
k log

(en
k

)
Ak,m

)
.

27



Thus, with the same probability

Ak,m ≤ C2

(
sup

I⊆{1,...,N}
|I|=m

sup
x∈Uk′

|PIΓx|+ max
i

max
I⊆{1,...,N}

|I|=m

|PIXi|+ t
√
k log

(en
k

))
,

where C2 > 0 is an absolute constant.
But by Theorem 1.1 and the union bound we have for every t ≥ 1,

max
i

max
I⊆{1,...,N}

|I|=m

|PIXi| ≤ C3

(
t
√
m log(eN/m) + t

√
k log(en/k)

)
,

with probability larger than or equal to

p0 := 1− n exp
(
− t

√
m log(eN/m) +

√
k log(en/k)√

log em

)
(we added the term depending on k to get better probability, we may do
it by adjusting t). This proves the result for t ≥ 10 with probability
p0 − exp(−(tk′/2) log(en/k′)). Passing to t0 = t/20 and adjusting absolute
constants, we complete the proof.

5.2 Step II: k log
(

en
k

)
≤ m log

(
eN
m

)
, in particular k ≤ k′.

In this case, we have to be a little bit more careful than we were in the
previous case with the choice of nets. We will need the following lemma, in
which Ũk denotes the set of k-sparse vectors of the Euclidean norm at most
one.

Lemma 5.6. Suppose that k ≤ n, k1, k2, . . . , ks are positive integers such
that k1 + . . . + ks ≥ k and ks+1 = 1. We may then find a finite subset N of
3
2
Ũk satisfying the following.

i) For any x ∈ Uk there exists y ∈ N such that x− y ∈ 1
2
Ũk.

ii) Any x ∈ N may be represented in the form x = π1(x) + . . . + πs(x),
where vectors π1(x), . . . , πs(x) have disjoint supports, |supp (πi(x))| ≤ ki for
i = 1, . . . , s,

s∑
i=1

ki+1‖πi(x)‖2
∞ ≤ 4

and

|πi(N )| = |{πi(x) : x ∈ N}| ≤
(en
ki

)3ki

for i = 1, . . . , s.

28



Proof. First note that we can assume that k1 + k2 + . . . + ks = k. Indeed,
otherwise denote by j the largest integer such that kj + kj+1 + . . .+ ks ≥ k.
If j = s then set k̃j = k, if j < s then set k̃i = ki for j < i ≤ s, k̃j =
k− kj+1 − kj+2 − . . .− ks, πi(x) = 0 for i < j and repeat the proof below for
the sequence k̃j, k̃j+1, . . . , k̃s, k̃s+1, where k̃s+1 = 1 as before.

Recall that for F ⊂ {1, . . . , n}, RF denotes the set of all vectors in Rn

with support contained in F .
For i = 1, . . . , s and F ⊂ {1, . . . , n} of cardinality at most ki let Ni(F )

denote the subset of SF (i) := RF ∩Bn
2 ∩ k

−1/2
i+1 Bn

∞ such that

SF (i) ⊂ Ni(F ) +
ki
2n

(
Bn

2 ∩ k
−1/2
i+1 Bn

∞

)
.

Standard volumetric argument shows that we may choose Ni(F ) of cardinal-
ity at most (6n/ki)

|F | ≤ (6n/ki)
ki (additionally without loss of generality we

assume that 0 ∈ Ni(F )). We set

Ni :=
⋃

|F |≤ki

Ni(F ),

then

|Ni| ≤
(en
ki

)ki
(6n

ki

)ki

≤
(en
ki

)3ki

.

Fix x ∈ Uk, let Fs denote the set of indices of ks largest coefficients of
x, Fs−1 – the set of indices of the next ks−1 largest coefficients, etc. Then
x = xFs + xFs−1 + . . .+ xF1 , ‖xFs‖∞ ≤ 1 and

‖xFi
‖∞ ≤ 1√

ki+1

|xFi+1
| ≤ 1√

ki+1

for i < s.

In particular, xFi
∈ RFi ∩ Bn

2 ∩ k
−1/2
i+1 Bn

∞ for all i = 1, . . . , s. Let πi(x) be a
vector in Ni(Fi) such that

|xFi
− πi(x)| ≤ ki

2n
and ‖xFi

− πi(x)‖∞ ≤ ki

2n
√
ki+1

.

Define also π(x) = π1(x) + . . .+ πs(x). Then

|x− π(x)| ≤
s∑
i=1

|xFi
− πi(x)| ≤

s∑
i=1

ki
2n

=
k

2n
≤ 1

2
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and

s∑
i=1

ki+1‖πi(x)‖2
∞ ≤ 1 + 2

s−1∑
i=1

ki+1(‖xFi
‖2
∞ + ‖xFi

− πi(x)‖2
∞)

≤ 1 + 2
s−1∑
i=1

(
|xFi+1

|2 +
( ki

2n

)2)
≤ 1 + 2|x|2 +

k2

2n2
≤ 4.

Thus we complete the proof by letting

N = {π(x) : x ∈ Uk}.

Lemma 5.7. Suppose that n ≤ N and k ≤ min{n, k′}. Then for some
positive integer s ≤ C log log(3m) we can find s+ 1 positive integers k1 = k,
ki ∈ [1

6
m1/4,m] for 2 ≤ i ≤ s, ks+1 = 1 satisfying

ki log
(en
ki

)
≤ 20g(ki+1), for i = 1, . . . , s, (5.17)

where C is an absolute positive constant and

g(z) =


√
zm√

log(e2m/z)
log
(
eN
m

)
if z < m,

min
{√

zm log
(
eN
m

)
,m log2

(
eN
m

)}
if z ≥ m.

Proof. Let us define

h(z) = z log
(en
z

)
and H(z) = z log

(eN
z

)
.

Note that h(z) ≤ H(z), h is increasing on (0, n] and H is increasing on (0, N ].
It is also easy to see that h(dze) ≤ 2h(z) for z ∈ [1, n].

