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Abstract

Let p ≥ 1, ε > 0, r ≥ (1 + ε)p, and X be a (−1/r)-concave random
vector in Rn with Euclidean norm |X|. We prove that

(E|X|p)1/p ≤ c (C(ε)E|X|+ σp(X)) ,

where
σp(X) = sup

|z|≤1

(E|〈z,X〉|p)1/p,

C(ε) depends only on ε and c is a universal constant. Moreover, if in
addition X is centered then

(E|X|−p)−1/p ≥ c(ε) (E|X| − Cσp(X)) .
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1 Introduction

Let X be a random vector with values in a finite dimensional Euclidean space
E with Euclidean norm | · | and scalar product 〈·, ·〉. For any p > 0, we define
the weak p-th moment of X by

σp(X) = sup
|z|≤1

(E|〈z,X〉|p)1/p.

Clearly (E|X|p)1/p ≥ σp(X) and by Hölder’s inequality, (E|X|p)1/p ≥ E|X|.
In this paper we are interested in reversed inequalities of the form

(E|X|p)1/p ≤ C1 E|X|+ C2σp(X) (1.1)

for p ≥ 1 and constants C1 and C2.

∗Research partially supported by MNiSW Grant no. N N201 397437.
†Research partially supported by ANR GeMeCoD, ANR 2011 BS01 007 01.
‡Research partially supported by the E.W.R. Steacie Memorial Fellowship.
§Research partially supported by the ANR project ANR-08-BLAN-0311-01.
¶This author holds the Canada Research Chair in Geometric Analysis.

1



This is known for some classes of distributions and the question has been
studied in a more general setting (see [20] and references therein) and our ob-
jective in this paper is to describe new classes for which the relationship (1.1)
is satisfied.

Let us recall some known results when (1.1) holds. It clearly holds for
Gaussian vectors and it is not difficult to see that (1.1) is true for subgaussian
vectors (see below for definitions) for every p ≥ 1, with C1 and C2 depending
only on the subgaussian parameter.

Another example of such a class is the class of so-called log-concave vectors.
A probability measure µ on Rm is called log-concave if for all 0 < θ < 1 and for
all compact subsets A,B ⊂ Rm with positive measure one has

µ((1− θ)A+ θB) ≥ µ(A)1−θµ(B)θ. (1.2)

A random vector with a log-concave distribution is called log-concave. It is
known that for every log-concave random vector X in a finite dimensional Eu-
clidean space and any p > 0,

(E|X|p)1/p ≤ C
(
E|X|+ σp(X)

)
,

where C > 0 is a universal constant. See Corollary 5.3 and references below.
In this paper we will consider the class of convex measures introduced by

Borell. Let κ < 0. A probability measure µ on Rm is called κ-concave if for all
0 < θ < 1 and for all compact subsets A,B ⊂ Rm with positive measure one
has

µ((1− θ)A+ θB) ≥ ((1− θ)µ(A)κ + θµ(B)κ)
1/κ

. (1.3)

A random vector with a κ-concave distribution is called κ-concave. Note that
a log-concave vector is also κ-concave for any κ < 0.

We show in Theorem 5.2 that for κ > −1, a κ-concave random vector satisfies
(1.1) for all 0 < (1 + ε)p < −1/κ with C1 and C2 depending only on ε.

In fact, in Definition 4.1 we will introduce a general assumption on the
distribution, called H(p, λ). The main result of the first part of the paper is
Theorem 4.2 in which we show that this assumption is sufficient in order to have
(1.1). In Theorem 5.1 we prove that convex measures satisfy this assumption.

One of the main applications of the relationship (1.1) consists in tail in-
equalities for P (|X| ≥ tE|X|). In Corollary 5.4 we show that for r > 2 and
for a (−1/r)-concave isotropic random vector X ∈ Rn the above probability is

bounded by
(
cmax{1,r/

√
n}

t

)r/2
. From this bound we deduce that the empirical

covariance matrix of a sample of size proportional to n is a good approxima-
tion of the covariance matrix of X, extending results of [1, 2] from log-concave
measures to convex measures. This provides thus a new class of random vectors
satisfying such approximation. See Corollary 5.6 and the remark following it.

The second part of the paper deals with negative moments. We are looking
for relationship of the form(

E|X|−p
)−1/p ≥ C1 E|X| − C2σp(X) (1.4)

for p > 0 and constants C1 and C2.
We show in Theorem 6.2 that for κ > −1, an n-dimensional κ-concave

random vector satisfies (1.4) for all 0 < (1 + ε)p < min{n/2, (−1/κ)} with C1

and C2 depending only on ε. As an application we show a small ball probability
estimate for κ-concave random vectors. In the log-concave setting it was proved
in [28].
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2 Preliminaries

The space Rm is equipped with the scalar product 〈·, ·〉, the Euclidean norm
| · |, the unit ball Bm2 and the volume measure vol(·). The canonical basis is
denoted by e1, e2, . . . , em. A gauge or Minkowski functional ‖ · ‖ on Rm is a
non-negative function on Rm satisfying: ‖λx‖ = λ‖x‖ and ‖x+ y‖ ≤ ‖x‖+ ‖y‖
for every x, y ∈ Rm and every real λ ≥ 0 and such that ‖x‖=0 if and only if
x = 0. The dual gauge is defined for every x ∈ Rm by ‖x‖∗ = max{〈x, t〉 :
‖t‖ ≤ 1}. A body is a compact subset of Rm with a non-empty interior. Any
convex body K ⊂ Rm containing the origin in its interior defines the gauge by
‖x‖ = inf{λ ≥ 0 : x ∈ λK}. It is called the Minkowski functional of K. If
K ⊂ Rm is a convex body containing the origin in its interior, the polar body
K◦ is defined by K◦ = {x ∈ Rm : 〈x, t〉 ≤ 1 for all t ∈ K}. The diameter of K
in the Euclidean metric is denoted by diam(K).

For a linear subspace F ⊂ Rm we denote the orthogonal projection on F by
PF . Note that PFK

◦ := PF (K◦) = (K ∩ F )◦, when the polar is taken in F .
For a random vector X in Rm with a density h and a subspace F ⊂ Rm, we

denote the density of PFX by hF .
A random vector X in Rm will be called non-degenerate if it is not supported

in a proper affine subspace of Rm. It is called isotropic if it is centered and for
all θ ∈ Rm, E|〈X, θ〉|2 = |θ|2.

