A Beautiful Inequality by
Saint-Venant and Folya Revisited

Arno Berger

Abstract. In mathematical physics and beyond, one encounters manytifuanequalities
that relate geometric or physical quantities describirgstiape or size of a set. Susbperi-
metricinequalities often have a long history and many importapiieations. For instance,
the eponymous and most classical of all isoperimetric inétiess was known already in antig-
uity. It asserts that among all closed planar curves of angimegth, the circles with perimeter
equal to that length, and only they, enclose the largest @reaugh not nearly as well-known,
an isoperimetric inequality conjectured by Saint-Venarthie 1850s and first proved by Polya
almost a century later, is also very beautiful and import&yt presenting a short proof as
well as two simple physical interpretations, this artidlestrates why the result deserves to
be cherished by every student of applied analysis.

1. INTRODUCTION. The inequality of the title is an example of &operimetric
inequality, that is, a sharp inequality that relates geoimet physical quantities de-
scribing the shape or size of a s20] Sec. 1]. Despite its beauty and importance, the
result does not seem to be altogether well-known. Thislardittempts to change that.
To set the scene, fix an integér> 2 and a non-empty open subdétof the Eu-
clidean spac®® For convenience, say that the §2&is niceif it is bounded, and its
boundanU is sufficiently well-behaved for the Dirichlet boundary walproblem

0w 0w
Aw:i=—+...4+——=—-1inU, w=0 ondU, 1
w 022 +...+ 022 w 1)
to have a unique (classical) solutian= w(z) = w(z,...,z4). As one learns in

an introductory course on partial differential equatioR®E), this is rather a mild
assumption. For exampl€, is nice provided that each point&U is the tip of a small
cone contained entirely in the complem@tt\ U; in particular,U is nice whenever
0U is a smooth surfacd P, Sec. 2.8]. The maximum principle, another fixture in every
introductory PDE course, implies that > 0 in U. Therefore, the integral

the main protagonist of this article, is positive (and fipitsdotice that just like the
d-dimensional volume (or Lebesgue measure)l/ ), the value of.J(U) does not
change ifU is subjected to any rotation, translation, or reflectiorsdilfora > 0
and the scaled copyU := {ax : x € U} of U, clearlym(aU) = a’m(U) whereas
J(aU) = a?*2J(U). Thus it is natural to consider the ratk{U) /m(U)+?/¢ > 0,
the value of which does not changelif is scaled either. To develop a quantitative
sense for this ratio, first consider a simple example.

Example 1. Given0 < a < b, letU be the annular regiof: € R? : a < |z| < b},

hencem(U) = (b — a?)w,. Here and throughout, | andw, denote the Euclidean
length and the volume of the unit ball R?, respectively. From multi-variable calcu-
lus, the reader may recall that, = 7%/2/T'(1 + d/2) wherel is the Euler Gamma
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function. The solution of (1) is radially symmetric; moreepisely,w(z) = W (|z|)
with W = W (r) being the unique solution of

d2W+d—1dW_
dr? rodr

-1, W(a)=W(b)=0.
From this, a fun calculus exercise yields a smooth positinetionC'; such that
_ a 1+2/d
J(U) = Cd(b) m(U)+2/4,

While the general expression f6f;(s) is somewhat cumbersome to write down, it is
readily checked that, for instance,

1 (1+s2 1 1 [1-s\*?
2(s) 81 <1 — 52 * 10g5> an 1(s) 1212 (1 +52> @

Just as in these examplés; is decreasing il < s < 1 for everyd > 2, with

_ 1 L(1+d/2)*/
= 1 S C = - '
Cq 1M |0 a(s) wg/dd(d +2) wd(d + 2)

andlim,;; Cy(s) = 0; see also Figure 1. Clearly, thedi(U)/m(U)**?/4 never is
larger tharc,;. Moreover, it seems plausible that= J(U) /m(U)'*+?/¢ whenevel/
is a ball. This indeed is the case; see Lemma 6 below. Howewéce that/(U) is
not defined forw = 0 sincel, a punctured ball, is not a nice open set.

J(U)
cam(U)1+2/4

/ impossible by Theorem 2

Sl BS

Figure 1. The ratioJ(U)/(cqm(U)1+2/4) for the annular regiod = {z € R% : a < || < b} is decreas-
ingins = a/band, as asserted by Theorem 2, is smaller thtom all 0 < a < b.

