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Abstract. Nonautonomous differential equations on finite-time intervals play
an increasingly important role in applications that incorporate time-varying
vector fields, e.g. observed or forecasted velocity fields in meteorology or oceano-
graphy which are known only for times t from a compact interval. While clas-
sical dynamical systems methods often study the behaviour of solutions as
t → ±∞, the dynamic partition (originally called the EPH partition) aims at
describing and classifying the finite-time behaviour. We discuss fundamental
properties of the dynamic partition and show that it locally approximates the
nonlinear behaviour. We also provide an algorithm for practical computations
with dynamic partitions and apply it to a nonlinear 3-dimensional example.

1. Introduction. In this article, we study nonautonomous ordinary differential
equations

ẋ = f(t, x) , (1)

where f : I × Rn → Rn is continuous with continuous derivatives Dtf , D2
xf , and

I ⊂ R is a nonempty interval. We are particularly interested in the finite-time case,
i.e., in the case of a compact interval I = [t0, t1] with t0 < t1. Finite-time dynamics
has recently become a very active field of research, see e.g. [6, 7, 10, 11, 12, 13, 14,
16, 17, 18, 19, 20, 21, 22] and the many references therein. Some of the reasons for
the increased interest in finite-time dynamics are:

(i) Numerically computed vector fields are of the form (1). Modern developments
in scientific computing, e.g. in computational fluid dynamics, often yield a
discretized version of a time-varying velocity field, i.e. an equation of the form
(1) where the numerical simulation starts at time t0 and ends at t1.
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(ii) Observed velocity fields are of the form (1). Recent advances in technology, e.g.
in satellite imaging of ocean currents, enable the generation of high-resolution
data sets on a space-time grid, i.e. a system of the form (1) where the obser-
vation of the vector field f starts at time t0 and ends at t1.

(iii) The transient behaviour of (1) can be observed on finite-time intervals. Typ-
ically, the qualitative behaviour of solutions of (1) as t → ±∞ is indepen-
dent of the transient behaviour of solutions on any finite-time interval of the
form [t0, t1] since the parts f |(−∞,t0](·, x), f |[t0,t1](·, x) and f |[t1,∞)(·, x) may
not be correlated at all. As a consequence, if (1) does not exhibit a sim-
ple time dependence (e.g., almost periodicity) then the transient behaviour
for t ∈ [t0, t1] often is physically much more relevant than the asymptotic
behaviour as t→ ±∞.

For a concrete application to 2-dimensional fluid dynamics consider two like-signed
vortices of the same size which are close together, circle around each other and
after a while merge to a single vortex [23]. By changing to a co-rotating coordinate
system the average rotation of the system can be factored out, see Figure 1 for
a snapshot of the vector fields before and after merging [5]. During the process

Figure 1. Schematic shape of the velocity field of two 2-
dimensional vortices in a co-rotating frame before (left) and after
merging.

of merging the dynamics in the center changes from a saddle-type structure to a
circular structure. Since the merging process takes place in finite time, asymptotic
tools are not applicable. Rather, genuine finite-time concepts are required to analyze
this situation. It is the purpose of this article to develop in some generality one
such concept, the dynamic partition (originally referred to as the EHP partition),
and to discuss its potential applications as well as inherent limitations.

Which concepts are adequate for studying the qualitative behaviour of (1) on
finite-time intervals? A fundamental problem consists in developing a proper notion
of hyperbolicity for the linear system

ẋ = A(t)x , (2)

where A : I → Rn×n is continuous. Recall that, for I = R, (2) is termed hyperbolic
if it admits an exponential dichotomy, i.e., if there exists an invariant projector
P : I → Rn and constants α > 0, K ≥ 1 such that for all s, t ∈ I and ξ ∈ Rn,

‖Φ(t, s)P (s)ξ‖ ≤ Ke−α(t−s)‖ξ‖ if t ≥ s ,

‖Φ(t, s)[id − P (s)]ξ‖ ≤ Keα(t−s)‖ξ‖ if t ≤ s ;
(3)
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here Φ denotes the evolution operator associated with (2). The two vector bundles
S = {(t, x) : t ∈ I, x ∈ imP (t)} and U = {(t, x) : t ∈ I, x ∈ kerP (t)} are invariant
and consist of solutions which, respectively, decay and grow exponentially with a
uniform rate at least α. Thus if for instance P ≡ id then (2) is exponentially stable.
Transient behaviour is not captured by this notion as the constant K can be very
large. On the other hand, (3) withK = 1 implies that the norm of solutions in S and
U , respectively, decays and increases monotonically for t ∈ I. While exponential
decay and growth on I = R is independent of the chosen norm, monotonicity of
solutions in S and U is not: the transient behaviour of (1) or (2) will be different
depending on which norm on Rn is used. Not least from a practical point of view,
therefore, is it imperative to allow for more than one norm. This is one reason
why we pay considerable attention to the family of norms ‖ · ‖Γ =

√
〈·,Γ·〉 induced

by different symmetric, positive definite matrices Γ. Another reason is that the
invariant projector P in (3) for I = [t0, t1] is generally not unique. A careful choice
of Γ, however, can yield uniqueness [2] and thus in turn make accessible deeper
structure theorems for finite-time dynamics. These further developments evidently
rely on the theory of dynamic partitions developed here.

In this article, we follow and extend the approach by Haller [7, 10], see also [4, 5].
We study the behaviour of solutions of (1) in the vicinity of a particular solution
µ : I → Rn. By the transformation x 7→ x− µ the solution µ is mapped to the zero
solution of

ẋ = Dxf
(
t, µ(t)

)
x+ g(t, x) , (4)

with the nonlinearity g(t, x) := f
(
t, x+µ(t)

)
−f(t, µ(t))−Dxf

(
t, µ(t)

)
x. We denote

the linearization of (1) along µ, which clearly also is the linearization of (4) at x = 0,
by

ξ̇ = Dxf
(
t, µ(t)

)
ξ . (5)

The local behaviour of (1) near µ is described by (5), and we partition the extended
state space I×Rn into attracting, repelling, hyperbolic, quasihyperbolic, elliptic and
degenerate points, according to their local (in x and t) behaviour. Though similar in
spirit to [4, 7, 10] our approach here is neither restricted to planar systems nor to the
usage of the Euclidean norm. While largely extending the applicability of dynamic
partitions, this increase in generality turns out to cause only minor mathematical
difficulties.

This article is organized as follows. In Section 2.1 we introduce the dynamic par-
tition and discuss its invariance under orthogonal transformations and translations
(Lemma 2.5). An arbitrary linear transformation maps the dynamic partition to a
transformed dynamic partition, while at the same time the norm in question is also
altered (Lemma 2.7). It is shown that all but the degenerate part of the dynamic
partition are open sets in the extended state space (Lemma 2.8). For linear systems
with constant coefficients the finite-time notions are related to the classical notions
of attraction, repulsion, hyperbolicity and ellipticity (Theorem 2.9). An application
to autonomous equations yields a result on the location of periodic orbits (Theorem
2.10). In Section 2.2 we show that even though it is defined in terms of the lin-
earization (5), the dynamic partition locally approximates the nonlinear behaviour
of (1) (Theorems 2.11, 2.13, 2.14). Section 2.3 is dedicated to the presentation of
an algorithm to practically compute dynamic partitions. This algorithm is applied
to an example in Section 2.4.
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2. Finite-time dynamics. Throughout this article, Γ ∈ Rn×n denotes a symmet-
ric positive definite matrix, that is, Γ = Γ⊤ > 0, and ‖ · ‖Γ symbolizes the induced

norm, i.e. ‖x‖Γ =
√
〈x,Γx〉 for all x ∈ Rn. Quantities depending on Γ have their

dependence made explicit by a subscript which is suppressed only if Γ equals idn×n,
the n× n identity matrix.

2.1. Dynamic partition. For an arbitrary solution ξ : I → Rn of (5) the instan-
taneous change of 1

2‖ξ‖2
Γ is given by

1

2

d

dt
‖ξ(t)‖2

Γ =
1

2

d

dt
〈ξ(t),Γξ(t)〉

=

〈
ξ(t),

1

2

[
ΓA

(
t, µ(t)

)
+A

(
t, µ(t)

)⊤
Γ
]
ξ(t)

〉
(6)

with A(t, x) = Dxf(t, x).

Definition 2.1 (Γ-strain tensor). The symmetric matrix

SΓ(t, x) :=
1

2

[
ΓA(t, x) +A(t, x)⊤Γ

]

is called the Γ-strain tensor of equation (1).

Thus the Γ-strain tensor describes growth and decay of solutions ξ of the lin-
earization (5) with respect to the norm ‖·‖Γ. For Γ = idn×n, the matrix S = Sidn×n

is called (rate-of-) strain tensor. Clearly, all solutions of (5) are strictly decreasing
on I ×Rn w.r.t. the ‖ · ‖Γ norm if SΓ

(
t, µ(t)

)
is negative definite, i.e., if for all t ∈ I

〈
ξ, SΓ

(
t, µ(t)

)
ξ
〉
< 0 for all ξ ∈ R

n \ {0} .
Next we define the set of zero strain, see also [7].

Definition 2.2 (Zero Γ-Strain Set). The set

ZΓ(t, x) := {ξ ∈ R
n : 〈ξ, SΓ(t, x)ξ〉 = 0}

is called the zero Γ-strain set of equation (1).

For any symmetric matrix L ∈ Rn×n let λ1, . . . , λn denote its eigenvalues, ordered
according to

λ1 ≥ . . . ≥ λn+ > 0 , λn++1, . . . , λn−n− = 0 , 0 > λn−n−+1 ≥ . . . ≥ λn , (7)

for some n+, n− ∈ {0, 1, . . . , n} with n+ +n− ≤ n. We refer to (n+, n−) as the type
of L, and L is degenerate if n+ + n− < n or, equivalently, if detL = 0; otherwise
L is non-degenerate. Clearly, L is positive definite if and only if it is of type (n, 0),
and it is negative definite precisely if it is of type (0, n). If L is non-degenerate then
it is indefinite if and only if it has eigenvalues of different sign, i.e. n+n− 6= 0.