Given a non-negative bounded function f on Rm we introduce the following
associated set. For any α ≥ 1, let

Kα(f) = {t ∈ Rm : f(t) ≥ α−m‖f‖∞}, (2.1)

where ‖f‖∞ = supt∈Rm |f(t)|.
By gi, gi,j we denote independent standard Gaussian random variables, i.e.

centered and of variance one. A standard Gaussian vector in Rm is denoted by
G, i.e. G = (g1, g2, ..., gm). The standard Gaussian matrix is the matrix whose
entries are i.i.d. standard Gaussian variables, i.e. Γ = {gi,j}. By γp we denote
the Lp norm of g1. Note that γp/

√
p→ 1/

√
e as p→∞.

We denote by µm,k the Haar probability measure on the Grassmannian Gm,k
of k-dimensional subspaces of Rm.

Recall that for a real number s, dse denotes the smallest integer which is not
less than s.

By C, C0, C1, C2, ..., c, c0 c1, c2 we denote absolute positive constants,
whose values can change from line to line.

For two functions f and h we write f ∼ h if there are absolute positive
constants c and C such that cf ≤ h ≤ Cf .

3 Convex probability measures

In this section by a measure we always mean a probability measure.
Let κ ≤ 1/m. A Borel measure µ on Rm is called κ-concave if it satisfies

(1.3). When κ = 0, this inequality should be read as (1.2) and it defines µ as a
log-concave measure.

In this paper we will be interested in the case κ ≤ 0, which we consider from
now on.

The class of κ-concave measures was introduced and studied by Borell. We
refer to [10, 11] for a general study and to [9] for more recent development. A
κ-concave measure is supported on some convex subset of an affine subspace
where it has a density. When the support of κ-concave measure µ generates the
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whole space, a characterization of Borell ([10, 11]) states that µ is absolutely
continuous with respect to the Lebesgue measure and has a density h which is
log-concave when κ = 0 and when κ < 0, is of the form

h = f−β with β = m− 1

κ
,

where f : Rm → (0,∞] is a convex function. The class of m-dimensional κ-
concave measures is increasing as κ is decreasing. In particular a log-concave
measure is κ-concave for any κ < 0.

As we mentioned in the Introduction, a random vector with a κ-concave
distribution is called κ-concave. Clearly, the linear image of a κ-concave measure
is also κ-concave. Recall that any semi-norm of an m-dimensional vector with
a κ-concave distribution has moments up to the order p < −1/κ (see [10] and
Lemmas 7.3 and 7.4 below). Since we are interested in comparison of moments
with the moment of order 1, we will always assume that −1 < κ ≤ 0.

4 Strong and weak moments

In this section we consider a random vector X in a finite dimensional Euclidean
space E.

Definition 4.1. Let p > 0, m = dpe, and λ ≥ 1. We say that a random vector
X in E satisfies the assumption H(p, λ) if for every linear mapping A : E → Rm
such that Y = AX is non-degenerate in Rm there exists a gauge ‖ · ‖ on Rm
such that E‖Y ‖ <∞ and

(E‖Y ‖p)1/p ≤ λE‖Y ‖. (4.1)

Remark. Let us give a first example of a random vector satisfying H(p, λ).
Let X be a random vector in an n-dimensional Euclidean space E, satisfying,
for some ψ ≥ 1,

∀z ∈ E ∀ 1 ≤ p ≤ n (E|〈z,X〉|p)1/p ≤ ψ√pE|〈z,X〉|. (4.2)

Then X satisfies H(p, Cψ2) for every p ≥ 1. For example, the standard Gaussian
and Rademacher vectors satisfy the above condition with ψ being a numerical
constant. Note that one of equivalent definitions of a subgaussian vector says
that X is subgaussian if it satisfies (4.2) for every p ≥ 1.

To prove that (4.2) implies H(p, Cψ2), let p > 0, m = dpe and let A : E →
Rm be such that Y = AX is non-degenerate. We may assume that m ≥ 2.
Clearly, because of the linear invariance of the property (4.2), we may also
assume that Y = AX is isotropic. Thus (4.2) yields,

∀z ∈ Rm (E|〈z, Y 〉|p)1/p ≤ ψ√pE|〈z, Y 〉| ≤ ψ
√
m|z| ≤

√
2ψ2|z|E|Y |, (4.3)

where the last inequality follows from isotropicity of Y by applying (4.2) with
p = 2, zi = A>ei, i ≤ m, and the Cauchy-Schwarz inequality.

Now let us make the following general observation. Let p ≥ 1 and m = dpe.
Let Y be a random vector in an m-dimensional normed space with norm ‖ · ‖.
Since anym-dimensional norm can be estimated, up to a multiplicative constant,
by the supremum over an exponential (in m) number of norm one linear forms,
we deduce that

(E‖Y ‖p)1/p ≤ C ′ sup
‖ϕ‖∗≤1

(E|ϕ(Y )|p)1/p , (4.4)
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where C ′ is a universal constant (see [21] Proposition 3.20). Combining this
with (4.3) we conclude that

(E|Y |p)1/p ≤ C ′ sup
|z|≤1

(E|〈z, Y 〉|p)1/p ≤ C C ′ ψ E|Y |,

which shows that X satisfies H(p, CC ′ψ).

The main result of this section states a relationship between weak and strong
moments under the assumption H(p, λ).

Theorem 4.2. Let p > 0 and λ ≥ 1. If a random vector X in a finite dimen-
sional Euclidean space satisfies H(p, λ), then

(E|X|p)1/p ≤ c(λE|X|+ σp(X)),

where c is a universal constant.

The first step of the proof of Theorem 4.2 consists of showing that there
exists some z such that (E(〈z, Y 〉)p+)1/p is small, with comparison to E|Y |. This
is the purpose of the following lemma.

Lemma 4.3. Let Y be a random vector in Rm. Let ‖ · ‖1 and ‖ · ‖2 be two
gauges on Rm and ‖ · ‖∗1 and ‖ · ‖∗2 be their dual gauges. Then for all p > 0,

min
‖z‖∗2=1

(E(〈z, Y 〉)p+)1/p ≤ (E‖Y ‖p1)1/p

E‖Y ‖1
E‖Y ‖2.