Example 1 demonstrates that the rafid/) /m(U)**2/? can be arbitrarily small.
It also suggests that, by contrast and perhaps somewhaissugy, this ratio cannot
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be arbitrarily large. On first sight, it may seem as if the upgpeund gleaned from
Example 1 was specific for the particularly nice open setsicened there. This, how-
ever, is not the case. In fact, it is the purpose of this & ticladvertise, and present a
proof of, the following inequality which identifies; as a universal sharp upper bound.

Theorem 2. Letd > 2 be an integer, and/ C R a nice open set. Then
J(U) < cqm(U)H4, (3)
moreover, equality holds i(8) if and only ifU is a ball.

As the reader may suspect right away, and will soon see ékplibe key step in
the proof of Theorem 2 is to establish (3) foonnected/, and to address possible
equality in this case. Faf = 2 andsimply connected’, that is, for planar connected
open sets “without holes,” Theorem 2 was, in essence, coomggtin 1856 by J.B. de
Saint-Venant 24] who also supported it with ample experimental evidenceetam
a physical interpretation of (U); see Section 3 below. Saint-Venant's conjecture was
first proved in 1948 by G. Poly2]].

As far as the author has been able to ascertain, Theorem 2rappeore or less
explicitly, only in the specialized PDE literature (such esy., B, 9, 11) where it
is proved in much greater generality by means of advancduhigges that may be
difficult to appreciate for the non-expert. As formulatedhrs article, however, The-
orem 2 follows directly from a simple form of Talenti’s inegjity, an important basic
tool in PDE theory. Section 2 recalls a tailor-made versibihis classical inequality,
and then gives a short proof of Theorem 2. Section 3 discuagegertinent physical
interpretations of/ (U), as well as variations on Theorem 2, for the cdse 2.

RemarkThe definition of.J(U) makes sense fat = 1 as well. Every bounded (non-
empty) open sdf/ C R is nice, and a short calculus exercise, aided perhaps by llemm
5 below, confirms that the conclusion of Theorem 2, with= 1—12 remains correct in
this case also.

2. PROOF OF THEOREM 2. As indicated earlier, utilizing the appropriate tools

makes the proof of Theorem 2 very short indeed. For the tablaad, arguably the

most appropriate tools akymmetrizationsalso referred to aearrangementssee,

e.g., B, 8, 14, 1¢for friendly, informative introductions to the subjectsAt turns out,

a few simplified concepts and facts are all that is needed fiey are reviewed first.
Given a nice open séf C R% or indeed any set with finite volume, denote 13y

the unique (open) ball centered at the origin withiU*) = m/(U), that s, let

U*:={z eR*: |z| < (m(U)/wa)""} .

For every bounded continuous functign U — R and every real numbet denote
the levelsef{x € U : f(x) > t} of f simply by{f > t}. The functionf* : U* — R
given by

fH(x) = sup{tER:xe{f>t}*} (4)

is the Schwarz) symmetrization or symmetric decreasing rearrangemenbof f.
Although the definition (4) may look a bit daunting on firstisigobserve that, infor-
mally put, f* simply is a more symmetric version gfwhich, however, retains certain
key aspects of the latter function, notably its range, itigtion of values, and integral;
see Proposition 3 below. In the suggestive words of PolybVdeinstein in 23], if f
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describes a “hill” ovelU then f* describes a rearranged “round hill” ou&r, where
each level set has been converted into a ball of the same eoland all these balls
are concentric; see also Figure 2. A few basic propertiegrahsetrizations are easily
deduced from (4), but can also be found, among many otheestteg facts, e.g., in
[3, 8, 14.

Proposition 3. Let d > 2 be an integer, an& C R? a nice open set. Assume that
f U — Ris bounded and continuous. Then:

(i) f* isradially symmetric and decreasing, i.*(x) = f*(y) whenever,y €
U™ with [z = [y, andf*(z) < f*(y) if [z] = |y;
(i) f*is bounded, withnf;« f* = inf;; f andsup,« f* = sup, f;
(iiiy f*is continuous, provided thaf is connected,;

(iv) {f* >t} ={f > t}* for everyt € R, and hence alson({f* > t}) =
m({f >t});

(x)dz = dz.
0 [ r@= | f@a

{f>1t} {fr>t={f>t}

Figure 2. lllustrating the symmetrizatiofi* : U* — R of a functionf : U — R.