Proposition 1 (Characterization of Zero Γ-Strain Set). Consider system (1) with
Γ-strain tensor SΓ. Then the zero strain set ZΓ satisfies:

(i) ZΓ is the origin if and only if SΓ is positive or negative definite.

(ii) ZΓ is a cone if and only if SΓ is indefinite or degenerate.

Proof. Let λ1, . . . , λn be the eigenvalues of SΓ, ordered as in (7), and Q ∈ Rn×n an
orthogonal matrix such that

Q⊤SΓQ = diag(λ1, . . . , λn+ , 0, . . . , 0, λn−n−+1, . . . , λn) .
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Then ZΓ = {Qξ ∈ Rn : 〈ξ,Q⊤SΓQξ〉 = 0} and therefore

ZΓ = Q{ξ ∈ R
n : λ1ξ

2
1 + . . .+ λn+ξ2n+ + λn−n−+1ξ

2
n−n−+1 + . . .+ λnξ

2
n = 0} , (8)

and the claim follows.

Remark 1. If SΓ is degenerate then ZΓ contains the (n − n+ − n−)-dimensional
subspace

Q{(0, . . . , 0, ξn++1, . . . , ξn−n− , 0, . . . , 0)⊤ ∈ R
n : ξj ∈ R} ,

with Q as above. For example, ZΓ is a line in R3 if Q⊤SΓQ = diag(1, 1, 0), or a
union of two planes if Q⊤SΓQ = diag(1, 0,−1).

d
dt
‖ξ‖2

Γ < 0

d
dt
‖ξ‖2

Γ < 0

d
dt
‖ξ‖2

Γ > 0d
dt
‖ξ‖2

Γ > 0

ZΓ

ZΓ

ZΓ

ZΓ

Figure 2. ZΓ = ZΓ

(
t0, µ(t0)

)
for equation (5) and fixed t0 ∈ I

when ZΓ is a cone for n = 2 (left) and n = 3 (right). Arrows
and shading indicate the instantaneous norm change at t = t0 for
solutions of (5) which are not in ZΓ.

Remark 2. If SΓ is indefinite and non-degenerate then (8) reads

ZΓ = Q{ξ ∈ R
n : λ1ξ

2
1 + . . .+ λn+ξ2n+ = −λn++1ξ

2
n++1 − . . .− λnξ

2
n}

with n+ + n− = n and n+n− > 0, and replacing ξi by ξi/
√
|λi| for all

i = 1, . . . , n yields

ZΓ = Q

{( ξ1√
|λ1|

, . . . ,
ξn√
|λn|

)⊤
∈ R

n : ξ21 + . . .+ ξ2n+ = ξ2n++1 + . . .+ ξ2n

}
.

If, for some t0 ∈ I, SΓ

(
t0, µ(t0)

)
is indefinite and non-degenerate then ZΓ

(
t0, µ(t0)

)

is a cone, and if the solution ξ of (5) crosses that cone, i.e., if ξ(t0) ∈ ZΓ

(
t0, µ(t0)

)
,

then the sign of the second derivative of t 7→ ‖ξ(t)‖2
Γ at t = t0 characterizes whether

ξ crosses transversally from a region with increasing to a region with decreasing
norm or vice versa. With SΓ(t) = SΓ

(
t, µ(t)

)
and ṠΓ(t) = d

dt
SΓ

(
t, µ(t)

)
we find

1

2

d2

dt2
‖ξ(t)‖2

Γ =
d

dt

〈
ξ(t), SΓ(t)ξ(t)

〉

=
〈
ξ̇(t), SΓ(t)ξ(t)

〉
+

〈
ξ(t), ṠΓ(t)ξ(t) + SΓ(t)ξ̇(t)

〉

=
〈
A(t)ξ(t), SΓ(t)ξ(t)

〉
+

〈
ξ(t), ṠΓ(t)ξ(t) + SΓ(t)A(t)ξ(t)

〉

=
〈
ξ(t), [ṠΓ(t) + SΓ(t)A(t) +A(t)⊤SΓ(t)]ξ(t)

〉
.
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Definition 2.3 (Γ-Strain Acceleration Tensor). The symmetric matrix

MΓ(t, x) := ṠΓ(t, x) + SΓ(t, x)A(t, x) +A(t, x)⊤SΓ(t, x)

is called the Γ-strain acceleration tensor of equation (1), where the symmetric ma-

trix ṠΓ(t, x) := DtSΓ(t, x) +DxSΓ(t, x)f(t, x) is the derivative of the Γ-symmetric
part SΓ(t, x) of A(t, x) = Dxf(t, x) along the solution of (1) starting at time t in x;

note that ṠΓ(t) = ṠΓ

(
t, µ(t)

)
.

ξ(
t 0
)

ξ(
t 0
)

ZΓ ZΓ

ZΓ

ZΓ

Figure 3. Local behaviour of solutions ξ of (5) with ξ(t0) ∈ ZΓ =
ZΓ

(
t0, µ(t0)

)
and

〈
ξ(t0),MΓ

(
t0, µ(t0)

)
ξ(t0)

〉
> 0 when ZΓ is a cone

for n = 2 (left) and n = 3 (right).

The restriction of the quadratic form ξ 7→ 〈ξ,MΓ(t, x)ξ〉 to ZΓ(t, x) is denoted by
MZΓ

(t, x). Given (t, x) ∈ I × Rn it is customary to call MZΓ
negative/positive

definite if it attains only negative/positive values for all ξ ∈ ZΓ(t, x)\{0}, and
indefinite if it attains both negative and positive values on ZΓ(t, x). The following
definition extends the EPH partition introduced by Haller [7].

Definition 2.4 (Dynamic Partition). For the differential equation (1) and Γ =
Γ⊤ > 0 we define the following subsets of I × Rn:

(i) Attracting region:

AΓ := {(t, x) ∈ I × R
n : SΓ(t, x) is negative definite}

(ii) Repelling region:

RΓ := {(t, x) ∈ I × R
n : SΓ(t, x) is positive definite}

(iii) Elliptic region:

EΓ :=

{
(t, x) ∈ I × R

n :
SΓ(t, x) is indefinite and non-degenerate,

and MZΓ
(t, x) is indefinite

}

(iv) Hyperbolic region:

HΓ :=

{
(t, x) ∈ I × R

n :
SΓ(t, x) is indefinite and non-degenerate,

and MZΓ
(t, x) is positive definite

}

(v) Quasihyperbolic region:

QΓ :=

{
(t, x) ∈ I × R

n :
SΓ(t, x) is indefinite and non-degenerate,

and MZΓ
(t, x) is negative definite

}
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(vi) Degenerate region:

DΓ := (I × R
n) \ [AΓ ∪RΓ ∪ EΓ ∪HΓ ∪ QΓ]

We say that (t, x) ∈ I × Rn is of type TΓ for T ∈ {A,R, E ,H,Q,D} if (t, x) ∈ TΓ,
or equivalently, if x is contained in the t-fiber TΓ(t) = {x ∈ Rn : (t, x) ∈ TΓ}. As
always, the subscript Γ is suppressed if Γ = idn×n, i.e., we write T instead of Tidn×n

.

Remark 3. If µ(t) ∈ HΓ(t) for all t ∈ I then the cone field
{
(t, ξ) ∈ I × R

n :
〈
ξ, SΓ

(
t, µ(t)

)
ξ
〉
> 0

}

is forward invariant under the dynamics of the linearization (5), i.e., d
dt
‖ξ(t1)‖Γ > 0

implies d
dt
‖ξ(t2)‖Γ > 0 for all t2 ∈ I, t2 ≥ t1. Similarly, if µ(t) ∈ QΓ(t) for all t ∈ I

then
{
(t, ξ) ∈ I × Rn :

〈
ξ, SΓ

(
t, µ(t)

)
ξ
〉
< 0

}
is forward invariant.

Remark 4. The linearization of a linear system ẋ = A(t)x along an arbitrary
solution µ is the linear system itself. Hence, for every t ∈ I, the fiber TΓ(t) with T ∈
{A,R, E ,H,Q,D} is either empty or else equals Rn. In this situation, we say that
ẋ = A(t)x is attracting/repelling/elliptic/hyperbolic/quasihyperbolic/degenerate
at time t ∈ I if the corresponding fiber TΓ(t) is Rn.

Remark 5. If (1) is autonomous, i.e., if ẋ = F (x), then SΓ, ZΓ and MΓ do not
depend on t. As a consequence, each fiber TΓ ≡ TΓ(t) for T ∈ {A,R, E ,H,Q,D}
is independent of t. In particular, a linear autonomous system ẋ = Ax has one
type TΓ, i.e., it is either attracting, repelling, elliptic, hyperbolic, quasihyperbolic
or degenerate.

Remark 6. If (t, x) is hyperbolic or quasihyperbolic then

|〈ξ,MΓ(t, x)ξ〉| > 0 for all ξ ∈ ZΓ(t, x) \ {0} ,
whereas (t, x) is elliptic precisely if there exist vectors ξ, η ∈ ZΓ(t, x) with

〈ξ,MΓ(t, x)ξ〉 > 0 > 〈η,MΓ(t, x)η〉 .
However, the set {ξ ∈ ZΓ(t, x) : 〈ξ,MΓ(t, x)ξ〉 = 0}, being the intersection of the
zero sets of two quadratic forms, can be quite complicated in the elliptic case.