Proof. Let r be the largest real number such that r‖t‖1 ≤ ‖t‖2 for all t ∈ Rm.
By duality r is the largest number such that r‖w‖∗2 ≤ ‖w‖∗1 for w ∈ Rm. Pick
z ∈ Rm such that ‖z‖∗2 = 1 and ‖z‖∗1 = r. Then 〈z, t〉 ≤ ‖z‖∗1‖t‖1 ≤ r‖t‖1 for
all t ∈ Rm. Therefore, for any p > 0, (E(〈z, Y 〉)p+)1/p ≤ r (E‖Y ‖p1)1/p. Thus the
lemma follows from the inequality rE‖Y ‖1 ≤ E‖Y ‖2.

The second step of the proof of Theorem 4.2 is contained in the next lemma.

Lemma 4.4. Let n,m ≥ 1 be integers. Let p ≥ 1. Let X be an n-dimensional
random vector and Γ be an n×m standard Gaussian matrix. Then

(E|X|p)1/p ≤ 21/p γ−1p

(
E min
|t|=1
‖Γt‖p,+ + (Cγp +

√
m)σp(X)

)
,

where ‖z‖p,+ =
(
E (〈z,X〉)p+

)1/p
and C is a universal constant.

Proof. For every x, y ∈ Rn, | ‖x‖p,+ − ‖y‖p,+ | ≤ |x− y|σp(X). The classical
Gaussian concentration inequality (see [13] or inequality (2.35) and Proposi-
tion 2.18 in [22]) gives that

P
(∣∣ ‖G‖p,+ − E‖G‖p,+

∣∣ ≥ s) ≤ 2 exp
(
−s2/2σ2

p(X)
)
,

and implies (cf. [23], Statement 3.1)

(E‖G‖pp,+)1/p ≤ E‖G‖p,+ + Cγpσp(X), (4.5)

where C is a universal constant. Since 〈G,X〉 has the same distribution as
|X| g1, we have

E (〈G,X〉)p+ = (1/2)E|〈G,X〉|p and E|〈G,X〉|p = γpp E|X|p. (4.6)
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Therefore

(E|X|p)1/p = 21/p γ−1p
(
E‖G‖pp,+

)1/p ≤ 21/p γ−1p
(
E‖G‖p,+ + Cγpσp(X)

)
.

The Gordon minimax lower bound (see [16], Theorem 2.5) states that for any
norm ‖ · ‖

E‖G‖ ≤ E min
|t|=1
‖Γt‖+ E|H| max

|z|=1
‖z‖,

where H is a standard Gaussian vector in Rm. It is easy to check the proof and
to show that this inequality remains true when ‖ · ‖ is a gauge. This gives us
that

E‖G‖p,+ ≤ E min
|t|=1
‖Γt‖p,++E|H| max

|z|=1
‖z‖p,+ ≤ E min

|t|=1
‖Γt‖p,++

√
mmax
|z|=1

‖z‖p,+

and it is enough to observe that max|z|=1 ‖z‖p,+ ≤ σp(X).

Proof of Theorem 4.2. We may assume that p ≥ 1 since Theorem 4.2 is
obviously true when 0 < p ≤ 1. Let m be the integer so that 1 ≤ p ≤ m < p+1,
thus m ≤ 2p. We use the notation of Lemma 4.4. We first condition on Γ. We
have

‖Γz‖p,+ = (EX(〈Γz,X〉)p+)1/p = (EX(〈z,Γ∗X〉)p+)1/p.

Let Y = Γ∗X ∈ Rm. If Y is supported by a hyperplane then

min
|z|=1

(EX(〈z,Γ∗X〉)p+)1/p = 0.

Otherwise by our assumption H(p, λ) there exists a gauge in Rm such that

(E‖Y ‖p)1/p ≤ λE‖Y ‖.

From Lemma 4.3 we get

min
|z|=1

(EX(〈z,Γ∗X〉)p+)1/p ≤ λEX |Γ∗X|.

We now take the expectation with respect to Γ and get

E min
|t|=1
‖Γt‖p,+ ≤ λE|Γ∗X| = λE|H|E|X| ≤ λ

√
mE|X|,

where H is a standard m-dimensional Gaussian vector. The proof is concluded
using Lemma 4.4 and the fact that γ−1p

√
p is bounded. Indeed,

(E|X|p)1/p ≤ 21/pγ−1p λ
√
mE|X|+ 21/p(C + γ−1p

√
m)σp(X)

≤ c′ (λE|X|+ σp(X)) .

5 Tail behavior of convex measures

Theorem 5.1. Let n ≥ 1 and r > 1. Let X be a centered (−1/r)-concave
random vector in a finite dimensional Euclidean space. Then for every 0 <

p < r, X satisfies the assumption H(p, λ(p, r)) with λ(p, r) = c
(

r
r−1

)3 (
r
r−p

)4
,

where c is a universal constant.
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Remark: Note that the parameter λ(p, r) in Theorem 5.1 is bounded by a
universal constant if the parameters p and r are not close, for instance if r ≥
2 max{1, p}.

Theorem 5.2. Let r > 1 and let X be a (−1/r)-concave random vector in a
finite dimensional Euclidean space. Then, for every 0 < p < r,

(E|X|p)1/p ≤ c(C2(p, r)E|X|+ σp(X)), (5.1)

where C2(p, r) = c
(

r
r−1

)3 (
r
r−p

)4
and c is a universal constant.

Proof. Without loss of generality we assume that p ≥ 1. The proof may be
reduced to the case of a centered random vector. Indeed, let X be a (−1/r)-
concave random vector, then so is X − EX. Since

(E|X|p)1/p ≤ (E|X − EX|p)1/p + |EX| ≤ (E|X − EX|p)1/p + E|X|,

E|X − EX| ≤ 2E|X| and σp(X − EX) ≤ 2σp(X), we may assume that X is
centered. The theorem now follows immediately by Theorems 4.2 and 5.1.

Note that trivially a reverse inequality to (5.1) is valid, for p ≥ 1:

2(E|X|p)1/p ≥ E|X|+ σp(X).

Therefore Theorem 5.2 states an equivalence

(E|X|p)1/p ∼C2(p,r) E|X|+ σp(X).

Since a log-concave measure is κ-concave for any κ < 0, we obtain

Corollary 5.3. For any log-concave random vector X in a finite dimensional
Euclidean space and any p > 0,

(E|X|p)1/p ≤ C
(
E|X|+ σp(X)

)
,

where C > 0 is a universal constant.

