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Abstract. In mathematical physics and beyond, one encounters many beautiful inequalities
that relate geometric or physical quantities describing the shape or size of a set. Suchisoperi-
metric inequalities often have a long history and many important applications. For instance,
the eponymous and most classical of all isoperimetric inequalities was known already in antiq-
uity. It asserts that among all closed planar curves of a given length, the circles with perimeter
equal to that length, and only they, enclose the largest area. Though not nearly as well-known,
an isoperimetric inequality conjectured by Saint-Venant in the 1850s and first proved by Pólya
almost a century later, is also very beautiful and important. By presenting a short proof as
well as two simple physical interpretations, this article illustrates why the result deserves to
be cherished by every student of applied analysis.

1. INTRODUCTION. The inequality of the title is an example of anisoperimetric
inequality, that is, a sharp inequality that relates geometric or physical quantities de-
scribing the shape or size of a set [20, Sec. 1]. Despite its beauty and importance, the
result does not seem to be altogether well-known. This article attempts to change that.

To set the scene, fix an integerd ≥ 2 and a non-empty open subsetU of the Eu-
clidean spaceRd. For convenience, say that the setU is nice if it is bounded, and its
boundary∂U is sufficiently well-behaved for the Dirichlet boundary value problem

∆w :=
∂2w

∂x2
1

+ . . . +
∂2w

∂x2
d

= −1 in U , w = 0 on∂U , (1)

to have a unique (classical) solutionw = w(x) = w(x1, . . . , xd). As one learns in
an introductory course on partial differential equations (PDE), this is rather a mild
assumption. For example,U is nice provided that each point in∂U is the tip of a small
cone contained entirely in the complementR

d \ U ; in particular,U is nice whenever
∂U is a smooth surface [12, Sec. 2.8]. The maximum principle, another fixture in every
introductory PDE course, implies thatw > 0 in U . Therefore, the integral

J(U) :=

∫

U

w(x) dx ,

the main protagonist of this article, is positive (and finite). Notice that just like the
d-dimensional volume (or Lebesgue measure)m(U), the value ofJ(U) does not
change ifU is subjected to any rotation, translation, or reflection. Also, for a > 0
and the scaled copyaU := {ax : x ∈ U} of U, clearlym(aU) = adm(U) whereas
J(aU) = ad+2J(U). Thus it is natural to consider the ratioJ(U)/m(U)1+2/d > 0,
the value of which does not change ifU is scaled either. To develop a quantitative
sense for this ratio, first consider a simple example.

Example 1. Given0 < a < b, let U be the annular region{x ∈ R
d : a < |x| < b},

hencem(U) = (bd − ad)ωd. Here and throughout,| · | andωd denote the Euclidean
length and the volume of the unit ball inRd, respectively. From multi-variable calcu-
lus, the reader may recall thatωd = πd/2/Γ(1 + d/2) whereΓ is the Euler Gamma
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function. The solution of (1) is radially symmetric; more precisely,w(x) = W (|x|)
with W = W (r) being the unique solution of

d2W

dr2
+

d − 1

r

dW

dr
= −1 , W (a) = W (b) = 0 .

From this, a fun calculus exercise yields a smooth positive functionCd such that

J(U) = Cd

(a

b

)
m(U)1+2/d .

While the general expression forCd(s) is somewhat cumbersome to write down, it is
readily checked that, for instance,

C2(s) =
1

8π

(
1 + s2

1 − s2
+

1

log s

)
and C4(s) =

1

12π
√

2

(
1 − s2

1 + s2

)3/2

. (2)

Just as in these examples,Cd is decreasing in0 < s < 1 for everyd ≥ 2, with

cd := lims↓0 Cd(s) =
1

ω
2/d
2 d(d + 2)

=
Γ(1 + d/2)2/d

πd(d + 2)
,

and lims↑1 Cd(s) = 0; see also Figure 1. Clearly, then,J(U)/m(U)1+2/d never is
larger thancd. Moreover, it seems plausible thatcd = J(U)/m(U)1+2/d wheneverU
is a ball. This indeed is the case; see Lemma 6 below. However,notice thatJ(U) is
not defined fora = 0 sinceU, a punctured ball, is not a nice open set.