With regard to Theorem 2, a key question is whether or not sgtrimation inter-
acts in a fruitful way with solving the Dirichlet problem (I)ore specifically, is the
solutionw of the latter related in any way to the solutiorof

Av=-1inU", v=0o0onoU" ? (5)

Note that —1)* = —1, and keep in mind thdf* simply is a ball centered at the origin.
It is a most fortunate feature of the Laplace operdigrand indeed of more general
elliptic second-order differential operators that thigsfion has an affirmative answer.
Formulated specifically with Theorem 2 in mind, the follogiis a simple special case
of Talenti’s inequality (After having witnessed this powerful tool contribute bacely

to the proof presented below, a reader yearning for an inkdgpdy may want to turn,
e.g., to R, 19 for details.) Recall that a statement holds &most allx € U* if all =
for which the statement does fail are contained in a subgét afith volume zero.

4 (© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 121



Proposition 4. Let d > 2 be an integer, and C R? a connected nice open set. As-
sume thatv andv are the solutions of the Dirichlet problems (1) and (5), ezspely.
Thenw*(z) < v(x) for almost allz € U*; moreoverw*(x) = v(z) for almost all

x € U*ifandonly if U is a ball.

In addition to this powerful fact, two elementary observas are helpful. A first ob-

servation is about the quantity, (z) := (3.~ \zn|7’)1/p, wherez = (z,) is any real
sequence, anp > 0. Forp > 1, and restricted to the appropriate space of sequences,
the reader may recogniz€, as thep-norm familiar from linear analysis.

Lemma 5. Let z = (z,,) be a real sequence. I, (z) < oo for somep, > 0 then
N,(z) < oo for all p > p,, andp — N, (z) is strictly decreasing ofp,, oo[ unless
z, = 0 for all but at most one..

Proof. If N, (z) < oo thenlim,, ., z, = 0 and hencgz, |P < |z,|P° for everyp >

po and all sufficiently larger, so N, (z) < oo as well. Since the assertion is correct
for z = 0, assume that,, # 0 for at least one:. Pick anyq > p > p,, and assume
first that V,(z) = 1. Then|z,|? < |z,|? for all n, and in fact|z,|? < |z,|" unless
z, € {—1,0,1}. Summing ovem yields N,(z) < N,(z)?/? =1 unless|z,| = 1
for some, necessarily unique In general, that is, folV,(z) # 1 simply apply this
argument to the sequente, /N, (z)) instead of(z,, ). This yieldsN,(z) /N, (z) < 1
unlessz,, = 0 for all but onen. [ |

A second observation is that (3) is an equality whenéVer R? is a ball. This,
the “if” part of the assertion regarding equality in Theor2ntould be established by
carefully considering the case| 0 in Example 1. Still simpler is a direct calculation.

Lemma 6. Letd > 2 be an integer, antl C R? a ball. ThenJ (U) = c;m/(U)*+%/<

Proof. By the translation invariance of (U), it can be assumed thd{ equals
{z € R?: |z| < a} for somea > 0. Thenm(U) = aw,, as well asw(z) =
(a® — |z|?)/(2d), and hence

a’ — |37|2 o [* 2\ d—1 a’?o,
J(U)_/:E<a 2d dx_ﬁ 0(0, _7")7" dr_idQ(d+2)’

whereo,; denotes théd — 1)-dimensional volume ofz € R? : |z| = 1}, the unit
sphere inR“ and the second equality is an application of spherical dinates or,
more grandiosely put, then-area formulasee, e.g.,16, Sec. 2.2]. As the reader may
recall from multi-variable calculug;,; = dw,, and so indeed

ad+2wd m(U)1+2/d
J(U) = - = = U)re
O =G+ = Paary o™V

(When interpreted with caution, this calculation is cotffec d = 1 also.) [ ]

The scene is now set for a very sh@&rpof of Theorem 2Assume first that is
connected, and let, v be as in Proposition 4. Since*(z) < v(z) for almost all
xz e U