As formulated here, Corollary 5.3 first appeared as Theorem 2 in [4] (see
also [3]). A short proof of this result was given in [5]. It can be deduced directly
from Paouris work in [27] (see [5]).

As it was mentioned above, if X ∈ E is (−1/r)-concave then so is 〈z,X〉 for
any z ∈ E. From Lemma 7.3, we have that for any 1 ≤ p < r,

(E|〈z,X〉|p)1/p ≤ C1(p, r)E|〈z,X〉|, (5.2)

where C1(p, r) is defined in Lemma 7.3. Assume that r > 2. Let n be the
dimension of E. If moreover X is centered and has the identity as the covariance
matrix – such a vector is called an isotropic random vector – then one has for
any z ∈ Sn−1 and any 1 ≤ p < r,

(E|〈z,X〉|p)1/p ≤ C1(p, r)E|〈z,X〉| ≤ C1(p, r)(E|〈z,X〉|2)1/2 = C1(p, r). (5.3)

Since in that case, E|X| ≤ (E|X|2)1/2 =
√
n, it follows from Theorem 5.2

that for any 1 ≤ p < r,

(E|X|p)1/p ≤ c(C2(p, r)
√
n+ C1(p, r)). (5.4)

Together with Markov’s inequality this gives the following Corollary.
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Corollary 5.4. Let r > 2 and let X ∈ Rn be a (−1/r)-concave isotropic random
vector. Then for every t > 0,

P
(
|X| ≥ t

√
n
)
≤
(
cmax{1, r/

√
n}

t

)r/2
. (5.5)

In particular, if r ≥ 2
√
n, then for every 6c ≤ t ≤ 3cr/

√
n,

P
(
|X| ≥ t

√
n
)
≤ exp(−c0t

√
n), (5.6)

where c and c0 are universal positive constants.

Remark. A log-concave measure is (−1/r)-concave for every r > 0, thus in
such a case inequality (5.6) is valid for every t > c, which is a result from [27].

Proof of Corollary 5.4. The inequality (5.5) follows by Markov’s inequality
from inequality (5.4) with p = r/2, since C2(r/2, r) ≤ c and C1(r/2, r) ≤ cr for
a universal positive c.

To prove the “In particular” part denote r′ = t
√
n/(3c). Note that r′ ≥ 2

√
n

and that r′ ≤ r. Therefore X is (−1/r′)-concave as well and we can apply (5.5)
with r′, obtaining the bound for probability 3−r

′/2, which implies the result.

We now apply our results to the problem of the approximation of the co-
variance matrix by the empirical covariance matrix. Recall that for a random
vector X the covariance matrix of X is given by EXX>. It is equal to the iden-
tity operator I if X is isotropic. The empirical covariance matrix of a sample
of size N is defined by 1

N

∑N
i=1XiX

>
i , where X1, X2, . . . , XN are independent

copies of X. The main question is how small N can be taken in order that
these two matrices are close to each other in the operator norm (clearly, if X
is non-degenerate then N ≥ n due to the dimensional restrictions and, by the
law of large numbers, the empirical covariance matrix tends to the covariance
matrix as N grows to infinity). See [1, 2] for references on this question and for
corresponding results in the case of log-concave measures. In particular, it was
proved there that for N ≥ n and log-concave n-dimensional vectors X1, · · · , XN

one has ∥∥∥ 1

N

N∑
i=1

XiX
>
i − I

∥∥∥ ≤ C√ n

N

with probability at least 1 − 2 exp(−c
√
n), where, as usual, I is the identity

operator, ‖ · ‖ is the operator norm `n2 → `n2 and c, C are absolute positive
constants.

In [30] (Theorem 1.1), the following condition was introduced: an isotropic
random vector X ∈ Rn is said to satisfy the strong regularity assumption if for
some η, C > 0 and every rank k ≤ n orthogonal projection P , one has for every
t ≥ C

P
(
|PX| ≥ t

√
k
)
≤ C t−2−2ηk−1−η.

We show that an isotropic (−1/r)-concave random vector satisfies this as-
sumption. For simplicity we will show this with η = 1 (one can change η by
adjusting constants).

Lemma 5.5. Let n ≥ 1, a > 0 and r = max{4, 2a log n}. Let X ∈ Rn be an
isotropic (−1/r)-concave random vector. Then there exists an absolute constant
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C such that for every rank k orthogonal projection P and every t ≥ C1(a), one
has

P
(
|PX| ≥ t

√
k
)
≤ C2(a) t−4k−2,

where C1(a) = C exp (4/a) and C2(a) = C max{(a log a)4, exp (32/a)}.

Proof. Let P be a projection of rank k. Let c be the constant from Corol-
lary 5.4 (without loss of generality we assume c ≥ 1) and t > c. If r ≤

√
k then

Corollary 5.4 implies that

P
(
|PX| ≥ t

√
k
)
≤
(c
t

)r/2
≤
(c
t

)a logn

= n−a log(t/c).

If r >
√
k thenX is also (−1/

√
k)-concave, hence, assuming k > max{4, 64a2 log2(4a)}

(so that
√
k ≥ 2a log k) and applying Corollary 5.4 again we obtain

P
(
|PX| ≥ t

√
k
)
≤
(c
t

)√k/2
≤
(c
t

)a log k

= k−a log(t/c).

Thus in both cases we have

P
(
|PX| ≥ t

√
k
)
≤ k−a log(t/c).

One can check that for t ≥ c2 exp (4/a) and k ≥ exp (16/a) this implies

P
(
|PX| ≥ t

√
k
)
≤ t−4k−2,

which proves the desired result for k > Ca := max{64a2 log2(4a), exp (16/a)}
and t ≥ c2 exp (4/a).

Assume now that k ≤ Ca. Then we apply Borell’s Lemma – Lemma 7.3
(note that E|PX| ≤

√
k). We have that for every t ≥ 3

P
(
|PX| ≥ t

√
k
)
≤
(

1 +
t

9r

)−r
.

It is not difficult to see (e.g., by considering cases t ≤ 9r, 9r < t ≤ 18r and
t > 18r) that for C(a) := 544C2

a , t ≥ 3 and r ≥ 4, one has

P
(
|PX| ≥ t

√
k
)
≤ C(a)t−4k−2.

This completes the proof.

Theorem 1.1 from [30] and the above lemma immediately imply the follow-
ing corollary on the approximation of the covariance matrix by the empirical
covariance matrix.