0

1

0 1
a

b

d = 5

d = 10

a

b U

d = 2 c2 =
1

8π d = 3 c3 =
1

10(6π2)1/3

x1

x2

x1
x2

x3

a

b

U

J(U)

cdm(U)1+2/d

impossible by Theorem 2

Figure 1. The ratioJ(U)/(cdm(U)1+2/d) for the annular regionU = {x ∈ R
d : a < |x| < b} is decreas-

ing in s = a/b and, as asserted by Theorem 2, is smaller than1 for all 0 < a < b.

Example 1 demonstrates that the ratioJ(U)/m(U)1+2/d can be arbitrarily small.
It also suggests that, by contrast and perhaps somewhat surprisingly, this ratio cannot
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be arbitrarily large. On first sight, it may seem as if the upper bound gleaned from
Example 1 was specific for the particularly nice open sets considered there. This, how-
ever, is not the case. In fact, it is the purpose of this article to advertise, and present a
proof of, the following inequality which identifiescd as a universal sharp upper bound.

Theorem 2. Letd ≥ 2 be an integer, andU ⊂ R
d a nice open set. Then

J(U) ≤ cdm(U)1+2/d ; (3)

moreover, equality holds in(3) if and only ifU is a ball.

As the reader may suspect right away, and will soon see explicitly, the key step in
the proof of Theorem 2 is to establish (3) forconnectedU, and to address possible
equality in this case. Ford = 2 andsimply connectedU, that is, for planar connected
open sets “without holes,” Theorem 2 was, in essence, conjectured in 1856 by J.B. de
Saint-Venant [24] who also supported it with ample experimental evidence based on
a physical interpretation ofJ(U); see Section 3 below. Saint-Venant’s conjecture was
first proved in 1948 by G. Pólya [21].

As far as the author has been able to ascertain, Theorem 2 appears, more or less
explicitly, only in the specialized PDE literature (such as, e.g., [6, 9, 11]) where it
is proved in much greater generality by means of advanced techniques that may be
difficult to appreciate for the non-expert. As formulated inthis article, however, The-
orem 2 follows directly from a simple form of Talenti’s inequality, an important basic
tool in PDE theory. Section 2 recalls a tailor-made version of this classical inequality,
and then gives a short proof of Theorem 2. Section 3 discussestwo pertinent physical
interpretations ofJ(U), as well as variations on Theorem 2, for the cased = 2.

Remark.The definition ofJ(U) makes sense ford = 1 as well. Every bounded (non-
empty) open setU ⊂ R is nice, and a short calculus exercise, aided perhaps by Lemma
5 below, confirms that the conclusion of Theorem 2, withc1 = 1

12
, remains correct in

this case also.

2. PROOF OF THEOREM 2. As indicated earlier, utilizing the appropriate tools
makes the proof of Theorem 2 very short indeed. For the task athand, arguably the
most appropriate tools aresymmetrizations, also referred to asrearrangements; see,
e.g., [3, 8, 14, 16] for friendly, informative introductions to the subject. As it turns out,
a few simplified concepts and facts are all that is needed here. They are reviewed first.

Given a nice open setU ⊂ R
d, or indeed any set with finite volume, denote byU∗

the unique (open) ball centered at the origin withm(U∗) = m(U), that is, let

U∗ :=
{
x ∈ R

d : |x| < (m(U)/ωd)
1/d
}

.

For every bounded continuous functionf : U → R and every real numbert, denote
the level set{x ∈ U : f(x) > t} of f simply by{f > t}. The functionf ∗ : U∗ → R

given by

f ∗(x) := sup
{
t ∈ R : x ∈ {f > t}∗

}
(4)

is the (Schwarz) symmetrization or symmetric decreasing rearrangementof f .
Although the definition (4) may look a bit daunting on first sight, observe that, infor-
mally put,f ∗ simply is a more symmetric version off which, however, retains certain
key aspects of the latter function, notably its range, distribution of values, and integral;
see Proposition 3 below. In the suggestive words of Pólya and Weinstein in [23], if f
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describes a “hill” overU thenf ∗ describes a rearranged “round hill” overU∗, where
each level set has been converted into a ball of the same volume, and all these balls
are concentric; see also Figure 2. A few basic properties of symmetrizations are easily
deduced from (4), but can also be found, among many other interesting facts, e.g., in
[3, 8, 16].