J(U) = /Uw(x) dz = /*w*(l‘) de < /*v(:z:) de = J(U),
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where the second equality is due to Proposition 3(v). By &stjn 4, the inequality
is strict unlesd’/ is a ball. SincdJ* is a ball in any case, Lemma 6 yields

J(U) < J(U*) = cam(U)+2/4 = cm(U)1+2/4,

and again this inequality is strict unle§sis a ball. This proves the theorem in the case
whereU is connected. In general, Igt/,,) be the (at most countably many) connected
components o). Thenm(U) = 3~ m(U,), and by what has already been proved,

142/d

J(U) = Zn J(U,) < ¢y Zn m(U,) 1+ < ¢ (Zn m(Un))
= cqm(U)2/?,

here the second inequality follows from Lemma 5 and is stntessm(U,,) = 0 for
all but onen, that is, unles$/ is connected. [

It may be worth noting that even without making use of sojptased PDE tools
such as Proposition 4, it is possible to give an explicit ugpeund on the ratio
J(U)/m(U)**?/< The following elegant argument was shown to the author by G.
Huisken [L3]; it only relies on advanced calculus tools (and tacitlyumsssU to be
sufficiently well-behaved for these tools to all be applieabDenote by\, (U) the
smallest eigenvalue of the Dirichlet Laplaciani@rthat is, the smallest numbgr> 0
such that the boundary value problem

Au+Adu=0inU, uw=0ondU,
has a solution other tham = 0. With this, deduce from, respectively, the Cauchy—

Schwarz inequality, the Poincaré inequality, and the rdieace theorem applied to
wAw using (1), that

(/dex>2§m(U)/Uw2d:L‘§ Z((g))/UWdex: ZEZ))/dex’

and hence

3

_ )
J(U)—/dexﬁ WiE

Now, the Faber—Krahn inequality] 16, 22 says that\,(U) is minimal precisely
whenU is a ball of volumemn(U). It is well-known, and also easy to check by direct
calculation, that for a ball with radius > 0 simply A\, = j7 , ,/a®, wherejy, .
denotes the smallest positive zero of the Bessel functibth@first kind) of order
d/2 — 1; see, e.g.,42, Note F]. Consequently,

js/z 1 wi/dﬁ/z 1
M (U) > i = _
{0 2 Gt Joa? = m(wy

and putting everything together,

m(U) 4 d(d+2)

> = Cq—
2/d . 2
wd/ ‘73/271 Jasa-1

m(U) /1. (6)
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This shows that/ (U) /m/(U)'*+2/? indeed is bounded above by a constant independent
of U. Note, however, that; , , < d(d + 2) for every positive integed. For instance,

jg = 5.783 < 2-4andj},, = 7° < 3- 5. Thus the bound (6), though arrived at with
very little effort and by relying on nothing more than advedcalculus tools, isaot
sharp, quite unlike (3).

3. PHYSICAL INTERPRETATIONS FOR d = 2. Its inherent mathematical
beauty aside, Theorem 2 is important for its real-world magpions as well. In fact,

it was precisely these types of applications that suggektedesult in the first place.
This concluding section briefly discusses two physicarpretations of/(U) as well

as (im)possible improvements to Theorem 2. For simpliaity e@oncreteness, assume
d = 2 throughout. In this case, Theorem 2 says that for every measet/ C R?

m(U)?

J(U) < :
) < =

()

moreover, equality holds in (7) if and onlylf is a disc.

For a first physical interpretation, imagine the statioraminar flow of an ideal
viscous incompressible fluid through a pipe with constanssisectiorlU; see also
Figure 3. Assume the pipe to be so long that the flow remairenéafly unaffected by
whatever disturbances may occur at either end. Under theaézed but not altogether
unreasonable assumptions, basic fluid dynaniiés)fields the following relation be-
tween the volume flow raté) through the pipe and the pressure differepge- p
between its ends:

J(U) .
Lp ’

Q= (Pl - Pz) 8

hereL andyu are the length of the pipe and the dynamic viscosity of thel fltespec-
tively. Informally put, (8) identifies/ (U) as a kind offluid-dynamical conductivitpf
a pipe with cross-sectiofi. By (7),

m(U)?
S8wLu

Q < (p1—p2) 9)
Note that (9) can be read in two meaningful ways: Given a $igguipe (lengthl,
cross-sectio/) and fluid (dynamic viscosity), it imposes either an upper bound on
the volume flow rate attainable with a given— p,, or a lower bound on the pressure
difference required to attain a givéh By Theorem 2, the maximal volume flow rate,
given p; — po, and the minimal pressure difference, giv@n both occur precisely
when the pipe has a circular cross-section. In this casewihd = /m(U)/,
m(U)? mrd

which the reader may recognize as the famdagen—Poiseuille laviirst formulated

in 1838.