Corollary 5.6. Let n ≥ 1, a > 0 and r = max{4, 2a log n}. Let X1, . . . , XN

be independent (−1/r)-concave isotropic random vectors in Rn. Then for every
ε ∈ (0, 1) and every N ≥ C(ε, a)n, one has

E
∥∥∥ 1

N

N∑
i=1

XiX
>
i − I

∥∥∥ ≤ ε,
where C(ε, a) depends only on a and ε.
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Remark. Let r = 2a log(2n) > 8. Applying Corollary 5.4 for independent
(−1/r)-concave isotropic random vectors X1, X2, . . . ,XN and using results of
[25], it can be checked that with large probability

∥∥∥ 1

N

N∑
i=1

XiX
>
i − I

∥∥∥ ≤ C(a)

√
n

N

where C(a) depends only on a. As we mentioned above, this extends the results
of [1, 2] on the approximation of the covariance matrix from the log-concave
setting to the class of convex measures.

Now we prove Theorem 5.1. We need the following lemma. Recall that Kα

was defined by (2.1).

Lemma 5.7. Let m be an integer. Let r > 1 and 0 < p < r. Let Y ∈ Rm be
a centered random vector with density g = f−β with β = m + r and f convex
positive. Let F : Rm → R+ be such that for every t ∈ Rm, F (2t) ≤ 2pF (t) and
assume that EF (Y ) is finite. Then, there exists a universal constant c ≥ 1 such
that 0 ∈ Kα(g) and

EF (Y ) ≤ c(p, r)E
(
F (Y )1Kα(g)(Y )

)
, (5.7)

where c(p, r) = 1 + c
r−p and α =

(
c (m+r)2

(r−p)(r−1)

)m+r
m

.

Proof. Let α ≥ 1 be specified later. Let γ = β−m−1
β−1 . From Lemma 7.2 we

have γf(0) ≤ min f = ‖g‖−1/β∞ and by definition, min f < α−m/(r+m)f(t) when
t /∈ Kα(g). Using the convexity of f and the last two inequalities we get

∀t /∈ Kα(g) g(t/2) ≥ g(t)

(
1

2
+

1

2
γ−1α−m/(r+m)

)−(r+m)

. (5.8)

Let δ = δ(α) :=
(
1 + γ−1α−m/(r+m)

)r+m
. The inequality (5.8) can be written

∀t /∈ Kα(g) g(t) ≤ 2−r−mδg(t/2).

Therefore

EF (Y )1Kα(g)c(Y ) ≤ 2−r−m
∫
Kα(g)c

F (t)g

(
t

2

)
δ dt ≤ 2−r

∫
Rm

F (2t)g(t)δ dt

and from the assumption on F , we get

EF (Y )1Kα(g)c(Y ) ≤ 2p−rδEF (Y ).

We conclude that if 2p−rδ < 1 then

EF (Y ) ≤ (1− 2p−rδ)−1E
(
F (Y )1Kα(g)(Y )

)
.

Let

α0 =
((

2
r−p

2(r+m) − 1
)
γ
)− r+mm

,

so that δ0 := δ(α0) = 2
r−p
2 , then (1− 2p−rδ0)−1 = (1− 2

p−r
2 )−1 ≤ 1 + c

r−p and

α0 ≤ α =

(
c

(r +m)2

(r − p)(r − 1)

) r+m
m

,
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where c ≥ 1 is a universal constant. This concludes the proof of (5.7).

Clearly γ−1α−m/(r+m) ≤ γ−1α−m/(r+m)
0 < 1 and recall that γf(0) ≤ min f .

We deduce that f(0) ≤ α
m
r+m min f and thus 0 ∈ Kα(g).

Remark. An interesting setting for the previous lemma is when r is away
from 1, for instance r ≥ 2, r and m are comparable, and p is proportional to r.
In this case γ is bounded by a constant, c(p, r) explodes only when p→ r, and
α depends only on the ratio r/p.

Proof of Theorem 5.1. Let 1 ≤ p < r and m = dpe. Let A : E → Rm be
a linear mapping and Y = AX be a centered non-degenerate (−1/r)-concave
random vector. By Borell’s result [10, 11], there exists a positive convex function
f such that the distribution of Y has a density of the form g = f−(r+m).

We apply Lemma 5.7 and use the notation of that lemma. Because the class
of (−1/r)-concave measures increases as the parameter r decreases, we may
assume that r ≤ 2p (note that λ(p, 2p) ∼ λ(p, r) for r > 2p, so we do not loose
control of the constant assuming that r ≤ 2p). Thus 1 ≤ p ≤ m and r ≤ 2m.
We deduce that the parameter α from Lemma 5.7 satisfies

α ≤ c
(

r

r − 1
· r

r − p

)3

,

where c is a numerical constant.
Now note that because g−1/(r+m) is convex, K = Kα(g) is a convex body

and from Lemma 5.7, it contains 0. Let ‖ · ‖ be its Minkowski functional.
We have

1 ≥ P(Y ∈ K) =

∫
K

g ≥ α−m‖g‖∞vol(K),

so that

P(‖Y ‖ ≤ 1/(2α)) =

∫
K/2α

g ≤ ‖g‖∞(2α)−mvol(K) ≤ 2−m ≤ 1/2,

and therefore

E‖Y ‖ ≥ 1

2α
P(‖Y ‖ > 1/(2α)) ≥ 1/(4α).

Let F (t) = ‖t‖p for t ∈ Rm. Thus F (2t) = 2pF (t) and, since p < r,
EF (Y ) is finite. Hence F satisfies the assumption of Lemma 5.7. Therefore for
c(p, r) = 1 + c/(r − p)

E‖Y ‖p ≤ c(p, r) E (‖Y ‖p1K(Y )) ≤ c(p, r). (5.9)

We conclude that

(E‖Y ‖p)1/p/E‖Y ‖ ≤ 4α c(p, r)1/p ≤ c
(

r

r − 1

)3(
r

r − p

)4

for some numerical constant c.

Another application of Lemma 5.7, which will be used later, is the following
lemma.