Remark 7. If the norm ‖ · ‖Γ(t) =
√
〈·,Γ(t)·〉 is allowed to depend on time t ∈ I

then the strain tensor SΓ(t, x) = 1
2 [A(t, x)Γ(t) + Γ(t)A(t, x)⊤ + Γ̇(t)] depends on

the derivative of t 7→ Γ(t) and one can easily choose Γ(·) such that (t, x) ∈ AΓ or
(t, x) ∈ RΓ. A full description of the relation between the dynamic partition and
time-dependent norms is beyond the scope of this paper.

The transformation x 7→ x−µ transforms (1) into (4). The corresponding dynamic
partitions of (1) and (4) are mapped onto each other by this transformation, that
is, the type of (t, x) for (1) and

(
t, x − µ(t)

)
for (4) are identical for all t ∈ I. Let

Q : I → Rn×n be a continuously differentiable function of orthogonal matrices. We
transform (4) by the transformation x 7→ Q⊤x, that is, we compute (4) in the new
coordinates x̃ = Q⊤x, for notational convenience omit the tilde, and obtain

ẋ =
[
Q(t)⊤Dxf

(
t, µ(t)

)
Q(t) −Q(t)⊤Q̇(t)

]
x+ h(t, x) , (9)

with h(t, x) = Q(t)⊤
[
f
(
t, Q(t)x + µ(t)

)
− f

(
t, µ(t)

)
− Dxf

(
t, µ(t)

)
Q(t)x

]
. The

same transformation x 7→ Q(t)⊤x transforms the linearization (5) of (1) into the
linearization of (9) along the zero solution,

ξ̇ = B(t)ξ , (10)
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where B(t) = Q(t)⊤Dxf
(
t, µ(t)

)
Q(t)−Q(t)⊤Q̇(t). If Q(t) commutes with Γ for all

t ∈ I, then the dynamic partitions corresponding to (4) and (9) are mapped onto
each other by the transformation x 7→ Q⊤x. In other words, the time-dependent
shift and orthogonal transformation x 7→ Q(t)⊤[x−µ(t)] transforms system (1) and
its dynamic partition into system (9) and its dynamic partition, respectively. This
observation is made precise by the following lemma which shows that in fact any
time-dependent shift and orthogonal transformation x 7→ Q⊤(x− u) with Q(t)Γ =
ΓQ(t) for all t ∈ I preserves the dynamic partition.

Lemma 2.5 (Dynamic Partition under Shift and Orthogonal Transformation).
Consider the equation

ẋ = f(t, x) , (11)

together with a symmetric, positive definite matrix Γ, and let Q : I → Rn×n and
u : I → Rn be a C1 function of orthogonal matrices and a C1 function, respectively.
Moreover, assume that Q commutes with Γ, i.e. Q(t)Γ = ΓQ(t) for all t ∈ I. Then
the transformation x 7→ Q(t)⊤[x− u(t)] transforms (11) into

ẋ = Q(t)⊤f
(
t, Q(t)x+ u(t)

)
−Q(t)⊤Q̇(t)x−Q(t)⊤u̇(t) , (12)

and for any x solution of (11), x̃ = Q⊤[x− u] is a solution of (12). Moreover, the
linearization of (12) along Q⊤[x− u] is given by

ξ̇ =
[
Q(t)⊤Dxf

(
t, x(t)

)
Q(t) −Q(t)⊤Q̇(t)

]
ξ ,

and, for every t ∈ I, the points
(
t, x(t)

)
for (11) and (t, Q⊤(t)[x(t)−u(t)]) for (12)

have the same type w.r.t. ‖ · ‖Γ.

Proof. Let x be a solution of (11). Then x̃ = Q⊤[x−u] is a solution of (12). Let SΓ

and MΓ denote the Γ-strain and Γ-strain acceleration tensor of (11) along x. With

Ã(t) = Q(t)⊤Dxf
(
t, x(t)

)
Q(t) −Q(t)⊤Q̇(t),

S̃Γ(t) =
1

2

[
ΓÃ(t) + Ã(t)⊤Γ

]
and M̃Γ(t) =

˙̃
SΓ(t) + S̃Γ(t)Ã(t) + Ã(t)⊤S̃Γ(t)

are, respectively, the Γ-strain and Γ-strain acceleration tensor of (12) along x̃.
Omitting the argument t for ease of notation, note that Q⊤Γ = ΓQ⊤ and also
Q̇Γ = ΓQ̇; furthermore, Q⊤Q = I and hence Q̇T = −QT Q̇QT . From

S̃Γ =
1

2

[
ΓÃ+ Ã⊤Γ

]

=
1

2

[
Γ(Q⊤AQ−Q⊤Q̇) + (Q⊤A⊤Q− Q̇⊤Q)Γ

]

=
1

2

[
Q⊤Γ(A− Q̇Q⊤)Q+Q⊤(A⊤ + Q̇Q⊤)ΓQ

]

=
1

2
Q⊤

[
Γ(A− Q̇Q⊤) + (A⊤ + Q̇Q⊤)Γ

]
Q

=
1

2
Q⊤ [

ΓA+A⊤Γ
]
Q = Q⊤SΓQ ,

it follows that S̃Γ and SΓ determine congruent quadratic forms, that is, ξ ∈ ZΓ if

and only if Q⊤ξ ∈ Z̃Γ. A similar computation shows that M̃Γ = Q⊤MΓQ, and since
the dynamic partition is defined exclusively in terms of the Γ-strain and Γ-strain
acceleration tensors, the proof is complete.
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If Lemma 2.5 is applied to the linearization (5) with Q(t) consisting of an or-
thonormal basis of eigenvectors of SΓ

(
t, µ(t)

)
then the transformation x 7→ Q(t)⊤x

factors out that part of the time dependence of Dx

(
t, µ(t)

)
that comes from the

rotation of the eigenvectors of the Γ-strain tensor SΓ, provided that Q and Γ com-
mute. In the fluid dynamics literature this transformation is, for the case Γ = idn×n,
called a strain coordinate transformation (see e.g. [3]).

Definition 2.6 (Strain Coordinates). Consider equation (11) and a solution µ :
I → Rn. Suppose that Q : I → Rn×n is a continuously differentiable function of
orthogonal matrices such thatQ⊤(t)SΓ

(
t, µ(t)

)
Q(t) is diagonal for all t ∈ I, and also

Q(t)Γ = ΓQ(t). Then x 7→ Q⊤[x − µ] is called a strain coordinate transformation.
The transformed equations (9) and (10) are said to be in strain coordinates.

If (9) is in strain coordinates then the Γ-strain tensor corresponding to B(t) in
(10) is diagonal. In the literature the existence of a strain coordinate transformation
is often assumed to simplify computations. Reasonable though it may be, this
assumption requires justification, which in fact may have its subtleties. For instance,
if Γ = idn×n and t 7→ S(t) is analytic in t then [15, Theorem 6.1] implies that
the normalized eigenvectors of S(t) are also analytic. Hence a strain coordinate
transformation exists for (1) along a solution µ provided t 7→ A(t) = Dxf

(
t, µ(x)

)
,

and therefore also the symmetric part S(t), is analytic. On the other hand, if
t 7→ S(t) is merely C∞ then [15, Example 5.3] shows that in general the associated
normalized eigenvectors cannot even be continued as continuous functions. The
obstruction for the existence of strain coordinates comes in the form of multiple
eigenvalues, as can be seen from the following simple example (cf. [4]). The zero
solution µ = 0 of ẋ = A(t)x with

A(t) =



−1 1

2 t
2 0

1
2 t

2 −1 0

0 0 1


 for t < 0 , A(t) =



−1 + 1

2 t
2 0 0

0 −1 + 1
2 t

2 0
0 0 1


 for t ≥ 0 ,

satisfies µ(t) ∈ H(t) for all t ∈ [−1, 1] w.r.t. the Euclidean norm. However, the
unique (up to a permutation of columns) orthogonal matrix Q(t) consisting of the
normalized eigenvectors of A(t) is given by

Q(t) =




1√
2

1√
2

0

− 1√
2

1√
2

0

0 0 1


 for t < 0 and Q(t) =




1 0 0
0 1 0
0 0 1


 for t ≥ 0 ,

and therefore is not even continuous. As a consequence, the equation ẋ = A(t)x
cannot be transformed into strain coordinates on [−1, 1]. Note that an explicit
strain coordinate transformation w.r.t. the Euclidean norm can be constructed if the
eigenvalues of S stay separated, see [4] for an explicit formula for n = 2. Although
strain coordinates may not exist, one can nevertheless apply Lemma 2.5 to (11)
for each fixed t0 ∈ I to factor out the rotation of the zero strain set, i.e., choose
Q =

(
v1| · · · |vn

)
with an orthonormal basis of eigenvectors vi of S(t0), provided

that Q(t0)Γ = ΓQ(t0). We show in the next lemma that one can always ensure
Γ = idn×n by means of an appropriate transformation.

Lemma 2.7 (Dynamic Partition under Linear Transformation). Let Γ and T be a
symmetric, positive definite and an invertible matrix, respectively. Consider

ẋ = f(t, x) with norm ‖ · ‖Γ = 〈·,Γ·〉 1
2 , (13)
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as well as the transformed equation

˙̃x = T−1f(t, T x̃) with norm ‖ · ‖Γ̃ = 〈·, Γ̃·〉 1
2 , (14)

where Γ̃ = T⊤ΓT . Then (t0, x0) for (13) and (t0, x̃0) = (t0, T
−1x0) for (14) have

the same type, that is, (t0, x0) ∈ TΓ if and only if (t0, x̃0) ∈ TΓ̃. Moreover, with

x̃1 = T−1x1,

d

dt
‖x(t, t0, x1) − x(t, t0, x0)‖2

Γ

∣∣
t=t0

=
d

dt
‖x̃(t, t0, x̃1) − x̃(t, t0, x̃0)‖2

Γ̃

∣∣
t=t0

,

where x(t, t0, x0) and x̃(t, t0, x̃0) denote, respectively, the solutions of (13) and (14)
starting at t0 in x0 and x̃0.