We first establish some relations between the functions g and H. It is not
hard to check that log3/2(e2m) ≤ e2

√
m, therefore for z ∈ [1,m],

H
( √

zm

log3/2(e2m)

)
=

√
zm

log3/2(e2m)

(
log
(eN
m

)
+ log

(m log3/2(e2m)√
zm

))
≤

√
zm

log3/2(e2m)
log
(eN
m

)
(1 + log(e2m)) ≤ 2g(z). (5.18)
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Write z = pm with p ∈ (0, 1), so H(2z) = 2pm
(
log
(
eN
m

)
+ log

(
m
2z

))
. Then

H(2z) ≤
2
√
pm√

log(e2/p)
log
(eN
m

)√
p log(e2/p)(1+log(1/p)) ≤ 10g(z), (5.19)

where the last inequality follows since

sup
p∈(0,1)

2
√
p
√

log(e2/p)(1 + log(1/p)) = 2 sup
u≥0

e−u
√

2 + 2u(1 + 2u)

≤ 2
√

2 sup
u≥0

e−u/2(1 + 2u) ≤ 10.

Let us define the increasing sequence `0, `1, . . . , `s−1 by the formula

`0 = 1 and h(`i) = 10g(`i−1), i = 1, 2, . . . ,

where s is the smallest number such that `s−1 ≥ m (if at some moment
10g(`j−1) ≥ n we set `j = m and s = j+1). First we show that such an s ex-
ists and satisfies s ≤ C log log(3m) for some absolute constant C > 0. We will
use that h(z) ≤ H(z). By (5.18) if `i−1 ≤ m then `i ≥

√
`i−1m/ log3/2(e2m),

which implies

`1 ≥
√
m/ log3/2(e2m) ≥ 1

6
m1/4 (5.20)

and, by induction,

`i ≥
( m

log3(e2m)

)1−2−i

for i = 0, 1, 2, . . .

In particular, we have, for some absolute constant C1 > 0,

`s1 ≥
m

2 log3(e2m)
for some s1 ≤ C1 log log(3m).

By (5.19), we have h(2z) ≤ H(2z) ≤ 10g(z) for z ≤ m, so, if `i−1 ≤ m then
`i ≥ 2`i−1. It implies that for some s ≤ s1 + C2 log log(3m) ≤ C log log(3m)
we indeed have `s−1 ≥ m.

Finally, we choose the sequence (ki)i≤s+1 in the following way. Let k1 = k
and ki := min{m, d`s+1−ie}, i = 2, . . . , s + 1 (note that k2 = m, ks+1 = 1).
Using h(dze) ≤ 2h(z) and the construction of `i’s, we obtain (5.17) for i ≥ 2,
while for i = 1 by definition of k′ and since k ≤ k′ we clearly have h(k1) =
h(k) ≤ 2g(m) = 2g(k2). Since (`i)i is increasing we also observe by (5.20)
that ki ≥ 1

6
m1/4 for 2 ≤ i ≤ s. This completes the proof.
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Proposition 5.8. Let n,N , k ≤ n, m ≤ N be positive integers. Let A be an
n × N random matrix, whose rows X1, . . . , Xn are independent log-concave
isotropic random vectors in RN . Suppose that N ≥ n and k ≤ min{n, k′}.
Then for t ≥ 1,

P
(

sup
I⊂{1,...,N}

|I|=m

sup
x∈Uk

|PIΓx| ≥ Ct
√

log log(3m)
√
m log

(eN
m

))
≤ exp

(
−
t
√

log log(3m)
√
m log(eN/m)√

log(em)

)
,

where C is a universal constant.

Proof. Let k1, . . . , ks+1 be given by Lemma 5.7 and N ⊂ 3
2
Ũk be as in Lemma

5.6. Note that

sup
I⊂{1,...,N}

|I|=m

sup
x∈Uk

|PIΓx| ≤ 2 sup
I⊂{1,...,N}

|I|=m

sup
x∈N

|PIΓx|,

so we will estimate the latter quantity.
Let us fix x ∈ N and 1 ≤ i ≤ s. Consider the vector

y = πi(x)/(
√
ki+1‖πi(x)‖∞ + |πi(x)|).

Observe that√
ki+1‖πi(x)‖∞ ≤ 2, |πi(x)| ≤ 3/2, |y| ≤ 1, ‖y‖∞ ≤ 1/

√
ki+1

and on the other hand 1/
√
ki+1 ≥ 1√

m
. Applying Theorem 4.3 to the vector

y, we obtain for every u > 0,

P
(

sup
I⊂{1,...,N}

|I|=m

|PIΓπi(x)| ≥ C(
√
ki+1‖πi(x)‖∞ + |πi(x)|)

√
m log

(eN
m

)
+ u
)

≤ exp
(
− 100g(ki+1)

)
exp

(
−

√
ki+1u

C
√

log(em)

)
,

where g(x) is as in Lemma 5.7.
By the properties of the net N guaranteed by Lemma 5.6 and (5.17)

|πi(N )| exp
(
− 100g(ki+1)

)
≤ 1.
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Therefore for all u > 0 and i = 1, . . . , s,

P
(

sup
x∈N

sup
I⊂{1,...,N}

|I|=m

|PIΓπi(x)| ≥ C(
√
ki+1‖πi(x)‖∞+|πi(x)|)

√
m log

(eN
m

)
+ u
)

≤ exp
(
−

√
ki+1u

C
√

log(em)

)
.

We have for any x ∈ N ,

s∑
i=1

(
√
ki+1‖πi(x)‖∞ + |πi(x)|) ≤

√
s

(( s∑
i=1

ki+1‖πi(x)‖2
∞

)1/2

+
( s∑
i=1

|πi(x)|2
)1/2

)
≤
√
s
(

2 +
3

2

)
≤ C

√
log log(3m).

Therefore for any u1, . . . , us > 0,

P
(

sup
x∈N

sup
I⊂{1,...,N}

|I|=m

|PIΓx| ≥ C
√

log log(3m)
√
m log

(eN
m

)
+

s∑
i=1

ui

)
≤

s∑
i=1

P
(

sup
x∈N

sup
I⊂{1,...,N}

|I|=m

|PIΓπi(x)| ≥ C(
√
ki+1‖πi(x)‖∞ + |πi(x)|)

√
m log

(eN
m

)
+ ui

)
≤

s∑
i=1

exp
(
−

√
ki+1ui

C
√

log(em)

)
.