Proposition 3. Let d ≥ 2 be an integer, andU ⊂ R
d a nice open set. Assume that

f : U → R is bounded and continuous. Then:

(i) f ∗ is radially symmetric and decreasing, i.e.,f ∗(x) = f ∗(y) wheneverx, y ∈
U∗ with |x| = |y|, andf ∗(x) ≤ f ∗(y) if |x| ≥ |y|;

(ii) f ∗ is bounded, withinfU∗ f ∗ = infU f andsupU∗ f ∗ = supU f ;
(iii) f ∗ is continuous, provided thatU is connected;
(iv) {f ∗ > t} = {f > t}∗ for every t ∈ R, and hence alsom({f ∗ > t}) =

m({f > t});

(v)

∫

U∗

f ∗(x) dx =

∫

U

f(x) dx.

f f∗

U U∗

R
d

R
d

t

{f > t} {f∗ > t} = {f > t}∗

Figure 2. Illustrating the symmetrizationf∗ : U∗ → R of a functionf : U → R.

With regard to Theorem 2, a key question is whether or not symmetrization inter-
acts in a fruitful way with solving the Dirichlet problem (1). More specifically, is the
solutionw of the latter related in any way to the solutionv of

∆v = −1 in U∗ , v = 0 on∂U∗ ? (5)

Note that(−1)∗ = −1, and keep in mind thatU∗ simply is a ball centered at the origin.
It is a most fortunate feature of the Laplace operator∆, and indeed of more general
elliptic second-order differential operators that this question has an affirmative answer.
Formulated specifically with Theorem 2 in mind, the following is a simple special case
of Talenti’s inequality. (After having witnessed this powerful tool contribute decisively
to the proof presented below, a reader yearning for an in-depth study may want to turn,
e.g., to [2, 15] for details.) Recall that a statement holds foralmost allx ∈ U∗ if all x
for which the statement does fail are contained in a subset ofU∗ with volume zero.
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Proposition 4. Let d ≥ 2 be an integer, andU ⊂ R
d a connected nice open set. As-

sume thatw andv are the solutions of the Dirichlet problems (1) and (5), respectively.
Thenw∗(x) ≤ v(x) for almost allx ∈ U∗; moreover,w∗(x) = v(x) for almost all
x ∈ U∗ if and only if U is a ball.

In addition to this powerful fact, two elementary observations are helpful. A first ob-

servation is about the quantityNp(z) :=
(∑∞

n=1
|zn|p

)1/p
, wherez = (zn) is any real

sequence, andp > 0. Forp ≥ 1, and restricted to the appropriate space of sequences,
the reader may recognizeNp as thep-norm familiar from linear analysis.

Lemma 5. Let z = (zn) be a real sequence. IfNpo
(z) < ∞ for somepo > 0 then

Np(z) < ∞ for all p ≥ po, andp 7→ Np(z) is strictly decreasing on[po,∞[ unless
zn = 0 for all but at most onen.

Proof. If Npo
(z) < ∞ thenlimn→∞ zn = 0 and hence|zn|p ≤ |zn|po for everyp ≥

po and all sufficiently largen, soNp(z) < ∞ as well. Since the assertion is correct
for z = 0, assume thatzn 6= 0 for at least onen. Pick anyq > p ≥ po, and assume
first thatNp(z) = 1. Then|zn|q ≤ |zn|p for all n, and in fact|zn|q < |zn|p unless
zn ∈ {−1, 0, 1}. Summing overn yields Nq(z) < Np(z)p/q = 1 unless|zn| = 1
for some, necessarily uniquen. In general, that is, forNp(z) 6= 1 simply apply this
argument to the sequence

(
zn/Np(z)

)
instead of(zn). This yieldsNq(z)/Np(z) < 1

unlesszn = 0 for all but onen.

