The Alberta High School Mathematics Competition Solution to Part I, 2011

1. We have $2^{2012}+4^{1006}=2^{2012}+2^{2012}=2^{2013}$. The answer is (\mathbf{a}).
2. The surface area of a mini-marshmallow is 6 square centimetres while that of a giant marshmallow is 54 square centimetres. Thus the desired number of mini-marshmallows is $54 \div 6=9$. The answer is (c).
3. Suppose there are m customers on Monday. Then there are $1.2 m$ on Tuesday and $1.5 m$ on Wednesday. The increase of 0.3 m from Tuesday to Wednesday is 25% of 1.2 m . The answer is (b).
4. Sawa is 2 kilometres south and 2 kilometres west of S. Her distance from S, by the Pythagorean Theorem, is $\sqrt{2^{2}+2^{2}}=\sqrt{8}=2 \sqrt{2}$ kilometres from S. The answer is (b).
5. Since $1000=2 \times 2 \times 2 \times 5 \times 5 \times 5$, the digits can only be $1,2,4,5$ and 8 . Three of them must be 5 s and they can be placed among the six digits in $\binom{6}{3}=20$ ways. The product of the other three digits is 8 , and they are $(1,1,8),(1,2,4)$ or $(2,2,2)$. They can be placed in 3,6 and 1 ways respectively. Hence the total number of six-digit millenium numbers is $20(3+6+1)=200$. The answer is (e).
6. We have $x_{3}=24, x_{4}=28, x_{5}=26$ and $x_{6}=27$. The answer is (d).
7. Squaring both sides of $2 x^{2}-2 x-1=2 x \sqrt{x^{2}-2 x}$, we have $4 x^{4}-8 x^{3}+4 x+1=4 x^{4}-8 x^{3}$, which simplifies to $4 x+1=0$. Hence the only solution is $x=-\frac{1}{4}$. Indeed, $2\left(-\frac{1}{4}\right)^{2}-2\left(-\frac{1}{4}\right)=\frac{5}{8}$ and $2\left(-\frac{1}{4}\right) \sqrt{\left(-\frac{1}{4}\right)^{2}-2\left(-\frac{1}{4}\right)}+1=\frac{5}{8}$. The answer is (b).
8. Note that $g(x)=f(x+1)-f(x)$ is a linear polynomial. Since $g(1)=f(2)-f(1)=2$ and $g(2)=f(3)-f(2)=4$, we have $g(3)=6$. Hence $f(4)=f(3)+g(3)=8+6=14$. The answer is (b).
9. Since a lucky number n is divisible by 7 , it has the form $n=7 k$ for some positive integer k. If k is not a prime number, then it has a divisor h where $1<h<k$, and $7 h$ is a divisor of n larger than 7 but not equal to n. Hence k must be a prime number. Moreover, it cannot be greater than 7 . Hence there are only 4 lucky numbers, namely, 14, 21, 35 and 49. The answer is (d).
10. Annabel spent 15 seconds on each path, and Bethany 18 seconds. On the first path, Bethany was with Annabel all 15 seconds. On the second path, Bethany joined Annabel 3 seconds late, and was with her for 12 seconds. On the third path, Bethany was with Annabel for 9 seconds. On the fourth path, Bethany was with Annabel for 6 seconds. The total is $15+12+9+6=42$ seconds. The answer is (b).
11. We can draw a regular polygon of any number of sides such that the side length is 20 centimetres. We can then draw a regular polygon of the same number of sides but with side length 15 centimetres, placed centrally inside the larger polygon. Then a tile can be chosen which can pave the ring-shaped region inside the larger polygon but outside the smaller one. Hence the answer is (e).
12. Let x_{1}, \ldots, x_{20} be the given numbers. If d is the greatest common divisor of these numbers then

$$
x_{1}+\cdots+x_{20}=d\left(\frac{x_{1}}{d}+\cdots+\frac{x_{20}}{d}\right)=462=21 \cdot 22 .
$$

The value $d=22$ is obtained if $x_{1}=\cdots=x_{19}=d$ and $x_{20}=2 d$. For each $i, \frac{x_{i}}{d} \geq 1$. Hence $d \leq \frac{462}{20}=23.1$. Since d divides 462, the largest value for d is indeed 22 . The answer is (b).
13. Dividing throughout by y, we have $\left(z^{2}+1\right)^{3}>m\left(z^{3}+1\right)^{2}$ where $z=\frac{x}{y}$. This is equivalent to

$$
(1-m) z^{6}+3 z^{4}+(3-2 m) z^{3}+1-m>0
$$

for any positive real z. Hence it is necessary to have $1-m \geq 0$, i.e. $m \leq 1$. If we take $m=1$, the inequality $\left(x^{2}+y^{2}\right)^{3} \geq\left(x^{3}+y^{3}\right)^{2}$ is equivalent to

$$
x^{2} y^{2}\left((x-y)^{2}+2 x^{2}+2 y^{2}\right)>0
$$

which is clearly true. The answer is (c).
14. There are $\binom{49}{2}=1176$ colourings. The number of symmetrical colourings with respect to the middle square is $\frac{49-1}{2}=24$. These colourings are counted twice. All the other colourings are counted four times. The desired number is $\frac{24}{2}+\frac{1176-24}{4}=300$. The answer is (d).
15. Let $A D$ intersect the bisector of $\angle C$ at G. Then $\angle C G A=90^{\circ}=\angle C G D, \angle G C A=\angle G C D$ and $G D=G D$. Hence triangles $G C A$ and $G C D$ are congruent, so that $A C=D C$. It follows that we have $B C=2 D C=2 A C$. Now among three consecutive positive integers, one is double another. This is only possible if the integers are 1,2 and 3 , or 2,3 and 4 . The former does not yield a triangle. Hence $A C=2, A B=3$ and $B C=4$, so that $A B \cdot B C \cdot C A=24$. The answer is (a).

16. Note that if we write a positive integer m in base 3 , then the base 3 representation of $\left\lfloor\frac{m}{3}\right\rfloor$ is simply the base 3 representation of m with the rightmost digit removed. Also, a positive integer m is divisible by 3 if and only if the rightmost digit of m is 0 . Hence, in order that none of a_{1}, a_{2}, a_{3} and a_{4} is divisible by 3 , the rightmost four digits of the base 3 representation of n are all non-zero. Note that $1000>2\left(3^{5}+3^{4}+3^{3}+3^{2}+3+1\right)$. If n has at most 6 digits in its base 3 representation, the first two can be any of 0,1 and 2 , while the last four cannot be 0 . There are $3^{2} \times 2^{4}=144$ such numbers. Clearly, n cannot have more than 7 digits as otherwise $n \geq 3^{7}>1000$. Suppose n has exactly 7 digits. As before, the last four cannot be 0 . Since $1000<3^{6}+3^{5}+3^{3}+3^{2}+3+1$, the first one must be 1 , the second must be 0 and the third can be any of 0,1 and 2 . Hence, there are $3 \times 2^{4}=48$ such numbers. The total is 192. The answer is (b).