Hence it is enough to choose ui = 1
s
Ct
√

log log(3m)
√
m log(eN/m) for

i ≤ s − 1, us = Ct
√

log log(3m)
√
m log(eN/m) and to use that ki ≥ 1

6
m1/4

for i = 2, . . . , s (and to adjust absolute constants).

5.3 Conclusion of the proof of Theorem 5.1

Proof. First note that it is sufficient to consider the case n ≤ N . Indeed, if
n > N we may find independent isotropic n-dimensional log-concave random
vectors X̃1, . . . , X̃n such that Xi = P{1,...,N}X̃i for 1 ≤ i ≤ n. Let Ã be the

n× n matrix with rows X̃1, . . . , X̃n and

Ãk,m := sup{|PI(Ã)∗x| : I ⊂ {1, . . . , n}, |I| = m, x ∈ Uk}.
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Then obviously Ãk,m ≥ Ak,m and this allows us to immediately deduce the
case N ≤ n from the case N = n.

If
√
k log(en/k) +

√
m log(eN/m) ≥ k′ log(en/k′) we may apply results of

[5]. Recall that Γ = A∗. Let s ≥
√
k log(en/k) +

√
m log(eN/m). Applying

“in particular” part of Theorem 3.13 of [5] and Paouris’ Theorem (inequality
(3.2) together with union bound) to the columns of the m × n matrix PIΓ
and adjusting corresponding constants, we obtain that

P
(

sup
x∈Uk

|PIΓx| ≥ Cs
)
≤ exp(−2s)

for any I ⊂ {1, . . . , N} with |I| = m (cf. Theorem 3.6 of [5]). Therefore,

P(Ak,m ≥ Cs) ≤
∑
|I|=m

P
(

sup
x∈Uk

|PIΓx| ≥ Cs
)
≤
(
N

m

)
exp(−2s).

By the definition of k′ we get(
N

m

)
≤ exp

(
m log(eN/m)

)
≤ exp

(
k′ log(en/k′)

)
,

hence for s as above

P(Ak,m ≥ Cs) ≤ exp
(
k′ log(en/k′)

)
exp(−2s) ≤ exp(−s)

and Theorem 5.1 follows in this case.
Finally assume that n ≤ N and that

√
k log(en/k) +

√
m log(eN/m) ≤ k′ log(en/k′).

For simplicity put

ak =
√
k log(en/k), bm =

√
m log(eN/m), dm =

√
log log(3m).

If k ≤ k′ then Theorem 5.1 follows by Proposition 5.8 applied with t0 =
t(1 + ak/(dmbm)). If k ≥ k′ then we apply Proposition 5.8 (with the same t0
and k′ instead of k) and Proposition 5.2 with t1 = t(bmdm + ak)/(ak + bm) to
obtain Theorem 5.1 (note that

C

√
m

log(em)
log

eN

m
≥ logN ≥ log n,

so the factor n in the probability in Proposition 5.2 can be eliminated).
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6 The Restricted Isometry Property

Fix integers n and N ≥ 1 and let A be an n × N matrix. Consider the
problem of reconstructing any vector x ∈ RN with short support (sparse
vectors) from the data Ax ∈ Rn, with a fast algorithm.

Compressive Sensing provides a way of reconstructing the original signal
x from its compression Ax with n � N by the so-called `1-minimization
method (see [15, 11, 13]).

Let
δm = δm(A) = sup

x∈Um

∣∣|Ax|2 − E|Ax|2
∣∣

be the Restricted Isometry Constant (RIC) of order m, introduced in [12].
Its important feature is that if δ2m is appropriately small then every m-sparse
vector x can be reconstructed from its compression Ax by the `1-minimization
method. The goal is to check this property for certain models of matrices.

The articles [1, 2, 5, 6, 7] considered random matrices with independent
columns, and investigated the RIP for various models of matrices, includ-
ing the log-concave ensemble built with independent isotropic log-concave
columns. In this setting, the quantity An,m played a central role.

In this section, we consider n×N random matrices A with independent
rows (Xi). For T ⊂ RN the quantity Ak(T ) has been defined in (1.8) and
Ak,m = Ak(Um) was estimated in the previous section.

We start with a general Lemma 6.1 which will be used to show that
after a suitable discretisation, one can reduce a concentration inequality to a
deviation inequality; in particular, checking the RIP is reduced to estimating
Ak,m. It is a slight strengthening of Lemma 1.3 from the introduction.

Lemma 6.1. Let X1, . . . , Xn be independent isotropic random vectors in RN .
Let T ⊂ SN−1 be a finite set. Let 0 < θ < 1 and B ≥ 1. Then with probability
at least 1− |T | exp (−3θ2n/8B2) one has

sup
y∈T

∣∣∣∣∣ 1n
n∑
i=1

(|〈Xi, y〉|2 − E|〈Xi, y〉|2)

∣∣∣∣∣
≤ θ +

1

n

(
Ak(T )2 + sup

y∈T
E

n∑
i=1

|〈Xi, y〉|21{|〈Xi,y〉|≥B}

)
≤ θ +

1

n

(
Ak(T )2 + EAk(T )2

)
,
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where k ≤ n is the largest integer satisfying k ≤ (Ak(T )/B)2.

Remark. Note that k in Lemma 6.1 is a random variable.

To prove Lemma 6.1, we need Bernstein’s inequality (see e.g., Lemma 2.2.9
in [28]).

Proposition 6.2. Let Zi be independent centered random variables such that
|Zi| ≤ a for all 1 ≤ i ≤ n. Then for all τ ≥ 0 one has

P

(
1

n

n∑
i=1

Zi ≥ τ

)
≤ exp

(
− τ 2n

2(σ2 + aτ/3)

)
,

where

σ2 =
1

n

n∑
i=1

Var(Zi).

Proof of Lemma 6.1. For y ∈ T let

S(y) =

∣∣∣∣∣ 1n
n∑
i=1

(
|〈Xi, y〉|2 − E|〈Xi, y〉|2

)∣∣∣∣∣
and observe that

S(y) ≤
∣∣∣ 1
n

n∑
i=1

(
(|〈Xi, y〉| ∧B)2 − E (|〈Xi, y〉| ∧B)2) ∣∣∣

+
1

n

n∑
i=1

(
|〈Xi, y〉|2 −B2

)
1{|〈Xi,y〉|≥B}

+
1

n
E

n∑
i=1

(
|〈Xi, y〉|2 −B2

)
1{|〈Xi,y〉|≥B}.