Proof. Pick (t0, x0) ∈ I ×Rn. Let SΓ = SΓ(t0, x0) and MΓ = MΓ(t0, x0) denote the
Γ-strain and Γ-strain acceleration tensor of (13) at (t0, x0). With A = Dxf(t0, x0)

and Ã = Dx̃

[
T−1f(t, T x̃)

]∣∣
(t0,x̃0)

= T−1AT the Γ̃-strain and Γ̃-strain acceleration

tensor of (14) at (t0, x̃0) are

S̃Γ =
1

2

[
Γ̃Ã+ Ã⊤Γ̃

]
and M̃Γ =

˙̃
SΓ + S̃ΓÃ+ Ã⊤S̃Γ ,

respectively. From

S̃Γ = 1
2 [T⊤ΓTT−1AT + T⊤A⊤(T−1)⊤T⊤ΓT ] = T⊤SΓT , (15)

it follows that S̃Γ and SΓ determine congruent quadratic forms, hence Z̃Γ(t0, x̃0) =

T−1ZΓ(t0, x0). Similarly, M̃Γ = T⊤MΓT holds, and therefore (t0, x0) for (13) and
(t0, x̃0) for (14) have the same type. The proof is completed by observing that

d

dt
‖x(t, t0, x1) − x(t, t0, x0)‖2

Γ

∣∣
t=t0

= 2 〈x1 − x0,Γf(t0, x1) − Γf(t0, x0)〉

= 2
〈
x̃1 − x̃0, Γ̃T

−1f(t0, T x̃1) − Γ̃T−1f(t0, T x̃0)
〉

=
d

dt
‖x̃(t, t0, x̃1) − x̃(t, t0, x̃0)‖2

Γ̃

∣∣
t=t0

,

for every x̃1 = T−1x1.

In the next lemma we show that all but the degenerate part of the dynamic
partition are actually open sets.

Lemma 2.8. The sets AΓ,RΓ, EΓ,HΓ and QΓ are open in I × Rn.

Proof. Assume first that (t0, x0) ∈ AΓ or (t0, x0) ∈ RΓ. Then SΓ(t0, x0) is negative
or positive definite, and by continuity the same is true for SΓ(t, x) provided that
(t, x) is sufficiently close to (t0, x0). Hence AΓ and RΓ are both open.

To deal with the remaining cases, let

Σ = {(t, x) ∈ I × R
d : SΓ(t, x) is indefinite and non-degenerate } .

Clearly, Σ is open in I × Rd, and EΓ ∪ HΓ ∪ QΓ ⊂ Σ. For each (t, x) ∈ Σ define
the continuous function ψ(t,x) : Sd−1 → R by ψ(t,x)(ξ) = 〈ξ,MΓ(t, x)ξ〉. Obviously,

the map (t, x) 7→ ψ(t,x) ∈ C(Sd−1) is continuous; here, as usual, C(Sd−1) denotes

the Banach space of all continuous real-valued functions on Sd−1. Also, for each
(t, x) ∈ Σ the set F (t, x) = {ξ ∈ Sd−1 : 〈ξ, SΓ(t, x)ξ〉 = 0} = ZΓ(t, x) ∩ Sd−1

is non-empty and compact, hence F (t, x) is an element of K(Sd−1), the (complete
metric) space of all non-empty compact subsets of Sd−1. Moreover, the map (t, x) 7→
F (t, x) ∈ K(Sd−1) is also continuous. To see this, assume by way of contradiction
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that (tn, xn) → (t0, x0) yet dH

(
F (tn, xn), F (t0, x0)

)
≥ δ for all n and some δ > 0.

(Here dH denotes the Hausdorff distance in K(Sd−1) as induced by the standard
Euclidean metric on Sd−1.) In this case, there exists a sequence (ξn) in Sd−1 such
that infξ∈F (t0,x0) ‖ξ−ξn‖ ≥ δ but also ξn ∈ F (tn, xn), that is, 〈ξn, SΓ(tn, xn)ξn〉 = 0,
for all n. Assume without loss of generality that ξn → ξ∗. Then, by continuity,
〈ξ∗, SΓ(t0, x0)ξ

∗〉 = 0 and thus ξ∗ ∈ F (t0, x0) yet infξ∈F (t0,x0) ‖ξ − ξ∗‖ ≥ δ, an
obvious contradiction. Hence (t, x) 7→ F (t, x) is continuous on Σ. Finally, for each
g ∈ C(Sd−1) and K ∈ K(Sd−1) let Ψ+(g,K) = maxξ∈K g(ξ) and Ψ−(g,K) =
minξ∈K g(ξ). It is easy to see that Ψ+ and Ψ− constitute continuous real-valued
functions on C(Sd−1) × K(Sd−1). From the above it follows that the function
(t, x) 7→ Ψ+

(
ψ(t,x), F (t, x)

)
=: Ψ+(t, x) from Σ into R is continuous, as is the

analogously defined function Ψ−. Observing that EΓ = {(t, x) ∈ X : Ψ+ · Ψ− < 0},
HΓ = {(t, x) ∈ X : Ψ− > 0}, and QΓ = {(t, x) ∈ X : Ψ+ < 0} therefore completes
the proof.

Our next result describes the dynamic partition for rest points of autonomous
equations ẋ = F (x). If F (x0) = 0 then the linearization at x0, that is ξ̇ = Aξ
with A = DxF (x0), is autonomous. For any given Γ the latter has, according to
Remark 10, one and the same type TΓ for all (t, x) ∈ I×R

n. The following theorem
characterizes this type in terms of the eigenvalues of A. To formulate the statement
concisely, let σ(A) denote the spectrum of A, i.e. the set of all eigenvalues of A, and
let C− = {z ∈ C : ℜz < 0}, C+ = −C−, and iR symbolize, respectively, the open
left half-plane, the open right half-plane, and the imaginary axis.

Theorem 2.9 (Dynamic Partition for Linear Systems with Constant Coefficients).
Let A ∈ Rn×n. For the linear equation

ẋ = Ax (16)

the following holds:

(i) QΓ = ∅ for all Γ, i.e., (16) is never quasihyperbolic.
(ii) σ(A) ⊂ C

− if and only if AΓ = I × R
n (i.e., (16) is attracting) for some Γ.

(iii) σ(A) ⊂ C+ if and only if RΓ = I × Rn (i.e., (16) is repelling) for some Γ.
(iv) If σ(A) ⊂ C− or σ(A) ⊂ C+ then EΓ = I×Rn for some Γ, unless A = α idn×n

with α ∈ R\{0}.
(v) σ(A) ∩ C− and σ(A) ∩ C+ are both non-empty while σ(A) ∩ iR = ∅ (that is,

A has eigenvalues on both sides of the imaginary axis but none on it) if and
only if HΓ = I × Rn for some Γ.

(vi) σ(A) ∩ iR 6= ∅ if and only if for every Γ either EΓ = I × Rn or DΓ = I × Rn,
i.e., (16) is always either elliptic or degenerate.

Proof. (i) Assume that QΓ = I × Rn. Then n ≥ 2, and according to Lemma 2.5
and 2.7 it can be assumed that Γ = idn×n and S is diagonal, S = diag(µ1, . . . , µn)
with µi 6= 0 for all i and µ1 > 0 > µn. From S = 1

2 (A+A⊤) it follows that

aii = µi and aij + aji = 0 for all i 6= j .

Furthermore, M = SA+A⊤S, so that

1
2 〈ξ,Mξ〉 =

n∑

i=1

µ2
i ξ

2
i +

∑

i<j

(µiaij + µjaji)ξiξj .
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With ξ± = (1/
√
µ1, 0, . . . , 0,±1/

√−µn)⊤ clearly ξ± ∈ Z\{0}, and

1
2 〈ξ±,Mξ±〉 = µ1 − µn ± (µ1 − µn)

a1n√−µ1µn

.

Thus by letting ξ equal ξ+ or ξ−, depending on whether a1n ≥ 0 or a1n < 0, we
can find a point ξ ∈ Z\{0} with 〈ξ,Mξ〉 > 0. Since this contradicts the assumed
quasihyperbolicity, QΓ = ∅.

(ii) Assume first that σ(A) ⊂ C−, that is, all eigenvalues of A have negative real
part. To find Γ = Γ⊤ > 0 such that AΓ = I × Rn, choose a regular real matrix
P such that P−1AP has real Jordan normal form. Since the subsequent argument
can be applied independently to each block in the normal form, no generality is lost
in assuming that either

P−1AP =




λ 1
λ 1

. . .
. . .

λ 1
λ




∈ R
n×n,

with some λ < 0, or that n = 2m, and

P−1AP =




ℜλ 1 ℑλ
. . .

. . .
. . .

ℜλ 1 ℑλ
ℜλ ℑλ

−ℑλ ℜλ 1
. . .

. . .
. . .

−ℑλ ℜλ 1
−ℑλ ℜλ




∈ R
2m×2m,

with ℜλ < 0 and ℑλ > 0. In the first case let Pε = diag(1, ε, . . . , εn−1) for any
ε > 0, whereas in the second case let

Pε = diag(1, ε, . . . , εm−1, 1, ε, . . . , εm−1) . (17)

In either case, define B = P−1
ε P−1APPε and deduce from a short computation that

〈x̃, 1
2 (B +B⊤)x̃〉 ≤ (ℜλ+ ε)‖x̃‖2 = −(|ℜλ| − ε)‖x̃‖2 for all x̃ ∈ R

n .

If we, therefore, choose 0 < ε < |ℜλ| then ˙̃x = Bx̃ is attracting with respect to
the Euclidean norm. By Lemma 2.7, (16) is attracting with respect to ‖ · ‖Γ where
Γ = (P−1)⊤(P−1

ε )⊤P−1
ε P−1.