Lemma 5.8. Let 1 ≤ p < r and m = dpe. Let Y ∈ Rm be a centered (−1/r)-
concave random vector with density g. There exists a universal constant c, such
that 0 ∈ Kα(g) and

(E|〈Y, t〉|p)1/p =

(∫
Rm
|〈x, t〉|pg(x)dx

)1/p

≤ C3(p, r) max
x∈Kα(g)

|〈x, t〉|, (5.10)
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where α = c
(

r2

(r−p)(r−1)

)3
, C3(p, r) =

(
1 + c

r−p

)1/p
, and c > 0 is a universal

constant.

Proof. Repeating the argument leading to (5.9) with the function F (t) =
|〈x, t〉|p we obtain that 0 ∈ Kα(g) and(∫

Rm
|〈x, t〉|pg(x)dx

)1/p

≤
(

1 +
c

r − p

)1/p
(∫

Kα(g)

|〈x, t〉|pg(x)dx

)1/p

.

Clearly(∫
Kα(g)

|〈x, t〉|pg(x)dx

)1/p

≤ max
x∈Kα(g)

|〈x, t〉|
(∫

Rm
g(x)dx

)1/p

= max
x∈Kα(g)

|〈x, t〉|,

which implies the result.

6 Small ball probability estimates

The following result was proved in [28].

Theorem 6.1. Let X be a centered log-concave random vector in a finite di-
mensional Euclidean space. For every ε ∈ (0, c′) one has

P
(
|X| ≤ ε(E|X|2)1/2

)
≤ εc(E|X|

2)1/2/σ2(X),

where c, c′ > 0 are universal positive constants.

In this section we generalize this result to the setting of convex distributions.
We first establish a lower bound for the negative moment of the Euclidean norm
of a convex random vector.

Theorem 6.2. Let r > 1 and let X be a centered n-dimensional (−1/r)-concave
random vector. Assume 1 ≤ p < min{r, n/2}. Then(

E|X|−p
)−1/p ≥ C4(p, r) (E|X| − Cσp(X)),

where

C4(p, r) = c

(
r2

(r − p)(r − 1)

)−3(
1 +

c

r − p

)−1/p
and c, C are absolute positive constants. Moreover, if 0 < p < 1 then(

E|X|−p
)−1/p ≥ c0 (1− p) r − 1

r
E|X|,

where c0 is an absolute positive constant.

From Markov’s inequality we deduce a small ball probability estimates for
convex measures.

Theorem 6.3. Let n ≥ 1 and r > 1. Let X be a centered n-dimensional
(−1/r)-concave random vector. Assume 1 ≤ p < min{r, n/2}. Then, for every
ε ∈ (0, 1),

P (|X| ≤ εE|X|) ≤
(
2C−14 (p, r)ε

)p
,

whenever E|X| ≥ 2Cσp(X), where c, C and C4(p, r) are the constants from
Theorem 6.2.
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Remark. Theorem 6.3 implies Theorem 6.1 proved in [28]. Indeed, let
p ≥ 1, r ≥ max{3, 2p} and A := (E|X|2)1/2/σ2(X) (note that A ≤

√
n). By

Lemma 7.3,

σp(X) ≤ C1(p, r)σ1(X) ≤ c0pσ2(X) and (E|X|2)1/2 ≤ c1E|X|.

Thus E|X|/σp(X) ≥ c2A/p. If c2A/(2C) ≥ 1, we chose p = c2A/(2C) and apply
Theorem 6.3. Since

E|X|/σp(X) ≥ c2A/p ≥ 2C,

Theorem 6.1 follows. Now assume that A ≤ 2C/c2. Then Theorem 6.1 follows
from Lemma 7.5 and Lemma 7.4 (with q = 2), which for a log-concave random

vector X states that
(
E|X|2

)1/2 ≤ cMed(|X|), where c is a numerical constant
and Med(|X|) is a median of |X|.

We need the following result from [19] (Theorem 1.3 there).

Theorem 6.4. Let n ≥ 1 be an integer, ‖ · ‖ be a norm in Rn, K be its unit

ball and σ := max|t|=1 ‖t‖. Assume that 0 < p ≤ c0 (E‖G‖/σ)
2

and m = dpe.
Then

cE‖G‖√
n
≤

(∫
Gn,m

(diam(K ∩ F ))
m
dµ(F )

)−1/m
≤ E‖G‖

c
√
n
,

where µ = µn,m and c is an absolute positive constant.

The proof of Theorem 6.2 is based on the following two lemmas.

Lemma 6.5. Let m ≤ n, α > 0 and X be a random vector in Rn with density
g. Then,

(E|X|−m)−1/m ≥ 1√
2πα

(E|G|−m)−1/m

(∫
Gn,m

(vol(Kα(gF )))
−1
dµ(F )

)−1/m
.

Proof. Integrating in polar coordinates (see [28], Proposition 4.6), we obtain
the following key formula

(E|X|−m)−1/m = (2π)−1/2(E|G|−m)−1/m

(∫
Gn,m

gF (0)dµ(F )

)−1/m
.

Note that

1 =

∫
F

gF (x)dx ≥
∫
Kα(gF )

gF (x)dx ≥ α−m‖gF ‖∞vol(Kα(gF )).

This implies the result, since gF (0) ≤ ‖gF ‖∞.

Below we will use the following notation. For a random vector X in Rn,
p > 0, and t ∈ Rn we denote

‖t‖p = (E|〈X, t〉|p)1/p

(note that it is the dual gauge of the so-called centroid body, which is rather an
Lp-norm than the `p-norm).

13



Lemma 6.6. Let 1 ≤ p < r and m = dpe. Let X be a centered (−1/r)-concave
random vector in Rn with density g. Let K denote the unit ball of ‖ · ‖p. Then
for every m-dimensional subspace F ⊂ Rn one has

(vol(PFK
◦))1/m ≤ 4C3(p, r)(vol(Kα(gF )))1/m,

where α = c
(

r2

(r−p)(r−1)

)3
, C3(p, r) =

(
1 + c

r−p

)1/p
, and c > 0 is a universal

constant.

Proof. Applying Lemma 5.8 to Y = PFX, we obtain that for every t ∈ F

||t||p ≤ C3(p, r) max
x∈Kα(gF )

|〈x, t〉|

with α and C3(p, r) given in Lemma 5.8. Since for t ∈ F , ||t||p = max〈x, t〉,
where the supremum is taken over x ∈ (K ∩ F )◦ = PFK

◦, this is equivalent to

PFK
◦ ⊂ C3(p, r)conv(Kα(gF ) ∪ −Kα(gF )).