A second observation is that (3) is an equality wheneverU ⊂ R
d is a ball. This,

the “if” part of the assertion regarding equality in Theorem2, could be established by
carefully considering the casea ↓ 0 in Example 1. Still simpler is a direct calculation.

Lemma 6. Let d ≥ 2 be an integer, andU ⊂ R
d a ball. ThenJ(U) = cdm(U)1+2/d.

Proof. By the translation invariance ofJ(U), it can be assumed thatU equals
{x ∈ R

d : |x| < a} for somea > 0. Then m(U) = adωd, as well asw(x) =
(a2 − |x|2)/(2d), and hence

J(U) =

∫

|x|<a

a2 − |x|2
2d

dx =
σd

2d

∫ a

0

(a2 − r2)rd−1 dr =
ad+2σd

d2(d + 2)
,

whereσd denotes the(d − 1)-dimensional volume of{x ∈ R
d : |x| = 1}, the unit

sphere inR
d, and the second equality is an application of spherical coordinates or,

more grandiosely put, theco-area formula; see, e.g., [16, Sec. 2.2]. As the reader may
recall from multi-variable calculus,σd = dωd, and so indeed

J(U) =
ad+2ωd

d(d + 2)
=

m(U)1+2/d

ω
2/d
d d(d + 2)

= cdm(U)1+2/d .

(When interpreted with caution, this calculation is correct for d = 1 also.)

The scene is now set for a very shortProof of Theorem 2. Assume first thatU is
connected, and letw, v be as in Proposition 4. Sincew∗(x) ≤ v(x) for almost all
x ∈ U∗,

J(U) =

∫

U

w(x) dx =

∫

U∗

w∗(x) dx ≤
∫

U∗

v(x) dx = J(U∗) ,

January 2014] SAINT-VENANT AND PÓLYA REVISITED 5



where the second equality is due to Proposition 3(v). By Proposition 4, the inequality
is strict unlessU is a ball. SinceU∗ is a ball in any case, Lemma 6 yields

J(U) ≤ J(U∗) = cdm(U∗)1+2/d = cdm(U)1+2/d ,

and again this inequality is strict unlessU is a ball. This proves the theorem in the case
whereU is connected. In general, let(Un) be the (at most countably many) connected
components ofU. Thenm(U) =

∑
n m(Un), and by what has already been proved,

J(U) =
∑

n
J(Un) ≤ cd

∑
n
m(Un)1+2/d ≤ cd

(∑
n
m(Un)

)1+2/d

= cdm(U)1+2/d ;

here the second inequality follows from Lemma 5 and is strictunlessm(Un) = 0 for
all but onen, that is, unlessU is connected.

It may be worth noting that even without making use of sophisticated PDE tools
such as Proposition 4, it is possible to give an explicit upper bound on the ratio
J(U)/m(U)1+2/d. The following elegant argument was shown to the author by G.
Huisken [13]; it only relies on advanced calculus tools (and tacitly assumesU to be
sufficiently well-behaved for these tools to all be applicable). Denote byλ1(U) the
smallest eigenvalue of the Dirichlet Laplacian onU, that is, the smallest numberλ > 0
such that the boundary value problem

∆u + λu = 0 in U , u = 0 on∂U ,

has a solution other thanu = 0. With this, deduce from, respectively, the Cauchy–
Schwarz inequality, the Poincaré inequality, and the divergence theorem applied to
w∆w using (1), that

(∫

U

w dx

)2

≤ m(U)

∫

U

w2 dx ≤ m(U)

λ1(U)

∫

U

|∇w|2 dx =
m(U)

λ1(U)

∫

U

w dx ,

and hence

J(U) =

∫

U

w dx ≤ m(U)

λ1(U)
.