Conversely, assume that AΓ = I × Rn. Given a real eigenvalue λ of A, let v be
any (non-zero) eigenvector corresponding to λ and observe that

0 > 〈v, SΓv〉 = 〈v,ΓA〉 = λ〈v,Γv〉 .
Since Γ is positive definite, λ < 0. Given a non-real eigenvalue λ of A, there exist
two linearly independent vectors v1, v2 such that

Av1 = ℜλ v1 −ℑλ v2 , Av2 = ℑλ v1 + ℜλ v2 .
It follows from

0 > 〈v1, SΓv1〉 = ℜλ 〈v1,Γv1〉 − ℑλ 〈v1,Γv2〉 ,
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that ℑλ 〈v1,Γv2〉 > ℜλ 〈v1,Γv1〉 and therefore

0 > 〈v2, SΓv2〉 = ℑλ 〈v1,Γv2〉 + ℜλ 〈v2,Γv2〉 > ℜλ(〈v1,Γv1〉 + 〈v2,Γv2〉) ,
hence ℜλ < 0. Thus ℜλ < 0 for every eigenvalue of A, that is, σ(A) ⊂ C−.

(iii) Since σ(A) ⊂ C+ if and only if σ(−A) ⊂ C−, the statement follows immedi-
ately from (ii) applied to −A.

(iv) If A = α idn×n with some α 6= 0 then (16) is attracting or repelling for
every Γ, depending on whether α < 0 or α > 0. In any other case, however, we are
going to show that (16) is elliptic for some Γ. Three cases will be studied: Either
A has two different real eigenvalues of the same sign each of which corresponds to
a trivial (i.e. 1× 1) Jordan block, or A has a pair of complex-conjugate eigenvalues
with non-zero real part, or A has an eigenvalue off the imaginary axis corresponding
to a non-trivial Jordan block, i.e., with geometric multiplicity less than algebraic
multiplicity. In general, if A is not a multiple of idn×n and satisfies σ(A) ⊂ C− or
σ(A) ⊂ C

+, then at least one of these cases occurs. Thus the proof will be complete
once we demonstrate for every case how to find Γ such that (16) is elliptic with
respect to ‖ · ‖Γ. Each case will be dealt with separately.

Assume first that A has two different real eigenvalues λ1 > λ2 with λ1λ2 > 0,
each corresponding to a trivial Jordan block. According to Lemma 2.7 no generality
is lost in assuming that Ae1 = λ1e1, Ae2 = λ2e2, where ei denotes the i-th element
of the canonical basis of Rn, and Aei is contained in the linear span of e3, . . . , en

whenever i ≥ 3. To ensure that x 7→ 〈x,Ax〉 is definite on that linear span, we
can proceed as in (ii) and use matrices of the type Pε which, however, must not
affect the span of e1 and e2. Define Γe1 = e1 + αe2, Γe2 = αe1 + βe2, where the
numbers α, β > 0 have yet to be determined, and Γei = ei for all i ≥ 3. It is readily
confirmed that Γ = Γ⊤ is positive definite provided that β/α2 > 1. On the other
hand, SΓ is indefinite and non-degenerate whenever β/α2 < 1+(λ1−λ2)

2/(4λ1λ2).

Thus choosing for instance α =
√

2 and β = 2 + (λ1 − λ2)
2/(4λ1λ2) we obtain, for

all s, t,

〈se1 + te2, SΓ(se1 + te2)〉 = λ1s
2 +

√
2(λ1 + λ2)st+

λ2
1 + 6λ1λ2 + λ2

2

4λ1
t2 ,

so that se1 + te2 ∈ ZΓ\{0} provided that sλ1/t = − 1√
2
(λ1 + λ2) ± 1

2 |λ1 − λ2| and

st 6= 0. Moreover, for this particular choice of s, t we find

〈se1 + te2,MΓ(se1 + te2)〉 = ±st(λ1 − λ2)
2 6= 0 ,

which shows that (16) is elliptic with respect to ‖ · ‖Γ.
Next assume that A has a pair of complex-conjugate eigenvalues λ, λ with non-

vanishing real part. Invoking Lemma 2.7 again, and replacing A by −A if necessary,
we may assume that Ae1 = ℜλ e1 − ℑλ e2, Ae2 = ℑλ e1 + ℜλ e2 with ℜλ,ℑλ > 0,
and Aei is contained in the linear span of e3, . . . , en for all i ≥ 3. As before, we can
ensure that 〈·, A·〉 is definite on the latter space, and choosing Γ as above, with α, β
such that

ℜλ
ℑλ < α <

ℜλ+ |λ|
ℑλ and β = 1 + 2α

ℜλ
ℑλ ,

we deduce from a completely analogous computation that MZΓ
is indefinite, and

hence (16) is elliptic with respect to ‖ · ‖Γ.
Finally, if A has an eigenvalue λ for which algebraic and geometric multiplicity

do not coincide, then we may distinguish two subcases. If ℜλ,ℑλ > 0 then n = 2m
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and it can be assumed that

Ae1 = ℜλ e1 −ℑλ em+1 , Ae2 = e1 + ℜλ e1 −ℑλ em+2 ,

Aem+1 = ℑλ e1 + ℜλ em+1 , Aem+2 = ℑλ e2 + em+1 + ℜλ em+2 ,

that is, A is in real Jordan normal form. With Γe1 = e1 + αem+1, Γem+1 =
αe1 +βem+1, and Γei = ei for all i 6∈ {1,m+1} the same argument as in the second
case above shows that MZΓ

is indefinite. On the other hand, if λ ∈ R\{0} then we
can assume that Ae1 = λe1, Ae2 = e1 + λe2. In this case, letting Γe1 = αe1 with
α > 0, and Γei = ei for all i ≥ 2, yields a symmetric positive definite matrix Γ for
which SΓ is indefinite whenever α > 4λ2, and MZΓ

attains positive and negative
values. (In either case it may again be necessary to proceed as above to ensure that
SΓ is non-degenerate.)

(v) Assume first that σ(A)∩C− and σ(A)∩C+ are both non-empty while σ(A)∩
iR = ∅. As in (ii), choose P such that P−1AP has real Jordan normal form. Again
it is enough to deal with a single Jordan block. Note also that

〈x,MΓx〉 = 〈x, (ΓA2 +A⊤ΓA)x〉 = 〈x,ΓA2x〉 + 〈Ax,ΓAx〉 ≥ 〈x,ΓA2x〉 ,
so that the proof can be shortened if 〈x,ΓA2x〉 > 0 holds for some Γ = Γ⊤ > 0 and
all x 6= 0. Assume first that

P−1AP =




λ 1
λ 1

. . .
. . .

λ 1
λ




∈ R
n×n,

with some λ ∈ R\{0}. With Pε = diag(1, ε, . . . , εn−1) and B = P−1
ε P−1APPε it is

straightforward to check that

〈x̃, B2x̃〉 ≥ (λ2 − 2ε|λ| − ε2)‖x̃‖2 for all x̃ ∈ R
n ,

so that x̃ 7→ 〈x̃, B2x̃〉 is positive definite provided that 0 < ε < (
√

2 − 1)|λ|. Hence
(16) is hyperbolic for all sufficiently small ε > 0 and Γ as in (ii). Similarly, if

P−1AP =




ℜλ 1 ℑλ
. . .

. . .
. . .

ℜλ 1 ℑλ
ℜλ ℑλ

−ℑλ ℜλ 1
. . .

. . .
. . .

−ℑλ ℜλ 1
−ℑλ ℜλ




∈ R
2m×2m,

with n = 2m and ℜλ,ℑλ ∈ R\{0}, then choosing Pε according to (17) and letting
B = P−1

ε P−1APPε again yields

〈x̃, (B2 +B⊤B)x̃〉 ≥
(
(ℜλ)2 − (2|ℜλ| + |ℑλ|)ε− ε2

)
‖x̃‖2 for all x̃ ∈ R

n .

Carrying out the above for every eigenvalue of A separately, we obtain, for all suf-
ficiently small ε > 0, a matrix B such that 1

2 (B + B⊤) is indefinite, and 〈x̃, (B2 +

B⊤B)x̃〉 > 0 whenever x̃ 6= 0. Thus ˙̃x = Bx̃ is hyperbolic with respect to
the Euclidean norm, and (16) is hyperbolic with respect to ‖ · ‖Γ where Γ =
(P−1)⊤(P−1

ε )⊤P−1
ε P−1.
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Conversely, assume that (16) is hyperbolic. Pick any η ∈ {ξ ∈ Rn : 〈ξ, SΓξ〉 >
0}. According to Remark 3, t 7→ ‖eAtη‖Γ is increasing. On the other hand, if
σ(A) ⊂ C− then ‖eAtη‖Γ → 0 as t → ∞. This obvious contradiction shows that
σ(A) 6⊂ C−. Similarly, σ(A) 6⊂ C+. Thus the proof of (v) will be complete once it is
demonstrated that σ(A)∩ iR is empty. To this end, assume by way of contradiction
that σ(A) ∩ iR 6= ∅, that is, A has eigenvalues on the imaginary axis. If 0 ∈ σ(A)
then Av = 0 for some non-zero vector v, so that 〈v, SΓv〉 = 〈v,ΓAv〉 = 0, showing
that v ∈ ZΓ\{0} and hence AΓ = RΓ = ∅, but also

〈v,MΓv〉 = 〈v, (ΓA2 +A⊤ΓA)v〉 = 0 ,

so that HΓ = QΓ = ∅. Thus either EΓ or DΓ equals I × R
n. If, on the other hand,

λ = ib ∈ σ(A) with some b > 0 then there exist two linearly independent vectors
v1, v2 such that Av1 = −bv2, Av2 = bv1, and hence

〈v1, SΓv1〉 = 〈v1,ΓAv1〉 = −b〈v1,Γv2〉 = −〈v2, SΓv2〉 .
From

〈sinϕv1 + cosϕv2, SΓ(sinϕv1 + cosϕv2)〉 = b sin 2ϕ 〈v1,Γv1〉 + b cos 2ϕ 〈v1,Γv2〉 ,
it follows that sinϕv1 + cosϕv2 ∈ ZΓ\{0} whenever

tan 2ϕ = −〈v1,Γv2〉
〈v1,Γv1〉

. (18)

There exists a unique solution ϕ∗ of (18) with |ϕ∗| < π
4 , and ϕ∗+ π

2 also solves (18).
Consequently,

〈sinϕ∗v1 + cosϕ∗v2,MΓ(sinϕ∗v1 + cosϕ∗v2)〉 =

= 2b2 cos 2ϕ∗ 〈v1,Γv1〉2 + 〈v1,Γv2〉2
〈v1,Γv1〉

6= 0, (19)

and replacing ϕ∗ by ϕ∗ + π
2 results in multiplying (19) by −1. Therefore MZΓ

is
indefinite, and (16) is either elliptic or degenerate. Since (16) was assumed to be
hyperbolic, this shows that σ(A) ⊂ C−∪C+ with σ(A)∩C− 6= ∅ and σ(A)∩C+ 6= ∅,
and hence completes the proof of (v).