Lemma 5.8 also claims that 0 ∈ Kα(gF ), thus

conv(Kα(gF ) ∪ −Kα(gF )) ⊂ Kα(gF )−Kα(gF ).

By Rogers-Sheppard inequality [29] we observe

(vol(PFK
◦))1/m ≤

(
2m

m

)1/m

C3(p, r)(vol(Kα(gF )))1/m.

This implies the result.

Proof of Theorem 6.2. Recall that c1, c2, ... denote absolute positive
constants. Recall also that for a random vector X in Rn, p > 0, and t ∈ Rn

‖t‖p = (E|〈X, t〉|p)1/p ,

and, given a norm ‖ · ‖ on Rn, σ = σ(‖ · ‖) = max|t|=1 ‖t‖. In particular,

σ(‖ · ‖p) = σp(X).

Finally, let K denote the unit ball of ‖ · ‖p.
We assume that p ≥ 1, X is non-degenerate in Rn and let m = dpe. Without

loss of generality we assume that

E|X| ≥ Cσp(X),

where C is a large enough absolute constant.
As in (4.5), since p ≤ m ≤ 2p, we have

E|X| ≤ (E|X|p)1/p = γ−1p (E‖G‖pp)1/p ≤ γ−1p (E‖G‖p + c1γpσp(X))

≤ c2(E‖G‖p/
√
m+ σp(X)).

Hence

E‖G‖p ≥
√
pc−12 (E|X| − c2σp(X)) ≥ √p(c2)−1(C − c2)σp(X). (6.1)

This implies that for sufficiently large C we have m ≤ 2p ≤ c0(E‖G‖p/σp(X))2,
where c0 is the constant from Theorem 6.4.
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Note that (E|G|−p)−1/p ≥ (E|G|−m)−1/m ≥ c3
√
n (the second inequality is

well known for m ≤ n/2 and can be directly computed). Combining Lemmas
6.5 and 6.6, we obtain

(E|X|−m)−1/m ≥ c4
√
n

αC3(p, r)

(∫
Gn,m

(vol(PFK
◦))−1dµ(F )

)−1/m
,

with α and C3(p, r) as in Lemma 6.6.
Now note that PFK

◦ = (K ∩ F )◦ ⊃ (diam(K ∩ F ))−1Bn2 ∩ F . Therefore
1/vol(PFK

◦) ≤ (c5
√
m diam(K ∩ F ))m. Applying Theorem 6.4, we obtain

(E|X|−m)−1/m ≥ c6
αC3(p, r)

√
m

E‖G‖p.

Applying the first inequality from (6.1), we obtain the desired result.
The “Moreover” part is an immediate corollary of Lemmas 7.4 (with q = 1)

and 7.5.

Conjecture 6.7. We conjecture that for convex distributions a similar thin
shell property holds as for log-concave distribution: if X is an isotropic (−1/r)-
concave random vector in Rn with r > 2, then

∀t ∈ (0, 1) P
(∣∣|X| − E|X|

∣∣ ≥ t√n)→ 0.

as n tends to ∞. See [18] for recent work in the log-concave setting.

7 Appendix

There is a vast literature on inequalities of integrals related to concave functions.
Some of the following lemmas may be known but we did not find any reference.
Their proofs use classical methods for demonstrating integral inequalities in-
volving concave functions (see [12] and [26]). The first lemma is a mirror image
for negative moments of a result from [24] valid for positive moments.

Lemma 7.1. Let s,m, β ∈ R such that β > m + 1 > 0 and s > 0. Let ϕ be a
non-negative concave function on [s,+∞). Then

G(β) =

∫∞
s
ϕm(x)x−β dx

sm−β+1B(m+ 1, β −m− 1)

is an increasing function of β on (m+1,∞). Here B(u, v) =
∫ 1

0
(1−t)u−1tv−1 dt

denotes the Beta function.

Proof. Let β > m+ 1. Consider the function

H(t) =

∫ t

s

ϕm(x)x−β dx−
∫ t

s

am(x− s)mx−β dx

for t ≥ s, where a is chosen so that H(∞) = 0. Note that H ′, the derivative of
H, has the same sign as (ϕ(x)/(x− s))m− am. Since ϕ(x)/(x− s) is decreasing
on (s,+∞), we deduce that H is first increasing and then decreasing. Since
H(s) = H(∞) = 0 we conclude that H is non-negative. This means that for
every t ≥ s, ∫ t

s

ϕm(x)x−β dx ≥
∫ t

s

am(x− s)mx−β dx. (7.1)
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Now, note that for any β′ > β and any non-negative function F , we have by
Fubini’s theorem,∫ ∞

s

F (x)x−β
′
dx =

∫ ∞
s

(β′ − β)t−β
′+β−1

(∫ t

s

F (x)x−β dx

)
dt.

Using (7.1) and applying this relation to F = ϕm and then to F (x) = am(x −
s)m, we get that∫ ∞

s

ϕm(x)x−β
′
dx ≥ am

∫ ∞
s

(x− s)mx−β
′
dx.

From the definition of a, we conclude that∫ ∞
s

ϕm(x)x−β dx
/∫ ∞

s

(x− s)mx−β dx

is an increasing function of β on (m + 1,∞). The conclusion follows from the
computation of

∫∞
s

(x− s)mx−β dx = sm−β+1B(m+ 1, β −m− 1).

Lemma 7.2. Let m ≥ 1 be an integer. Let g be the density of a probability
on Rm of the form g = f−β with f positive convex on Rm and β > m + 1. If∫
xg(x) dx = 0, then

g(0) ≥
(
β −m− 1

β − 1

)β
‖g‖∞.

Proof. Since f is convex it follows from Jensen’s inequality that

f(0) = f

(∫
xg(x) dx

)
≤
∫
f−β+1(x) dx =

∫ ∞
s

(β − 1)h(t)t−β dt,

where s = min f = ‖g‖−1/β∞ and h(t) = vol{f ≤ t} denotes the Lebesgue
measure of {f ≤ t}. From the convexity of f and from the Brunn-Minkowski
inequality, ϕ = h1/m is concave. Thus, using the notation of Lemma 7.1,

f(0) ≤ (β − 1)sm−β+1B(m+ 1, β −m− 1)G(β).

Now observe that
∫
f−β =

∫∞
s
βϕm(x)x−β−1 dx = 1 and therefore, by Lemma 7.1,

G(β) ≤ G(β + 1) =
(
βsm−βB(m+ 1, β −m)

)−1
.