Now, the Faber–Krahn inequality [8, 16, 22] says thatλ1(U) is minimal precisely
whenU is a ball of volumem(U). It is well-known, and also easy to check by direct
calculation, that for a ball with radiusa > 0 simply λ1 = j2

d/2−1
/a2, wherejd/2−1

denotes the smallest positive zero of the Bessel function (of the first kind) of order
d/2 − 1; see, e.g., [22, Note F]. Consequently,

λ1(U) ≥
j2

d/2−1

(m(U)/ωd)2/d
=

ω
2/d
d j2

d/2−1

m(U)2/d
,

and putting everything together,

J(U) ≤ m(U)1+2/d

ω2/d
d j2

d/2−1

= cd

d(d + 2)

j2

d/2−1

m(U)1+2/d . (6)
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This shows thatJ(U)/m(U)1+2/d indeed is bounded above by a constant independent
of U. Note, however, thatj2

d/2−1
< d(d + 2) for every positive integerd. For instance,

j2
0 = 5.783 < 2 · 4 andj2

1/2
= π2 < 3 · 5. Thus the bound (6), though arrived at with

very little effort and by relying on nothing more than advanced calculus tools, isnot
sharp, quite unlike (3).

3. PHYSICAL INTERPRETATIONS FOR d = 2. Its inherent mathematical
beauty aside, Theorem 2 is important for its real-world applications as well. In fact,
it was precisely these types of applications that suggestedthe result in the first place.
This concluding section briefly discusses two physical interpretations ofJ(U) as well
as (im)possible improvements to Theorem 2. For simplicity and concreteness, assume
d = 2 throughout. In this case, Theorem 2 says that for every nice open setU ⊂ R

2,

J(U) ≤ m(U)2

8π
; (7)

moreover, equality holds in (7) if and only ifU is a disc.
For a first physical interpretation, imagine the stationarylaminar flow of an ideal

viscous incompressible fluid through a pipe with constant cross-sectionU; see also
Figure 3. Assume the pipe to be so long that the flow remains essentially unaffected by
whatever disturbances may occur at either end. Under these idealized but not altogether
unreasonable assumptions, basic fluid dynamics [17] yields the following relation be-
tween the volume flow rateQ through the pipe and the pressure differencep1 − p2

between its ends:

Q = (p1 − p2)
J(U)

Lµ
; (8)

hereL andµ are the length of the pipe and the dynamic viscosity of the fluid, respec-
tively. Informally put, (8) identifiesJ(U) as a kind offluid-dynamical conductivityof
a pipe with cross-sectionU . By (7),

Q ≤ (p1 − p2)
m(U)2

8πLµ
. (9)

Note that (9) can be read in two meaningful ways: Given a specific pipe (lengthL,
cross-sectionU ) and fluid (dynamic viscosityµ), it imposes either an upper bound on
the volume flow rate attainable with a givenp1 − p2, or a lower bound on the pressure
difference required to attain a givenQ. By Theorem 2, the maximal volume flow rate,
given p1 − p2, and the minimal pressure difference, givenQ, both occur precisely
when the pipe has a circular cross-section. In this case, andwith r =

√
m(U)/π,

Q = (p1 − p2)
m(U)2

8πLµ
= (p1 − p2)

πr4

8Lµ
,

which the reader may recognize as the famousHagen–Poiseuille lawfirst formulated
in 1838.

For a second, quite different interpretation ofJ(U) assume thatU is simply con-
nected, and consider a rod made from perfectly linear-elastic homogeneous material
with cross-sectionU. One end of the rod is free while the other end is fixed, e.g.,
welded to a wall; see also Figure 3. Subject the rod to a twist about its longitudinal
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axis by applying a torqueT . Similarly to before, assume the rod to be so long that
whatever disturbances may occur at the fixed end do not noticeably affect the resulting
elastic deformation. Linear elasticity theory [10] then yields the twist angleϕ at the
free end, caused by the torqueT :

ϕ =
TL

4GJ(U)
; (10)

hereL andG are the length of the rod and the shear modulus of its material, respec-
tively. Thus (10) identifiesJ(U) as thetorsion constantof a rod with cross-sectionU.
The product4GJ(U) is often referred to astorsional rigidity. Again, by (7),

ϕ ≥ 2π
TL

Gm(U)2
. (11)

Given a rod with a specific geometry (lengthL, cross-sectionU ) and made from a
specific linear-elastic homogeneous material (shear modulusG), note that (11) pro-
vides a lower bound on the twist angle caused byT . All other parameters being equal,
Theorem 2 says thatϕ is minimal precisely ifU is circular. In other words, among all
(nice open) cross-sectionsU with aream(U), the unique cross-section with maximal
torsion constant is the disc with radius

√
m(U)/π. It was in this form that Theorem

2 for d = 2 was first conjectured by Saint-Venant.