(vi) Assume that σ(A) ∩ iR 6= ∅. The proof of (v) above has shown that EΓ =
I×R

n or DΓ = I×R
n in this case. Conversely, if σ(A)∩iR is empty then exactly one

of the cases (ii), (iii), and (v) applies and shows that (16) is, for an appropriate Γ,
attracting, repelling, and hyperbolic, respectively, and for this particular Γ clearly
EΓ = DΓ = ∅.
Remark 8. The converse of (iv) does not hold, as can be seen for instance from

A =




1 2 0
0 1 2
0 0 −1


 ,

for which E = I × R3 yet σ(A) ∩ C− = {−1} and σ(A) ∩ C+ = {1} are both
non-empty.

In the following Corollary to Theorem 2.9 we point out which cases can occur
in which spectral situation and provide examples showing that all cases do actually
occur.

Corollary 1. Let A ∈ Rn×n. For the linear equation (16) the following statements
hold:
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(i) If σ(A) ⊂ C− then AΓ = I × Rn or EΓ = I × Rn or DΓ = I × Rn, i.e., (16)
is either attracting or elliptic or degenerate.

(ii) If σ(A) ⊂ C+ then RΓ = I × Rn or EΓ = I × Rn or DΓ = I × Rn, i.e., (16)
is either repelling or elliptic or degenerate.

(iii) If σ(A) ∩ C− and σ(A) ∩ C+ are both non-empty while σ(A) ∩ iR = ∅ (that
is, A has eigenvalues on both sides of the imaginary axis but none on it) then
HΓ = I ×R

n or EΓ = I ×R
n or DΓ = I ×R

n, i.e, (16) is either hyperbolic or
elliptic or degenerate.

(iv) If σ(A) ∩ iR 6= ∅ then EΓ = I ×Rn or DΓ = I ×Rn, i.e, (16) is either elliptic
or degenerate.

Proof. The possibilities RΓ = I × Rn and HΓ = I × Rn in (i) are ruled out,
respectively, by parts (iii) and (v) of Theorem 2.9. Similarly, the possibilities AΓ =
I × Rn and HΓ = I × Rn in (ii) are ruled out by Theorem 2.9(ii,v). In (iii),
AΓ = RΓ = ∅ by Theorem 2.9(ii,iii), and (iv) is obvious from Theorem 2.9(vi). It
remains to show that all other cases can actually occur. To this end consider the
following examples.

(i) Let Γ =

(
1 2
2 5

)
. For A = diag(−1,−1), SΓ = −Γ, and (16) is attracting.

Choosing A = diag(−1,−5) yields SΓ =

(
−1 −6
−6 −25

)
and MΓ =

(
2 36

36 250

)
.

Since ξ1,2 =

(
−6±

√
11

1

)
are both contained in ZΓ, yet 〈ξ1,MΓξ1〉>0>〈ξ2,MΓξ2〉,

the system (16) is elliptic. Finally, for A = diag(−1,− 3+
√

5
2 ) one finds detSΓ = 0,

and so (16) is degenerate.
(ii) Choosing Γ as in (i) and replacing A by −A yields examples of (16) with

σ(A) ⊂ C
+ which are, respectively, repelling, elliptic, and degenerate.

(iii) Let Γ =




1 2 0
2 5 0
0 0 1


. For A = diag(−1,−1, 1), detSΓ > 0 and MΓ =

2Γ, so that (16) is hyperbolic. Choosing A = diag(−1,−5, 1) leads to SΓ =


−1 −6 0
−6 −25 0

0 0 1


 and MΓ =




2 36 0
36 250 0
0 0 2


. Since ξ1,2 =




−6 ±
√

11
1
0


 are

both contained in ZΓ, yet 〈ξ1,MΓξ1〉 > 0 > 〈ξ2,MΓξ2〉, the system (16) is elliptic.

Finally, for A = diag(−1,− 3+
√

5
2 , 1) one finds detSΓ = 0, and (16) is degenerate.

(iv) Choose Γ as in (iii), and let A =



a 0 0
0 0 −1
0 3 0


 with a ∈ R. From detSΓ = a

and Theorem2.9(vi) it follows that (16) is degenerate if a = 0, and elliptic otherwise.
(Note that the elliptic case can occur only if n ≥ 3, see [4].)

We next consider an autonomous equation

ẋ = F (x) , (20)

with a C2 function F : Rn → Rn. According to Remark 5, each fiber TΓ(t) in the
dynamic partition of (20) is independent of t. The following theorem states that a
periodic orbit either lies entirely in the elliptic region or else contains a degenerate
point. Note that a planar version of this result is already contained in [4].
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Theorem 2.10 (Location of Periodic Orbits). Assume that (20) has a nontrivial
periodic solution µ with period T > 0. With O = {µ(t) : t ∈ [0, T ]} exactly one of
the following two alternatives holds:

(i) O ⊂ EΓ(0), i.e., the periodic orbit is contained in the elliptic fiber, or

(ii) O ∩DΓ(0) 6= ∅, i.e., the periodic orbit intersects the degenerate fiber.

Proof. Assume that O ∩ DΓ(0) = ∅. Then the closed set O is contained entirely
in one of the open regions AΓ(0),RΓ(0), EΓ(0),HΓ(0) or QΓ(0). Since µ̈(t) =
DF

(
µ(t)

)
µ̇(t), the function µ̇ is a nontrivial T -periodic solution of the periodic

linear equation

ξ̇ = A(t)ξ where A(t) = DF
(
µ(t)

)
, (21)

with symmetric part SΓ(t) and zero strain set ZΓ(t). Assume that O ⊂ AΓ(0).
Then µ(t) ∈ AΓ(0) for all t ∈ [0, T ] and by (6) we get the contradiction ‖µ̇(T )‖Γ <
‖µ̇(0)‖Γ. Similarly, O ⊂ RΓ(0) leads to a contradiction. Next assume that O ⊂
HΓ(0). Define the two cones Ψ−(t) := {ξ ∈ Rn : 〈ξ, SΓ(t)ξ〉 < 0} and Ψ+(t) :=
{ξ ∈ R2 : 〈ξ, SΓ(t)ξ〉 > 0}. If µ̇(t) ∈ Ψ−(t) for all t ∈ [0, T ] then (6) implies the
contradiction ‖µ̇(T )‖Γ < ‖µ̇(0)‖Γ. Analogously, µ̇(t) ∈ Ψ+(t) cannot possibly hold
for all t ∈ [0, T ]. Consequently, there exists t0 ∈ [0, T ] with µ̇(t0) ∈ ZΓ(t0). But
then, by Remark 3, µ̇(t) ∈ Ψ+(t) for all t > t0, which in turn yields the contradiction
µ̇(t0) = µ̇(t0 + T ) ∈ Ψ+(t0 + T ) = Ψ+(t0). Similarly, assuming that O ⊂ QΓ(0)
yields a contradiction. Thus O ⊂ EΓ(0) whenever O ∩D(0) = ∅.

2.2. Local results. In this section we prove that the local behaviour of solutions of
(1) can be approximated by means of the zero strain set and the dynamic partition.
We fix a point (t0, x0) ∈ I×Rn and denote by µ the unique solution of (1) satisfying
µ(t0) = x0. Also, let x(t, t0, x0+ x̄) denote the solution of (1) with x(t0, t0, x0+ x̄) =
x0 + x̄.

Theorem 2.11 (Local Attraction and Repulsion). Consider (t0, x0) ∈ I × Rn and
the solution µ of (1) with µ(t0) = x0.
(i) If (t0, x0) ∈ RΓ then there exists δ > 0 such that

d

dt
‖x(t, t0, x0 + x̄) − µ(t)‖2

Γ

∣∣
t=t0

> 0 for all 0 < ‖x̄‖Γ < δ.

(ii) If (t0, x0) ∈ AΓ then there exists δ > 0 such that

d

dt
‖x(t, t0, x0 + x̄) − µ(t)‖2

Γ

∣∣
t=t0

< 0 for all 0 < ‖x̄‖Γ < δ.

Proof. Using Lemma 2.7 we can transform (1) together with the norm induced by
Γ to (14) together with the Euclidean norm. For notational convenience we denote
the latter equation again by ẋ = f(t, x). To verify (i) assume that (t0, x0) ∈ R.
Definition 2.4 implies that there exists α > 0 such that

〈ξ, S(t0, x0)ξ〉 = 〈ξ,Dxf(t0, x0)ξ〉 > α for all ‖ξ‖ = 1 , (22)

which in turn shows that

h(x̄) := f(t0, x0 + x̄) − f(t0, x0) −Dxf(t0, x0)x̄ = o(‖x̄‖) as ‖x̄‖ → 0 .