The conclusion follows from combining the last two inequalities.

Remark. When β → ∞, which corresponds to a log-concave density, we
recover the inequality from [14] saying that g(0) ≥ e−m‖g‖∞.

The next lemma is a well known result of Borell ([10]) stated in a way that
fits our needs and stresses the dependence on the parameter of concavity.

Lemma 7.3. Let r > 1 and X be a (−1/r)-concave random vector in Rm.
Then for any semi-norm ‖ · ‖ and any t ≥ 1, one has

P(‖X‖ ≥ 3tE‖X‖) ≤
(

1 +
t

3r

)−r
.

As a consequence, for every 1 ≤ p < r,

(E‖X‖p)1/p ≤ C1(p, r)E‖X‖,

where C1(p, r) = cp for r > p + 1, C1(p, r) = c r
(r−p)1/p otherwise and c is a

universal constant.
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Proof. Denote θ := P (‖X‖ ≤ 3E‖X‖). Assume that θ < 1 (otherwise we are
done). From Markov’s inequality,

θ = 1− P(‖X‖ > 3E‖X‖) ≥ 2/3.

The subset B = {x ∈ Rm : ‖x‖ ≤ 3E‖X‖} is symmetric and convex. From
Lemma 3.1 in [10], for every t ≥ 1, one has

P (‖X‖ ≥ 3tE‖X‖) ≤
(
t+ 1

2

(
(1− θ)−1/r − θ−1/r

)
+ θ−1/r

)−r
.

Thus,

P (‖X‖ ≥ 3tE‖X‖) ≤ θ
(

1 +
1

2r
log

θ

1− θ
+

t

2r
log

θ

1− θ

)−r
.

We deduce that for every t ≥ 1,

P (‖X‖ ≥ 3tE‖X‖) ≤ θ
(

1 +
t

2r
log

θ

1− θ

)−r
≤
(

1 +
t

3r

)−r
.

Integrating, we get

E‖X‖p
/

(3E‖X‖)p =

∫ ∞
0

ptp−1P (‖X‖ ≥ 3tE‖X‖) dt

≤ 1 +

∫ ∞
1

ptp−1
(

1 +
t

3r

)−r
dt

≤ 1 + (3r)ppB(p, r − p)
= 1 + (3r)pΓ(p+ 1)Γ(r − p)/Γ(r).

Now, if r > p+ 1 then, by Stirling’s formula,

(Γ(p+ 1)Γ(r − p)/Γ(r))
1/p ∼ p

r
,

and if r ≤ p+ 1 then

(Γ(p+ 1)Γ(r − p)/Γ(r))
1/p ∼ (Γ(r − p))1/p ∼

(
1

r − p

)1/p

.

This completes the proof.

The following stronger variant of Borell’s lemma allows us to compare the
expectation of a random variable ‖X‖ and a median Med(‖X‖). The first part
was proved for general functions in [7] (Theorem 1.1 and the discussion following
Theorem 5.2, see also Corollary 11 in [15]). It was also implicitly proved in [17]
(see inequality (4) in [15]). The second part of the lemma follows by integration
(we provide its proof for the sake of completeness).

Lemma 7.4. Let r > 1 and X be a (−1/r)-concave random vector in Rm.
Then for any semi-norm ‖ · ‖ and any t ≥ 1, one has

P (‖X‖ ≥ tMed(‖X‖)) ≤ (C0r)
rt−r,

where C0 is an absolute positive constant. As a consequence, for every q ∈ [1, r)
one has

(E‖X‖q)1/q ≤ Cq
(

r

r − q

)1/q

Med(‖X‖),

where C is an absolute positive constant.
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Proof. As we mentioned before the lemma, the first part is known. Using it
and the distribution formula (and denoting Med(‖X‖) by M) we observe

E‖X‖q =

∫ (C0rM)q

0

P(|X|q > s) ds+

∫ ∞
(C0rM)q

P(|X|q > s) ds

≤ (C0rM)q +

∫ ∞
C0rM

qtq−1(C0rM/t)r dt

= (C0rM)q + q(C0rM)q
1

r − q
= (C0rM)q

r

r − q
,

which implies

(E‖X‖q)1/q ≤ C0r

(
r

r − q

)1/q

Med(‖X‖).

Now, if q ≥ r/2 then this bound is equivalent to the desired one. If 1 ≤ q < r/2
we denote r′ := 2q < r. Then X is also (−1/r′)-concave and we apply the
bound with r′ instead of r, obtaining

(E‖X‖q)1/q ≤ C0r
′
(

r′

r′ − q

)1/q

Med(‖X‖) ≤ 4C0qMed(‖X‖),

which completes the proof.

Remarks. 1. In fact we have slightly better tail bound from inequality (17)
in [15] (or from Corollary 11 there, note that parameters df and Af from this
Corollary in our setting are df = 1 and Af = 2). Namely, for all t ≥ 1 one has

P (‖X‖ ≥ 2tMed(‖X‖)) ≤
(

1 +
t log 2

r

)−r
.

This can be also used to obtain the upper bound without considering the cases
q < r/2 and q ≥ r/2.

2. Slightly changing the proof one can also obtain the bound (1/(r − q))1/r,
which is equivalent to (r/(r − q))1/q.
3. One can show that estimate of the Lq-norm of X is sharp by considering
one-dimensional functions

h(x) = e|x|/(r+1) 1|x|≤r+1 +
e|x|
r + 1

1|x|>r+1 and f = Ah−r−1,

where the constant A is chosen so that f is a density. Then a random variable
X with density f is (−1/r)-concave since h is convex, Med(|X|) is uniformly
(over r > 1) bounded away from 0 and infinity, while the Lq-norm of X is of
the order q(r/(r − q))1/q.

The last lemma follows from Corollary 7.3 in [8] or Corollary 9 in [15] (as
before, the second part follows by integration).

Lemma 7.5. Let r > 1 and X be a (−1/r)-concave random vector in Rm.
Then for any semi-norm ‖ · ‖ and any ε ∈ (0, 1), one has

P (‖X‖ ≤ εMed(‖X‖)) ≤ C0ε,

where C0 is an absolute positive constant. As a consequence, for every p ∈ (0, 1),(
E‖X‖−p

)−1/p ≥ c(1− p)Med(‖X‖),

where c is an absolute positive constant.
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