L

L

U

U

Q

T

G

µ

p1

p2

ϕ

Q = (p1 − p2)
J(U)

Lµ
ϕ =

TL

4GJ(U)

Figure 3. The quantityJ(U) can be interpreted as the fluid-dynamical conductivity of a pipe with cross-
sectionU (left) and, ifU is simply connected, also as the torsion constant of a homogeneous rod.

The physical interpretations just described raise the practically important question
as to whether or not the bounds (9) and (11), and thus ultimately (7) also, can be
improved any further. Naturally, this question can be adressed in various ways. For
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instance, [18] shows that ifU is convex, andδ(U) denotes the largest radius of any
(open) disc contained inU, then

J(U) ≤ δ(U)2m(U)

3
. (12)

Notice that (12) improves (7) whenever8πδ(U)2 < 3m(U). For a concrete example,
let U be an ellipse with semi-axesa, b > 0: Herem(U) = πab, δ(U) = min{a, b},
and consequently (12) improves (7) unless3/8 ≤ a/b ≤ 8/3. However, by an explicit
calculation in the spirit of Example 1,

J(U)

δ(U)2m(U)
=

a2b2

4(a2 + b2)min{a, b}2
<

1

4
,

which shows that, unlike in (7), equalityneverholds in (12) ifU is an ellipse.
If U is not convex, perhaps not even simply connected, then (12) may fail, as shown,

e.g., by the annulus{x ∈ R
2 : a < |x| < b} from Example 1, where

J(U)

δ(U)2m(U)
=

1

2(a − b)2

(
a2 + b2 − a2 − b2

log(a/b)

)
>

1

3
.

To get an idea what an improvement of (7) might look like in this case, it is worth
recalling for a moment the most classical of all isoperimetric inequalities [7, Ch. 3].
Known already in antiquity (though not proved rigorously until the late nineteenth cen-
tury), it asserts that for every nice open setU ⊂ R

2 with piecewise smooth boundary
of total lengthℓ(∂U),

m(U) ≤ ℓ(∂U)2

4π
; (13)

moreover, equality holds in (13) if and only ifU is a disc. (Surely, the strong similarity
between (7) and (13) is not lost on the reader.) In light of thefundamental importance
of (13), improvements and variations thereof have long beenof interest, not least to
authors and readers of the MONTHLY [1, 5, 19, 25]. For a very simple improvement,
assume thatU has a finite number of disjoint holes. More specifically, denote byH∞

the unbounded component ofR
2 \ U , and assume thatR

2 \ (U ∪ H∞) is the disjoint
union ofH1, . . . ,Hn where eachHi itself is a nice open set, andHi is the closure
of Hi; see also Figure 4. With this, replacingU by U ∪ Hi (or by R

2 \ H∞) means,
informally put, that the holeHi (or all holes) are being “removed” or “filled up.”
Since removing a hole increases the left side in (13) but reduces the right side, the
bound1/(4π) will typically be very inaccurate, that is, far larger than the actual ratio
m(U)/ℓ(∂U)2. By means of theporosity of U, defined as

p :=

√∑n

i=1
m(Hi)

m(R2 \ H∞)
=

√ ∑n

i=1
m(Hi)

m(U) +
∑n

i=1
m(Hi)

,

it is easy to establish a more accurate bound. To this end, notice that

ℓ(∂U)2 =
(
ℓ(∂H∞) +

∑n

i=1
ℓ(∂Hi)

)2
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≥ 4π

(√
m(U) +

∑n

i=1
m(Hi) +

∑n

i=1

√
m(Hi)

)2

≥ 4π

(√
m(U) +

∑n

i=1
m(Hi) +

√∑n

i=1
m(Hi)

)2

= 4π

(√
m(U)

1 − p2
+ p

√
m(U)

1 − p2

)2

= 4πm(U)
1 + p

1 − p
.