We denote the three summands by S1(y), S2(y) and S3(y), respectively, and
we estimate each of them separately.

Estimate for S1(y): We will use Bernstein’s inequality (Proposition 6.2).
Given y ∈ T let Zi(y) = (|〈Xi, y〉| ∧B)2−E (|〈Xi, y〉| ∧B)2, for i ≤ n. Then
|Zi(y)| ≤ B2, so a = B2. By isotropicity of X, for every i ≤ n, one has

Var(Zi(y)) ≤ E (|〈Xi, y〉| ∧B)4 ≤ E
(
|〈Xi, y〉|2B2

)
= B2,
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which implies σ2 ≤ B2. By Proposition 6.2,

P

(
1

n

n∑
i=1

Zi(y) ≥ θ

)
≤ exp

(
− θ2n

2(B2 +B2θ/3)

)
≤ exp

(
−3θ2n

8B2

)
.

Then, by the union bound,

P
(

sup
y∈T

S1(y) ≥ θ

)
= P

(
sup
y∈T

1

n

n∑
i=1

Zi(y) ≥ θ

)
≤ |T | exp

(
−3θ2n

8B2

)
.

Estimates for S2(y) and S3(y): For every y ∈ T consider

EB(y) = {i ≤ n : |〈Xi, y〉| ≥ B},

and let
k′ = sup

y∈T
|EB(y)|.

Then, by the definition of Ak′(T ),

B2k′ = B2 sup
y∈T

|EB(y)| ≤ sup
y∈T

∑
i∈EB(y)

|〈Xi, y〉|2 ≤ A2
k′(T ).

This yields

k′ ≤ A2
k′(T )

B2
,

and therefore k′ ≤ k, where k ≤ n is the biggest integer satisfying k ≤
(Ak(T )/B)2.

Using the definition of Ak(T ) again we observe

sup
y∈T

S2(y) ≤ 1

n
sup
y∈T

n∑
i=1

|〈Xi, y〉|21{|〈Xi,y〉|≥B} =
1

n
sup
y∈T

∑
i∈EB(y)

|〈Xi, y〉|2

≤ 1

n
sup
y∈T

sup
|E|≤k

∑
i∈E

|〈Xi, y〉|2 ≤
1

n
A2
k(T ).

Similarly,

sup
y∈T

S3(y) ≤ 1

n
sup
y∈T

E
n∑
i=1

|〈Xi, y〉|21{|〈Xi,y〉|≥B} ≤
1

n
EA2

k(T ).
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Combining estimates for S1(y), S2(y) and S3(y), we obtain the desired result.

By an approximation argument, Lemma 6.1 has the following immediate
consequence (cf. [7]).

Corollary 6.3. Let 0 < θ < 1 and B ≥ 1. Let n, N be positive integers and
A be an n×N matrix, whose rows are independent isotropic random vectors
Xi, for i ≤ n. Assume that m ≤ N satisfies

m log
11eN

m
≤ 3θ2n

16B2
.

Then with probability at least

1− exp

(
− 3θ2n

16B2

)
one has

δm

(
A√
n

)
= sup

y∈Um

∣∣∣∣∣ 1n
n∑
i=1

(|〈Xi, y〉|2 − E|〈Xi, y〉|2)

∣∣∣∣∣
≤ 2θ +

2

n

(
A2
k,m + sup

y∈Um

E
n∑
i=1

|〈Xi, y〉|21{|〈Xi,y〉|≥B}

)
≤ 2θ +

2

n

(
A2
k,m + EA2

k,m

)
,

where k ≤ n is the largest integer satisfying k ≤ (Ak,m/B)2.

Remarks. 1. Note that as in Lemma 6.1, k in Corollary 6.3 is a random
variable.
2. In all our applications we would like to have A2

k,m and EA2
k,m of order θn.

To obtain this, we choose the parameter B appropriately.
3. Note that Ak,m is increasing in k, therefore we immediately have that if
m ≤ N satisfies

m log
11eN

m
≤ 3θ2n

16B2
and EA2

n,m ≤ θn

then with probability at least

1− exp

(
− 3θ2n

16B2

)
− P

(
A2
n,m > θn

)
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one has

δm

(
A√
n

)
≤ 6θ. (6.1)

Proof of Corollary 6.3. Let N be a 1/5-net in Um = Um(RN) of cardinality(
N
m

)
11m ≤ (11eN/m)m (we can construct N in such a way that for every y ∈

Um there exists zy ∈ N with the same support and such that |y− zy| ≤ 1/5).
By the assumption on m,

m log
11eN

m
≤ 3θ2n

16B2
,

and thus

|N | exp

(
−3θ2n

8B2

)
≤ exp

(
− 3θ2n

16B2

)
.

Using this and the obvious fact that Ak(N ) ≤ Ak(Um) for all k, we get by
Lemma 6.1 that

sup
z∈N

∣∣∣∣∣ 1n
n∑
i=1

(|〈Xi, z〉|2 − E|〈Xi, z〉|2)

∣∣∣∣∣ ≤ θ +
1

n

(
A2
k,m + EA2

k,m

)
,

with probability larger than or equal to 1− exp
(
− 3θ2n

16B2

)
.

The proof is now finished by an approximation argument. Note that there
exists a self-adjoint operator S acting on the Euclidean space RN such that

1

n

n∑
i=1

(|〈Xi, z〉|2 − E|〈Xi, z〉|2) = 〈Sz, z〉

for all z ∈ RN . Now pick w ∈ Um such that

|〈Sw,w〉| = sup
y∈Um

|〈Sy, y〉|,

and let I with |I| = m contain the support of w. Write w = x + z where
x ∈ (1/5)BN

2 and z ∈ N and x and z are supported by I. Then

|〈Sw,w〉| = |〈S(x+ z), (x+ z)〉|
≤ |〈Sx, x〉|+ |〈Sx, z〉|+ |〈Sz, x〉|+ |〈Sz, z〉|
≤ (1/25) sup

x∈BI
2

|〈Sx, x〉|+ (2/5) sup
x∈BI

2

|〈Sx, x〉| sup
z∈N

|z|+ sup
z∈N

|〈Sz, z〉|.
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Thus
sup
y∈Um

|〈Sy, y〉| ≤ (25/14) sup
z∈N

|〈Sz, z〉|.

completing the proof.