Choose δ > 0 so small that

| 〈x̄, h(x̄)〉 | < 1
2α‖x̄‖2 for all ‖x̄‖ ≤ δ . (23)
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Using (22) and (23) we deduce that for all 0 < ‖x̄‖ < δ

d

dt
‖x(t, t0, x0 + x̄) − µ(t)‖2

∣∣
t=t0

= 2〈x̄, Dxf(t0, x0)x̄ + h(x̄)〉
= 2〈x̄, Dxf(t0, x0)x̄〉 + 2〈x̄, h(x̄)〉
> α‖x̄‖2 > 0 .

This completes the proof of (i). The argument for (ii) is completely analogous.

Next we compare the zero strain set Z(t0, x0) which, by its definition, only de-
pends on the linearization (5) with its nonlinear analogue, the nonlinear zero strain
set of (1)

Znl
Γ (t0, x0) :=

{
x̄ ∈ R

n :
d

dt
‖x(t, t0, x0 + x̄) − µ(t)‖2

Γ

∣∣
t=t0

= 0
}
.

Lemma 2.12 (Relation between Nonlinear and Linear Zero Strain Set). Consider
the linearized equation (5) along the solution µ : I → R

n of (1) with µ(t0) =
x0. Suppose that SΓ(t0, x0) is non-degenerate and indefinite. Then, for each ξ ∈
ZΓ(t0, x0) \ {0}, there exists ε > 0 and a C1 curve γ : (−ε, ε) → Rn satisfying
γ(0) = 0, γ̇(0) = ξ, and graphγ ⊂ Znl

Γ (t0, x0).

Proof. As in the proof of Theorem 2.11 no generality is lost in considering ẋ =
f(t, x) together with the Euclidean norm. Applying Lemma 2.5 with u = 0 and
an orthogonal matrix Q such that Q⊤[Dxf(t0, x0)+Dxf(t0, x0)

⊤]Q is diagonal, we
can furthermore assume that S(t0, x0) is diagonal,

S(t0, x0) = diag(λ1, . . . , λn) , (24)

with the eigenvalues λi ordered according to (7) with n+ ∈ {1, . . . , n − 1}. Let
ξ = (ξ1, . . . , ξn) ∈ Z(t0, x0) \ {0}. Then

λ1ξ
2
1 + λ2ξ

2
2 + . . .+ λnξ

2
n = 0 , (25)

and there exists at least one i ∈ {1, . . . , n+} with ξi 6= 0. Assume w.l.o.g. that
ξ1 6= 0. The function γ : (−ε, ε) → Rn will be of the form

γ(s) = (γ1(s), ξ2s, . . . , ξns) , (26)

with a function γ1 yet to be constructed. To this end define F : R2 → R as

F (σ, s) =
d

dt
‖x(t, t0, x0 + x̄) − µ(t)‖2

∣∣
t=t0

= 2 〈x̄, f(t0, x0 + x̄) − f(t0, x0)〉 , (27)

where x̄ = (σ, ξ2s, . . . , ξns). Since f(t0, x0 + x̄) = f(t0, x0) +Dxf(t0, x0)x̄+ o(‖x̄‖),
we find F (σ, s) = λ1σ

2 + s2
∑n

i=2 λiξ
2
i + o(σ2 + s2). Define

r(σ, s) =





F (σ, s) − λ1σ
2 − s2

∑n

i=2 λiξ
2
i

σ2 + s2
if (σ, s) 6= (0, 0) ,

0 if (σ, s) = (0, 0) ,

so that r is continuous and, except perhaps at (0, 0), even C1, and F (σ, s) = λ1σ
2 +

s2
∑n

i=2 λiξ
2
i + r(σ, s)(σ2 + s2). Together with (25) this implies that

F (σ, s) =
(
λ1 + r(σ, s)

)
σ2 −

(
λ1ξ

2
1 − r(σ, s)

)
s2 .

Since r is continuous and r(0, 0) = 0, there exists δ > 0 such that |r(σ, s)| ≤
min{λ1, λ1ξ

2
1} for all (σ, s) ∈ Bδ = {(σ, s) : |σ| < δ, |s| < δ}. In order to write
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the solutions of F = 0 near (0, 0) in the form (σ(s), s) we define two functions
F−, F+ : Bδ → R by

F±(σ, s) =
√
λ1 + r(σ, s) σ ±

√
λ1ξ21 − r(σ, s) s , (28)

so that F = F−F+ on Bδ. We first study F−. Clearly, F− is C1 on Bδ except at
(0, 0), and F−(0, 0) = 0. To prove that F− is actually differentiable at (0, 0) with

∇F−(0, 0) =

(√
λ1,−

√
λ1ξ21

)⊤
, (29)

we compute

F−(σ, s) − F−(0, 0) −
(√

λ1 σ −
√
λ1ξ21 − r(σ, s) s

)

=
(√

λ1 + r(σ, s) −
√
λ1

)
σ −

(√
λ1ξ21 − r(σ, s) −

√
λ1ξ21

)
s

=
r(σ, s)σ√

λ1 + r(σ, s) +
√
λ1

+
r(σ, s)s√

λ1ξ21 − r(σ, s) +
√
λ1ξ21

≤|r(σ, s)|
√
σ2 + s2

( 1√
λ1

+
1√
λ1ξ21

)
.

Since r(σ, s) → 0 as
√
σ2 + s2 → 0, we deduce that

lim
σ2+s2→0

|F−(σ, s) − F−(0, 0)− (
√
λ1 σ −

√
λ1ξ21 − r(σ, s) s)|√

σ2 + s2
= 0 ,

which proves (29). A direct computation shows that lim(σ,s)→(0,0) ∇F−(σ, s) =

∇F−(0, 0), hence F− is a C1 function. In particular,

∂

∂σ
F−(0, 0) =

√
λ1 6= 0 .

By the Implicit Function Theorem there exists ε > 0 as well as a C1 function
γ− : (−ε, ε) → {σ : |σ| < δ} with γ−(0) = 0, such that F−(γ−(s), s) = 0 for all
|s| < ε. Together with (27) this implies that (γ−(s), ξ2s, . . . , ξns) ∈ Znl(t0, x0) for
all s ∈ (−ε, ε). Moreover, by (28) we have

γ̇−(0) = lim
s→0

γ−(s)

s
= lim

s→0

√
λ1ξ21 − r(γ−(s), s)√
λ1 + r(γ−(s), s)

=

√
λ1ξ21√
λ1

= |ξ1| .

In a completely analogous manner we can also construct, with some ε > 0, a function
γ+ : (−ε, ε) → {σ : |σ| < δ} with γ+(0) = 0 such that (γ+(s), ξ2s, . . . , ξns) ∈
Znl(t0, x0) for all s ∈ (−ε, ε) and

γ̇+(0) = −
√
λ1ξ21√
λ1

= −|ξ1| .

Therefore, by defining

γ1(s) :=

{
γ−(s) if ξ1 > 0 ,
γ+(s) if ξ1 < 0 ,

for all s ∈ (−ε, ε) we obtain, via (26), a curve γ with γ(0) = 0, γ̇(0) = ξ, and
graphγ ⊂ Znl(t0, x0). This completes the proof.

The remaining two results in this section clarify the implications that (quasi)hyper-
bolicity and ellipticity have on the local behaviour of solutions of (1) on the nonlinear
zero strain set.
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Theorem 2.13. (Local Hyperbolicity and Quasihyperbolicity). Consider (t0, x0) ∈
I × Rn and the solution µ of (1) with µ(t0) = x0.
(i) If (t0, x0) ∈ HΓ then there exists δ > 0 such that

d2

dt2
‖x(t, t0, x0 + x̄) − µ(t)‖2

Γ

∣∣
t=t0

> 0 for all x̄ ∈ Znl
Γ (t0, x0) with 0 < ‖x̄‖Γ < δ .

(ii) If (t0, x0) ∈ QΓ then there exists δ > 0 such that

d2

dt2
‖x(t, t0, x0 + x̄) − µ(t)‖2

Γ

∣∣
t=t0

< 0 for all x̄ ∈ Znl
Γ (t0, x0) with 0 < ‖x̄‖Γ < δ .

Proof. As in the proofs of Theorem 2.11 and Lemma 2.12, it is no restriction to work
with the Euclidean norm, i.e. Γ = idn×n, and to assume that the non-degenerate
matrix S(t0, x0) is diagonal, i.e., S is given by (24). By assumption, S(t0, x0) is
indefinite, i.e., the eigenvalues λi satisfy (7) for an n+ ∈ {1, . . . , n− 1}.

To prove (i) assume that (t0, x0) ∈ H. First we will show that for any ε > 0
there exists δ > 0 such that for each x̄ ∈ Znl(t0, x0) with 0 < ‖x̄‖ ≤ δ we can find
ξ ∈ Z(t0, x0) satisfying

‖ξ − x̄‖ < ε‖x̄‖ . (30)

To this end define |λ| = min1≤i≤n |λi| and

h(x̄) := f(t0, x0 + x̄) − f(t0, x0) −Dxf(t0, x0)x̄ = o(‖x̄‖) as ‖x̄‖ → 0 .

Fix ε > 0 and choose δ > 0 so small that

|〈x̄, h(x̄)〉| < 1
2ελ‖x̄‖2 for all 0 < ‖x̄‖ < δ . (31)

Let x̄ = (x̄1, . . . , x̄n) ∈ Znl(t0, x0) with ‖x̄‖ ≤ δ. Then

n∑

i=1

λix̄
2
i + 〈x̄, h(x̄)〉 = 0 , (32)

and combining (31) and (32) we obtain

n+∑

i=1

λi(1+ε)x̄2
i +

n∑

i=n++1

λi(1−ε)x̄2
i > 0 and

n+∑

i=1

λi(1−ε)x̄2
i +

n∑

i=n++1

λi(1+ε)x̄2
i < 0 .