For a second, quite different interpretation.&fU/) assume thal/ is simply con-
nected, and consider a rod made from perfectly linearielasimogeneous material
with cross-sectiorlU. One end of the rod is free while the other end is fixed, e.g.,
welded to a wall; see also Figure 3. Subject the rod to a tvlistiaits longitudinal
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axis by applying a torqué&’. Similarly to before, assume the rod to be so long that
whatever disturbances may occur at the fixed end do not radiig@ffect the resulting
elastic deformation. Linear elasticity theor then yields the twist angle at the
free end, caused by the torqilie

TL
p= GO ; (10)

hereL andG are the length of the rod and the shear modulus of its mateeishec-
tively. Thus (10) identifies/ (U) as thetorsion constanof a rod with cross-sectio.
The producttGJ(U) is often referred to a®rsional rigidity. Again, by (7),

TL

Given a rod with a specific geometry (lengkh cross-sectiorl/) and made from a
specific linear-elastic homogeneous material (shear nisdk), note that (11) pro-
vides a lower bound on the twist angle caused byAll other parameters being equal,
Theorem 2 says that is minimal precisely ifU is circular. In other words, among all
(nice open) cross-sectiohswith aream (U), the unique cross-section with maximal
torsion constant is the disc with radiygm(U) /=. It was in this form that Theorem
2 for d = 2 was first conjectured by Saint-Venant.

P17 N\
P2
)
(A
[/
J(U) kY
Q= (p1—p2) I Y= G0

Figure 3. The quantityJ(U) can be interpreted as the fluid-dynamical conductivity ofigepvith cross-
sectionU (left) and, if U is simply connected, also as the torsion constant of a honemges rod.

The physical interpretations just described raise thetjpally important question
as to whether or not the bounds (9) and (11), and thus ultlynéf¢ also, can be
improved any further. Naturally, this question can be agldsn various ways. For
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instance, 18] shows that ifU is convexandd(U) denotes the largest radius of any
(open) disc contained iy, then

S(U)*m(U) '

JU) < 3

(12)

Notice that (12) improves (7) whenewerd(U)? < 3m(U). For a concrete example,
let U be an ellipse with semi-axesb > 0: Herem(U) = wab, §(U) = min{a, b},
and consequently (12) improves (7) unlgg8 < a/b < 8/3. However, by an explicit
calculation in the spirit of Example 1,

o) a2b? 1
S(U2m(U)  4(a? 4+ b?)min{a,b}? ~ 4’

which shows that, unlike in (7), equalibeverholds in (12) ifU is an ellipse.
If U is not convex, perhaps not even simply connected, then (ag¥ail, as shown,
e.g., by the annulur € R? : a < |z| < b} from Example 1, where

Juy 1 et AN
6<U>2m<U>‘2<a—b>2< o 1og<a/b>>>3'

To get an idea what an improvement of (7) might look like irsthase, it is worth
recalling for a moment the most classical of all isoperimgdtrequalities J, Ch. 3].
Known already in antiquity (though not proved rigorouslyilthe late nineteenth cen-
tury), it asserts that for every nice open etz R? with piecewise smooth boundary
of total length?(0U),