The following theorem is a more general version of Theorem 1.4 stated in
the introduction.

Theorem 6.4. Let n, N be integers and 0 < θ < 1. Let A be an n × N
matrix, whose rows are independent isotropic log-concave random vectors Xi,
i ≤ n. There exists an absolute constant c > 0, such that if m ≤ N satisfies

m log log 3m

(
log

3 max{N, n}
m

)2

≤ c θ2 n

log(3/θ)

then
δm(A/

√
n) ≤ θ

with overwhelming probability.

Remark. In fact our proof gives that there is an absolute constant c > 0
such that if

bm := m log log(3m)

(
log

3 max{N, n}
m

)2

≤ c θn (6.2)

and

dm := m log
3N

m
log2 n

bm
≤ c θ2n (6.3)

then δm(A/
√
n) ≤ θ with probability at least

1−exp

(
−c θ2n

log2(n/bm)

)
−2 exp

(
−c

√
log log(3m)

√
m√

log(3m)
log

3 max{N, n}
m

)
.

In particular, denoting αn = n/ log log(3n) and Cθ = (θ/ log(3/θ))2 one can
take

m ≈ min

{
θαn

log2(max{N, n}/(θαn))
,

Cθn

log(3N/(Cθn))

}
if N > Cθn

and

m ≈ min

{
θαn

log2(log log(3n)/θ)
, N

}
if N ≤ Cθn.
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Indeed, if N ≤ Cθn it is easy to see that bm ≤ c θn and that

dm ≤ m log
3N

m
log2 n

m
≤ CN log2 n

N
≤ C ′Cθn log2C−1

θ ≤ c θ2n.

Now assume N > Cθn. Denote m̄ = θαn/(log2(log log(3n)/θ)) and m̃ =
Cθn/(log(3N/(Cθn))). Note that bm̄ ≤ c θn. Using again that bm ≥ m for
every m, one can check that dm̄ ≤ c θ2n in the case θ−1 ≤ log(3N/(Cθn))
and dm̃ ≤ c θ2n in the case θ−1 ≥ log(3N/(Cθn)).

Proof of Theorem 6.4. Let bm be as in (6.2). Note that bm ≥ m, so
log(n/bm) ≤ log(n/m). Thus

m log
3N

m
log2 n

bm
≤ bm log

n

bm
.

Therefore (6.3) holds provided that bm ≤ c θ2n/ log(3/θ). This shows that
it is enough to prove the estimate from the remark. So set bm as in (6.2)
and assume that bm ≤ c1θn for small enough c1 > 0. Choose B = C1 log n

bm
,

where C1 is a sufficiently large absolute constant.
Let k be as in Corollary 6.3, i.e. k ≤ n is the biggest integer satisfying

k ≤ (Ak,m/B)2. As in Theorem 5.1 denote

λm =

√
log log(3m)

√
m√

log(3m)
log(emax{N, n}/m)

and

λk,m =
√

log log(3m)
√
m log(emax{N, n}/m) +

√
k log(3n/k).

Applying (5.5), we obtain that there are absolute constants C0 > 0 and
c0 > 0 such that

Ak,m ≤ C0λk,m, (6.4)

with probability at least 1−exp (−c0λm). By Hölder’s inequality and the log-
concavity assumption we also obtain that there exists an absolute constant
C2 > 0 such that for every y ∈ Um one has

E
n∑
i=1

|〈Xi, y〉|21{|〈Xi,y〉|≥B} ≤
n∑
i=1

sup
x∈Sn−1

‖〈Xi, x〉‖2
4 P (|〈Xi, x〉| ≥ B)1/2

≤ nC2 exp(−B/C2) ≤ nC2(bm/n)C1/C2 ≤ c1θn
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for large enough C1.
Note that λk,m ≤

√
bm +

√
k log(3n/k). We now prove that for our choice

of B, (6.4) implies
√
k log(3n/k) ≤

√
log log(3m)

√
m log(3 max{N, n}/m) =

√
bm. (6.5)

Assume (6.5) does not hold, i.e. assume that k log2 3n
k
> bm. Then, by the

definition of k and (6.4), we observe that

k ≤
A2
k,m

B2
≤ C2

0

B2
λ2
k,m ≤ 4C2

0

k

B2
log2 3n

k
.

This implies that B ≤ 2C0 log 3n
k

, which yields

k ≤ 3n

exp(B/(2C0))
.

Thus we obtain

bm < k log2 3n

k
≤ 3n

exp(B/(2C0))

B2

4C2
0

=
3n

exp(C1 log(n/bm)/(2C0))

C2
1 log2(n/bm)

4C2
0

,

which is impossible for large enough C1. This proves (6.5), which in turn
implies Ak,m ≤ 2C0

√
bm by (6.4).

Finally, note that if m satisfies (6.3) then we can apply Corollary 6.3 (the
middle inequality) with our choice of B. It gives that there exists a positive
constant C such that

δm

(
A√
n

)
≤ Cθ

with probability at least

1− exp

(
− 3θ2n

16B2

)
− 2 exp (−c0λm),

which proves the desired result.

Remark. As we mentioned in the introduction, Theorem 5.1 is sharp up
to logarithmic factors. Assume that we do not have those factors. More
precisely, assume that with probability at least 1− pm one has

∀k Ak,m ≤ C
(√

m log(3N/m) +
√
k log(3n/k)

)
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(for example, Theorem 4.2 in [3] implies that in the case of unconditional
isotropic log-concave vectors one can take pm = exp(−

√
m log(3N/m))). As-

sume in addition that

b̄m := m

(
log

3N

m

)2

≤ c θn and m log
3N

m
log2 n

b̄m
≤ c θ2n. (6.6)

Repeating the proof of Theorem 6.4 with the same B = C1 log n
bm

and

λ̄m,k =
√
m log(3N/m) +

√
k log(3n/k)

instead of λk,m, we obtain that δm(A/
√
n) ≤ θ with probability at least

1− exp

(
−c θ2n

log2(n/b̄m)

)
− pm.