Here, the first inequality is due to (13) applied toR
2 \ H∞ andH1, . . . ,Hn individu-

ally, whereas the second inequality is due to Lemma 5. Thus animproved form of (13)
in the presence of holes, with the total size of the latter being measured by the porosity
0 < p < 1, is

m(U) ≤ ℓ(∂U)2

4π
· 1 − p

1 + p
. (14)

Moreover, it is clear that equality holds in (14) if and only if U is a disc containing
a single circular hole, the radius of the hole beingp times the radius ofU with the
hole removed. To appreciate the improvement over (13) that (14) represents, note for
instance that forp = 0.9 the bound provided by the former is19 times the bound
provided by the latter!

U

U ∪ H1

H1

H2

H2

H∞

H∞H∞

R
2 \ H∞

p =

s

m(H1) + m(H2)

m(U) + m(H1) + m(H2)

Figure 4. In the presence of holes, the isoperimetric inequality (13)takes the improved form (14).

Returning now toJ(U), the reader may wonder whether or not it is possible to
achieve a similar improvement for (7). As it turns out, this is not possible. Given any
0 < p < 1, one may utilize Example 1 to design a nice open setU with a single hole
and with porosity equal top such that the ratioJ(U)/m(U)2 is as close to1/(8π) as
one wishes; see also Figure 5. This shows that, in a way, the inequality (7), and thus
Theorem 2 as well, are the best possible even in the presence of holes.

Finally, the reader may be curious to know how (10) changes ifU is not simply
connected. Think for instance of a hollow shaft. In this case, J(U) has to be replaced
by a quantityJ̃(U), the precise definition of which is slightly more complicated; see,
e.g., [10, 16, 23] for details. To mention but one example, ifU again is the annulus
{x ∈ R

2 : a < |x| < b} with 0 < a < b then

J̃(U) =
π

8
(b4 − a4) =

m(U)2

8π
· 1 + p2

1 − p2
,
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x1

x2

p
1
+

ap
2

p

1
+

a
+

m
(V

a )/(πp 2
) p

1
−

p
2

Ua

Va

porosity ofUa = p, for all a > 0

lima↓0
J(Ua)

m(Ua)2
=

1

8π

lima↓0
m(Va)

a
= 0

a > 0

0 < p < 1

Figure 5. Why (7) cannot be improved in the presence of holes, quite unlike (13).

where the second equality is due toU having porosityp = a/b < 1. For comparison,
recall from (2) that

J(U) =
m(U)2

8π

(
1 + p2

1 − p2
+

1

log p

)
.

A classical theorem by Pólya and Weinstein [23] says that the ratiõJ(U)/m(U)2

cannot ever be larger than in this example. More precisely,

J̃(U) ≤ m(U)2

8π
· 1 + p2

1 − p2
(15)

for every nice open setU ⊂ R
2 with porosity0 ≤ p < 1. Although the factor

1 + p2

1 − p2

in (15) may appear reminiscent of the factor
1 − p

1 + p
in (14), do notice that, in stark con-

trast to the latter, the former is unbounded asp ↑ 1. Thus, givenm(U), it is possible
to design cross-sections with arbitrarily large torsion constant—simply takeU to be
an annulus with aream(U) and porosityp close to1. Though interesting theoretically,
this observation has but little practical value: Ifp is close to1, that is, if the setU
is very porous or “thin” then it becomes useless as a cross-section of a rod. On the
one hand, the resulting diameter ofU may be too large for the purpose at hand. On
the other hand, and perhaps more stringently, the rod may undergo a loss of stability
(buckling), the mere possibility of which has not been takeninto account at all in the
derivation of (10).

Having seen, in this article, the beauty and importance of the inequality by Saint-
Venant and Pólya, the reader may want to further explore thevast and wondrous sub-
ject of isoperimetric inequalities through, e.g., [3, 4, 19, 20, 22, 25].
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21. Pólya, G. (1948). Torsional rigidity, principal frequency, electrostatic capacity and symmetrization.

Quart. Appl. Math.6(3): 267–277.
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