0(0U)? '
Ar

m(U) < (13)
moreover, equality holds in (13) if and only(if is a disc. (Surely, the strong similarity
between (7) and (13) is not lost on the reader.) In light offtimelamental importance
of (13), improvements and variations thereof have long lianterest, not least to
authors and readers of thedWTHLY [1, 5, 19, 25. For a very simple improvement,
assume thal/ has a finite number of disjoint holes. More specifically, deryy H .,
the unbounded component®f \ U, and assume th&? \ (U U H,) is the disjoint
union of Hy, ..., H, where eachH, itself is a nice open set, anHd; is the closure
of H;; see also Figure 4. With this, replacibgby U U H; (or by R? \ H,.,) means,
informally put, that the holed; (or all holes) are being “removed” or “filled up.”
Since removing a hole increases the left side in (13) butgeslthe right side, the
bound1/(4) will typically be very inaccurate, that is, far larger thdretactual ratio
m(U)/£(0U )% By means of th@orosity of U, defined as

- Z Z?:l m(Hz)
P n® \ H m(U) + >, m(H,)

it is easy to establish a more accurate bound. To this enitenbiat

(OU)? = (E(OHOQ) + 2;1 E(@Hi))z
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A m@) | [m@) Lp

Here, the first inequality is due to (13) applied®d \ H., andH,, ..., H,, individu-
ally, whereas the second inequality is due to Lemma 5. Thumparoved form of (13)
in the presence of holes, with the total size of the lattemdpeieasured by the porosity
O<p<l,is

LOU)? 1-p

— 14
47 1+p (14)

m(U) <

Moreover, it is clear that equality holds in (14) if and onfy(i is a disc containing
a single circular hole, the radius of the hole bejngmes the radius ot/ with the
hole removed. To appreciate the improvement over (13) t¥trepresents, note for
instance that fop = 0.9 the bound provided by the former i9 times the bound
provided by the latter!

UUH R?\ Heo
Ho @ Ho
p= \/m( m(H1) + m(H>)

U) + m(Hl) +m(H2)

Figure 4. In the presence of holes, the isoperimetric inequality {a&gs the improved form (14).

Returning now toJ(U), the reader may wonder whether or not it is possible to
achieve a similar improvement for (7). As it turns out, tlisot possible. Given any
0 < p < 1, one may utilize Example 1 to design a nice operl5etith a single hole
and with porosity equal tp such that the ratio’ (U) /m(U)? is as close td /(87) as
one wishes; see also Figure 5. This shows that, in a way, gwuality (7), and thus
Theorem 2 as well, are the best possible even in the preséhoées.

Finally, the reader may be curious to know how (10) changés i$ not simply
connected. Think for instance of a hollow shaft. In this ¢aké/) has to be replaced

by a quantity.J(U), the precise definition of which is slightly more compliaditsee,
e.g., L0, 16, 23 for details. To mention but one example,lif again is the annulus
{x eR?:a < |z| < b} with0 < a < bthen

~ 7r m(U)? 1+ p?

_ 4_4: .
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porosity ofU, = p, foralla > 0

m(Va)

=0

limalo

X limalo = —
m

U,
a>0

0<p<l1

Figure 5. Why (7) cannot be improved in the presence of holes, quiti&ei(13).

where the second equality is duelfohaving porosityp = a/b < 1. For comparison,
recall from (2) that

_m(U)2 1+ p? 1
JU) = 8 (1—p2+logp ’

A classical theorem by Polya and Weinste®8][says that the ratio/ (U)/m(U)?
cannot ever be larger than in this example. More precisely,

~ m(U)* 1+ p?
JU) < . 15
)<= =1 (15)
. Y . 1+ p?
for every nice open séf C R with porosity0 < p < 1. Although the factor1—2
-p

. i l—p. . .
in (15) may appear reminiscent of the factleer—p in (14), do notice that, in stark con-
p

trast to the latter, the former is unboundedpas 1. Thus, givenmn(U), it is possible
to design cross-sections with arbitrarily large torsionstant—simply takd/ to be
an annulus with areex(U) and porosity close tol. Though interesting theoretically,
this observation has but little practical valuezplfis close tol, that is, if the sel/
is very porous or “thin” then it becomes useless as a cros#egeof a rod. On the
one hand, the resulting diameter@fmay be too large for the purpose at hand. On
the other hand, and perhaps more stringently, the rod magrgadh loss of stability
(buckling), the mere possibility of which has not been tak#a account at all in the
derivation of (10).

Having seen, in this article, the beauty and importance @fiflequality by Saint-
Venant and Polya, the reader may want to further explorediseand wondrous sub-
ject of isoperimetric inequalities through, e.@, #, 19, 20, 22, 25
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