The condition (6.6) is satisfied if

m ≈ min

{
N,

θ2 n

log3(3/θ)

}
and N ≤ n

or if

m ≈ θn

log(3N/θn)
min

{
1

log(3N/θn)
,

θ

log2(3/θ)

}
and N ≥ n,

which is easy to check considering corresponding cases in minima.

7 Proofs of results from Section 3

7.1 Proof of Theorem 3.2

Theorem 3.2 is a strengthening of the first technical result in [18]. The proof
given here is a modification of the argument from [18] and we include the
details for the sake of completeness.

First, we show the following proposition (an analog of Proposition 10
from [18]).
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Proposition 7.1. There exists an absolute positive constant C0 such that the
following holds. Let X be an isotropic log-concave N-dimensional random
vector, A = {X ∈ K}, where K is a convex set in RN satisfying 0 < P(A) ≤
1/e. Then for every t ≥ C0,

N∑
i=1

P(A ∩ {X(i) ≥ t}) ≤ C0P(A)
(
t−2σ2

X(− log(P(A))) +Ne−t/C0

)
(7.1)

and for every 1 ≤ u ≤ t
C0

,

∣∣{i ≤ N : P(A ∩ {X(i) ≥ t}) ≥ e−uP(A)}
∣∣ ≤ C0u

2

t2
σ2
X(− log(P(A))). (7.2)

Proof. Let Y be a random vector defined by

P(Y ∈ B) =
P(A ∩ {X ∈ B})

P(A)
=

P(X ∈ B ∩K)

P(X ∈ K)
,

i.e. Y is distributed as X conditioned on A. Clearly, for every measurable
set B one has P(X ∈ B) ≥ P(A)P(Y ∈ B).

It is easy to see that Y is and log-concave, but not necessarily isotropic.
Without loss of generality, we assume that EY (1)2 ≥ EY (2)2 ≥ . . . ≥
EY (N)2 (otherwise, we renumerate the coordinates).

Given α > 0 denote

m = m(α) =
∣∣{i : EY (i)2 ≥ α}

∣∣ .
Then EY (1)2 ≥ . . . ≥ EY (m)2 ≥ α. Using the Paley-Zygmund inequality
and log-concavity of Y , we get

P
( m∑
i=1

Y (i)2 ≥ 1

2
αm
)
≥ P

( m∑
i=1

Y (i)2 ≥ 1

2
E

m∑
i=1

Y (i)2
)

≥ 1

4

(E
∑m

i=1 Y (i)2)2

E(
∑m

i=1 Y (i)2)2
≥ 1

C1

.

Therefore,

P
( m∑
i=1

X(i)2 ≥ 1

2
αm
)
≥ P(A) P

( m∑
i=1

Y (i)2 ≥ 1

2
αm
)
≥ 1

C1

P(A).
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Applying Theorem 3.1 (and Chebyshev’s inequality, cf. (3.2)) to the m-
dimensional vector X̄ = (X1, . . . , Xm) we observe

P
( m∑
i=1

X(i)2 ≥ 1

2
αm
)
≤ exp

(
− σ−1

X

( 1

C3

√
mα
))

for α ≥ C3.

Thus exp(−σ−1
X ( 1

C3

√
mα)) ≥ P(A)/C1 for α ≥ C3, so, using the fact that

σX(tp) ≤ 2tσX(p) for t ≥ 1, we obtain that

m(α) =
∣∣{i : EY (i)2 ≥ α}

∣∣ ≤ C4

α
σ2
X(− log(P(A))) for α ≥ C3. (7.3)

Note that for every i the random variable Y (i) is and log-concave, hence,
by (2.1),

P(A ∩ {X(i) ≥ t})

P(A)
= P(Y (i) ≥ t) ≤ C5 exp

(
− t

C5(EY (i)2)1/2

)
.

Thus, if P(Y (i) ≥ t) ≥ e−u, then (EY (i)2)1/2 ≥ t/(C5(u+ logC5)). Applying
(7.3) with α = t2/(C5(u+ logC5))

2, we obtain that (7.2) holds with constant
C6 (in place of C0) provided that 1 ≤ u ≤ t/C7.

Now assume that t ≥
√
C3 and define a nonnegative integer k0 by 2−k0t ≥√

C3 > 2−k0−1t. Let

I0 = {i : EY (i)2 ≥ t2}, Ik0+1 = {i : EY (i)2 < 4−k0t2}

and
Ij = {i : 4−jt2 ≤ EY (i)2 < 41−jt2} j = 1, 2, . . . , k0.

Clearly, |Ik0+1| ≤ N and, by (7.3),

|Ij| ≤ C44
jt−2σ2

X(− log P(A)) for j = 0, 1, . . . , k0.

Observe also that for j > 0 and i ∈ Ij one has

P(Y (i) ≥ t) ≤ P
( Y (i)

(EY (i)2)1/2
≥ 2j−1

)
≤ exp

(
1− 1

C8

2j
)
.
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Therefore,

N∑
i=1

P(Y (i) ≥ t) =

k0+1∑
j=0

∑
i∈Ij

P(Y (i) ≥ t) ≤ |I0|+ e

k0+1∑
j=1

|Ij| exp
(
− 2j

C8

)

≤ C4

(
t−2σ2

X(− log P(A))

(
1 + e

k0∑
j=1

4j exp
(
− 2j

C8

))
+ eNe−t/(C8

√
C3)

)
≤ C9

(
t−2σ2

X(− log P(A)) +Ne−t/C9

)
.

By the definition of Y , this proves (7.1) with constant C9 for t ≥
√
C3.

Taking C0 = max{
√
C3, C6, C7, C9} completes the proof.

We will use the following simple combinatorial lemma (Lemma 11 in [18]).

Lemma 7.2. Let `0 ≥ `1 ≥ . . . ≥ `s be a fixed sequence of positive integers
and

F =
{
f : {1, 2, . . . , `0} → {0, 1, 2, . . . , s} : ∀1≤i≤s |{r : f(r) ≥ i}| ≤ `i

}
.

Then

|F| ≤
s∏
i=1

(e`i−1

`i

)`i
.

Proof of Theorem 3.2. Since NX ≤ N , the statement is trivial if t
√
N ≤

CσX(p). Without loss of generality we assume that t
√
N ≥ CσX(p) for large

enough absolute constant C > 0.
Let C0 be the constant from Proposition 7.1. Since X is isotropic and log-

concave we may assume that P(X(j) ≥ t) ≤ e−t/C0 for t ≥ C0 and 1 ≤ j ≤ N
(we increase the actual value of C0 if needed). Fix p ≥ 1 and

t ≥ C log

(
Nt2

σ2
X(p)

)
. (7.4)

Then, for large enough C, t ≥ 4C0 and t2Ne−t/C0 ≤ σ2
X(p).

Define a positive integer ` by

p ≤ ` < 2p and ` = 2k for some integer k.
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Then σX(p) ≤ σX(`) ≤ σX(2p) ≤ 4σX(p). Since (E(NX(t))p)1/p ≤ (E(NX(t))`)1/`,
it is enough to show that

E(t2NX(t))` ≤ (C1σX(`))2`.

Define the sets

Bi1,...,is = {X(i1) ≥ t, . . . , X(is) ≥ t} and B∅ = Ω

and denote

m(`) := ENX(t)` = E
( N∑
i=1

1{X(i)≥t}

)`
=

N∑
i1,...,i`=1

P(Bi1,...,i`).

It is enough to prove

m(`) ≤
(
C1σX(`)

t

)2`

. (7.5)

We divide the sum in m(`) into several parts. Let j1 ≥ 2 be the integer
satisfying

2j1−2 < log
( Nt2

σ2
X(`)

)
≤ 2j1−1.

Define sets

I0 =
{

(i1, . . . , i`) ∈ {1, . . . , N}` : P(Bi1,...,i`) > e−`
}
,

Ij =
{

(i1, . . . , i`) ∈ {1, . . . , N}` : P(Bi1,...,i`) ∈ (e−2j`, e−2j−1`]
}
, 0 < j < j1,

and
Ij1 =

{
(i1, . . . , i`) ∈ {1, . . . , N}` : P(Bi1,...,i`) ≤ e−2j1−1`

}
.

Note {1, . . . , N}` =
⋃j1
j=0 Ij, hence m(`) =

∑j1
j=0mj(`), where

mj(`) :=
∑

(i1,...,i`)∈Ij

P(Bi1,...,i`) for 0 ≤ j ≤ j1.

First, we estimate mj1(`) and m0(`). Since |Ij1| ≤ N `,

mj1(`) =
∑

(i1,...,i`)∈Ij1

P(Bi1,...,i`) ≤ N `e−2j1−1` ≤
(σX(`)

t

)2`

.
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To estimate m0(`), given I ⊂ {1, . . . , N}` and 1 ≤ s ≤ `, define

PsI = {(i1, . . . , is) : (i1, . . . , i`) ∈ I for some is+1, . . . , i`}.

By Proposition 7.1 for s = 1, . . . , `− 1 one has

∑
(i1,...,is+1)∈Ps+1I0

P(Bi1,...,is+1) ≤
∑

(i1,...,is)∈PsI0

N∑
is+1=1

P(Bi1,...,is ∩ {X(is+1) ≥ t})

≤ C0

∑
(i1,...,is)∈PsI0

P(Bi1,...,is)(t
−2σ2

X(− log P(Bi1,...,is)) +Ne−t/C0).

Note that for (i1, . . . , is) ∈ PsI0 one has P(Bi1,...,is) ≥ e−` and, by (7.4),
t2Ne−t/C0 ≤ σ2

X(p) ≤ σ2
X(`). Therefore∑

(i1,...,is+1)∈Ps+1I0

P(Bi1,...,is+1) ≤ C4t
−2σ2

X(`)
∑

(i1,...,is)∈PsI0

P(Bi1,...,is).

By induction and since P(X(j) ≥ t) ≤ e−t/C0 we obtain

m0(`) =
∑

(i1,...,i`)∈I0

P(Bi1,...,i`) ≤ (C4t
−2σ2

X(`))`−1
∑

i1∈P1I0

P(Bi1)

≤ (C4t
−2σ2

X(`))`−1Ne−t/C0 ≤
(C5σX(`)

t

)2`

,

where the last inequality follows from (7.4).
Now we estimate mj(`) for 0 < j < j1. The upper bound is based on

suitable estimates for |Ij|. Fix 0 < j < j1 and define a positive integer r1 by

2r1 <
t

C0

≤ 2r1+1.

For all (i1, . . . , i`) ∈ Ij define a function fi1,...,i` : {1, . . . , `} → {j, j+1, . . . , r1}
by

fi1,...,i`(s) =


j if P(Bi1,...,is) ≥ exp(−2j+1)P(Bi1,...,is−1),
r if exp(−2r+1) ≤ P(Bi1,...,is)/P(Bi1,...,is−1) < exp(−2r), j < r < r1,
r1 if P(Bi1,...,is) < exp(−2r1)P(Bi1,...,is−1).

Note that for every (i1, . . . , i`) ∈ Ij one has

1 = P(B∅) ≥ P(Bi1) ≥ P(Bi1,i2) ≥ . . . ≥ P(Bi1,...,il) > exp(−2j`)
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and fi1,...,i`(1) = r1, because P(X(i1) ≥ t) ≤ exp (−t/C0) < exp(−2r1)P(B∅).
Denote

Fj :=
{
fi1,...,i` : (i1, . . . , i`) ∈ Ij

}
.

Then for f = fi1,...,i` ∈ Fj and every r > j one has

exp(−2j`) < P(Bi1,...,i`) =
∏̀
s=1

P(Bi1,...,is)

P(Bi1,...,is−1)
< exp(−2r |{s : f(s) ≥ r}|).

Hence for every r ≥ j (the case r = j is trivial) one has

|{s : f(s) ≥ r}| ≤ 2j−r` =: `r. (7.6)

Clearly,
∑r1

r=j+1 `r ≤ ` and `r−1/`r = 2, so, by Lemma 7.2,

|Fj| ≤
r1∏

r=j+1

(e`r−1

`r

)`r
≤ e2`.

Now for every f ∈ Fj we estimate the cardinality of the set

Ij(f) := {(i1, . . . , i`) ∈ Ij : fi1,...,i` = f}.

Fix f and for r = j, j + 1, . . . , r1 set

Ar := {s ∈ {1, . . . , `} : f(s) = r} and nr := |Ar| .

Then 1 ∈ Ar1 and
nj + nj+1 + . . .+ nr1 = `.

Fixing r < r1, i1, . . . , is−1, s ∈ Ar (then s ≥ 2 and P(Bi1,...,is−1) ≤ P(Bi1) ≤
exp(−t/C0) ≤ 1/e), applying (7.2) with u = 2r+1 ≤ t/C0, and using the
definition of Ij, we observe that is may take at most

4C02
2r

t2
σ2
X(− log P(Bi1,...,is−1)) ≤

4C02
2r

t2
σ2
X(2j`) ≤ 16C02

2(r+j)σ2
X(`)

t2

≤ 16C0σ
2
X(`)

t2
exp(2(r + j)) =: mr

values in order to satisfy fi1,...,i` = f . Thus

|Ij(f)| ≤ Nnr1

r1−1∏
r=j

mnr
r = Nnr1

(16C0σ
2
X(`)

t2

)`−nr1

exp
( r1−1∑

r=j

2(r + j)nr

)
.

49



Note that (7.6) implies that nr ≤ `r = 2j−r`, so

r1−1∑
r=j

2(r + j)nr ≤ 2j+2`

∞∑
r=j

r2−r = 8(j + 1)` ≤ (50 + 2j−2)`.

By the definition of r1 we also have

nr1 ≤ 2j−r1` ≤ 2C0

t
2j` ≤ 2j−3`

log(Nt2/(4σ2
X(`)))

,

where in the last inequality we used (7.4) with large enough C. Thus we
obtain that for every f ∈ Fj

|Ij(f)| ≤
(C6σ

2
X(`)

t2

)`( Nt2

4σ2
X(`)

)nr1

exp
(
2j−2`

)
≤
(C6σ

2
X(`)

t2

)`
exp

(3

8
2j`
)
.

This implies that

|Ij| ≤ |Fj| ·
(C6σ

2
X(`)

t2

)`
exp

(3

8
2j`
)
≤
(C6σ

2
X(`)

t2

)`
exp

((
2 +

3

8
2j
)
`
)
.

Hence

mj(`) =
∑

(i1,...,i`)∈Ij

P(Bi1,...,i`) ≤ |Ij| exp(−2j−1`) ≤
(C7σ

2
X(`)

t2

)`
exp

(
−2j−3`

)
.

Combining estimates for mj(`)’s we obtain

m(`) = m0(`) +mj1(`) +

j1−1∑
j=1

mj(`)

≤
(σX(`)

t

)2`(
C`

5 + 1 +
∞∑
j=1

C`
7 exp

(
− 2j−3`

))
≤
(C8σX(`)

t

)2`

,

which proves (7.5).

7.2 Proof of Theorem 3.4

Fix t ≥ 1 and let m0 = m0(X, t).
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Since σPJX ≤ σX for every J ⊂ {1, . . . , N}, Theorem 3.1 gives for any
J ⊂ {1, . . . , N} of cardinality m0,

(E|PJX|p)1/p ≤ C1(
√
m0 + σPJX(p)) ≤ C1(

√
m+ σX(p)).

Using the Chebyshev inequality and σX(up) ≤ 2uσX(p) we observe for such
J ,

P
(
|PJX| ≥ 36C1t

√
m log

(eN
m

))
≤ exp

(
− σ−1

X

(
6t
√
m log

(eN
m

)))
≤ exp

(
− 3σ−1

X

(
t
√
m log

(eN
m

)))
.

Thus, using the definition of m0 and that σ−1
X (1) = 2, we obtain

P
(

sup
|J |=m0

|PJX| ≥ 36C1t
√
m log

(eN
m

))
≤
(
N

m0

)
exp

(
− 3σ−1

X

(
t
√
m log

(eN
m

)))
≤ 1

2
exp

(
− σ−1

X

(
t
√
m log

(eN
m

)))
. (7.7)

Now choose s = dlog2(m/m0)e ≤ 2 log(em/m0) (so that 2sm0 ≥ m). Then

sup
|I|=m

|PIX| =
( m∑
i=1

|X∗(i)|2
)1/2

≤
( m0∑
i=1

|X∗(i)|2
)1/2

+
( s−1∑
i=0

2im0∑
k=1

|X∗(2im0 + k)|2
)1/2

≤ sup
|J |=m0

|PJX|+
( s−1∑
i=0

2im0|X∗(2im0)|2
)1/2

(7.8)

(here we use convention X∗(i) = 0 for i > m). By Theorem 3.3, we get, for
u ≥ 0,

P
(
|X∗(2im0)|2 ≥ C2 log2

( eN

2im0

)
+ u2

)
≤ exp

(
− σ−1

X

( 1

C3

u2i/2
√
m0

))
.

We have

C2

s−1∑
i=0

2im0 log2
( eN

2im0

)
≤ C4m log2

(eN
m

)
.
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Therefore for any u0, . . . , us−1 ≥ 0,

P
( s−1∑
i=0

2im0|X∗(2im0)|2 ≥ C4m log2
(eN
m

)
+

s−1∑
i=0

u2
i

)
≤

s−1∑
i=0

exp
(
− σ−1

X

( 1

C3

ui

))
.

Take u2
i =

27C2
3

s
t2m log2( eN

m
). Since s ≤ 2 log(em/m0), we obtain

P
( s−1∑
i=0

2im0|X∗(2im0)|2 ≥ (C4 + 27C2
3 t

2)m log2
(eN
m

))
≤ s exp

(
− σ−1

X

(8
√

2√
s
t
√
m log

(eN
m

)))
≤ 1

2
exp

(
− σ−1

X

( 1√
log(em/m0)

t
√
m log

(eN
m

)))
,

where we also used that by (3.5) one has σ−1
X (8v) ≥ σ−1

X (v) + 3v. This
together with (7.7) and (7.8) completes the proof.
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