This implies that there exists α ∈ (−ε, ε) such that

ξ = (
√

1 + α x̄1, . . . ,
√

1 + α x̄n+ ,
√

1 − α x̄n++1, . . . ,
√

1 − α x̄n)⊤ ∈ Z(t0, x0).

Moreover, using the fact that |
√

1 ± α− 1| ≤ |α| < ε we obtain (30).
Since (t0, x0) ∈ H, there exists α > 0 such that 〈ξ,M(t0, x0)ξ〉 > α for all

‖ξ‖ = 1. A direct computation shows that

d2

dt2
‖x(t, t0, x0 + x̄) − µ(t)‖2

∣∣
t=t0

= 〈x̄,M(t0, x0)x̄〉 + o(‖x̄‖2) as ‖x̄‖ → 0 ,

and hence there exists δ1 > 0 such that for all ‖x̄‖ ≤ δ1,

∣∣∣ d
2

dt2
‖x(t, t0, x0 + x̄) − µ(t)‖2

∣∣
t=t0

− 〈x̄,M(t0, x0)x̄〉
∣∣∣ ≤ 1

2α‖x̄‖2. (33)

Define m = ‖M(t0, x0)‖ as well as

ε =
α

2α+ 6m
, (34)
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and choose δ2 > 0 such that (30) holds whenever 0 < ‖x̄‖ < δ2. Let δ = min{δ1, δ2}
and consider x̄ ∈ Znl(t0, x0) with ‖x̄‖ < δ. We have

〈x̄,M(t0, x0)x̄〉 = 〈ξ,M(t0, x0)ξ〉 + 〈x̄− ξ,M(t0, x0)ξ〉 + 〈x̄,M(t0, x0)(x̄ − ξ)〉 ,
where ξ ∈ Z(t0, x0) is chosen appropriately such as to satisfy ‖ξ − x̄‖ < ε‖x̄‖.
Together with (33) and (34) this implies that

d2

dt2
‖x(t, t0, x0 + x̄) − µ(t)‖2

∣∣
t=t0

> α‖x̄‖2 − εm‖x̄‖ ‖ξ‖ − εm‖x̄‖2 − 1
2α‖x̄‖2

> 1
2 (α− 6εm)‖x̄‖2 =

α2

2α+ 6m
‖x̄‖2 > 0 .

Since the argument for (ii) is completely analogous, the proof is complete.

Theorem 2.14 (Local Ellipticity). Consider (t0, x0) ∈ I × Rn and the solution µ
of (1) with µ(t0) = x0. If (t0, x0) ∈ EΓ then there exists ε > 0 and two C1 curves
γ−, γ+ : (−ε, ε) → R

n with the following properties:
(i) γ±(0) = 0 and graphγ± ⊂ Znl

Γ (t0, x0).
(ii) For every x+ ∈ graphγ+ \ {0}

d2

dt2
‖x(t, t0, x0 + x+) − µ(t)‖2

Γ

∣∣
t=t0

> 0 ,

whereas for every x− ∈ graphγ− \ {0}
d2

dt2
‖x(t, t0, x0 + x−) − µ(t)‖2

Γ

∣∣
t=t0

< 0 .

Proof. As in the proof of Theorem 2.13 we can assume w.l.o.g. that Γ = idn×n and
SΓ(t0, x0) is diagonal. Since (t0, x0) is elliptic, by Remark 6 there exist two unit
vectors ξ1, ξ2 ∈ Z(t0, x0) satisfying

〈ξ1,M(t0, x0)ξ1〉 > 0 > 〈ξ2,M(t0, x0)ξ2〉.
Define α = min

{
〈ξ1,M(t0, x0)ξ1〉,−〈ξ2,M(t0, x0)ξ2〉

}
and m = ‖M(t0, x0)‖. Ac-

cording to Lemma 2.12 there exists ε1 > 0 and two C1 curves γ± : (−ε1, ε1) → Rn

satisfying (i), more precisely, γ±(0) = 0, graphγ± ⊂ Znl(t0, x0) and γ̇+(0) = ξ1,
γ̇−(0) = ξ2. A direct computation shows that

d2

dt2
‖x(t, t0, x0 + x̄) − µ(t)‖2

∣∣
t=t0

= 〈x̄,M(t0, x0)x̄〉 + o(‖x̄‖2) as ‖x̄‖ → 0 .

This implies that there exists δ > 0 such that for all ‖x̄‖ < δ

∣∣∣ d
2

dt2
‖x(t, t0, x0 + x̄) − µ(t)‖2

∣∣
t=t0

− 〈x̄,M(t0, x0)x̄〉
∣∣∣ ≤ 1

4α‖x̄‖2.

We now verify (ii) for γ+. A Taylor-expansion of γ+ at s = 0, using the fact that
γ+(0) = 0 and γ̇+(0) = ξ1, yields γ+(s) = ξ1s + o(|s|). Consequently, there exists
ε ∈ (0, ε1) such that ‖γ+(s)− ξ1s‖ ≤ L|s| holds for all |s| < ε; here L > 0 is chosen
so small that 1

2α >
1
4α(L+ 1)2 +mL(L+ 2). Thus

〈γ+(s),M(t0, x0)γ
+(s)〉 ≥ s2〈ξ1,M(t0, x0)ξ1〉 − |〈γ+(s) − ξ1s,M(t0, x0)sξ1〉|

− |〈γ+(s),M(t0, x0)(γ
+(s) − sξ1)〉|

≥ s2
(
α−mL(L+ 2)

)
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whenever 0 < |s| < ε, and therefore

d2

dt2
‖x(t, t0, x0 + γ+(s)) − µ(t)‖2

∣∣
t=t0

≥ s2
(
α−mL(L+ 2)

)
− 1

4α(L + 1)2

> 1
2αs

2 > 0 .

As the verification of (ii) for γ− is completely analogous, the proof is complete.

2.3. An algorithm to compute the dynamic partition. In this section we
describe an algorithm to compute the dynamic partition associated with (1) with

respect to the norm ‖·‖Γ = 〈·,Γ·〉 1
2 . Given (t0, x0) ∈ I×Rn, the following schematic

algorithm lists the steps required for determining the type of (t0, x0).

Simplify Norm

Diagonalize Strain

begin switch type of S̃ = (n+, n−) satisfies
n+ + n− < n, then (t0, x0) is degenerate

n+ + n− = n, then

begin switch n+n− is
zero then

begin switch n+ is
zero, then (t0, x0) is attracting
non-zero, then (t0, x0) is repelling

end switch

non-zero then

begin

Simplify Zero Strain Set

Construct Polynomial

begin switch rangeP contains
only positive values then (t0, x0) is hyperbolic
only negative values then (t0, x0) is quasihyperbolic
positive and negative values then (t0, x0) is elliptic

end switch

end

end switch

end switch

All steps in the above algorithm will now be explained and justified in detail.

Simplify norm. Choose T ∈ Rn×n such that T⊤ΓT = idn×n, i.e., T−1 is a root
of Γ. Apply the transformation x 7→ T−1x to

ẋ = f(t, x) with norm ‖ · ‖Γ = 〈·,Γ·〉 1
2 . (35)

Lemma 2.7 implies that (t0, x0) for (35) and (t0, T
−1x0) for

ẋ = T−1f(t, Tx) with Euclidean norm ‖ · ‖ = 〈·, ·〉 1
2 (36)

have the same type. By (15) the strain tensor and strain acceleration tensor for
(36) at (t0, T

−1x0) are, respectively, given by

S = T⊤SΓ(t0, x0)T and M = T⊤MΓ(t0, x0)T.

Diagonalize strain. Choose an orthogonal matrix Q ∈ Rn×n such that

S̃ = Q⊤SQ = diag(λ1, . . . , λn) ,
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with the eigenvalues λi ordered in accordance with (7). Apply the transformation
x 7→ Q⊤x to (36). By Lemma 2.5, the type does not change under this transforma-

tion, and S̃ and M̃ = Q⊤MQ are the new strain and strain acceleration tensors,
respectively. Thus (t0, x0) is degenerate if n+ + n− < n. If n+ + n− = n and
n+n− = 0 then (t0, x0) is attracting or repelling, depending on whether n+ = 0
or n+ 6= 0. In the remaining case, that is, if n+ + n− = n and n+n− 6= 0, then

S̃ is indefinite and non-degenerate, and to determine whether (t0, x0) is elliptic,
hyperbolic or quasihyperbolic we simplify the zero strain set.

Simplify zero strain set. Define the matrices N := diag(1/
√
|λ1|, . . . , 1/

√
|λn|)

and

M̂ =
(
m̂ij

)
ij

:= NM̃N with m̂ij =
m̃ij√
|λiλj |

,

as well as the set

Ẑ :=
{
ξ ∈ R

n : ξ21 + . . .+ ξ2n+ = ξ2n++1 + . . .+ ξ2n
}
.

By Remark 2, Nξ ∈ Z̃ if and only if ξ ∈ Ẑ. Moreover, 〈Nξ, M̃Nξ〉 = 〈ξ, M̂ξ〉 and

thus M̃ |
Z̃

is positive/negative definite or indefinite precisely if M̂ |
Ẑ

has the same
property.

Construct polynomial (characterizing strain acceleration on zero strain

set). Since the sign of 〈ξ, M̂ξ〉 does not depend on the norm ‖ξ‖ 6= 0, we restrict

our attention to ξ ∈ Ẑ with

ξ21 + . . .+ ξ2n+ = ξ2n++1 + . . .+ ξ2n = 1, (37)

i.e. ‖ξ‖ =
√

2, to check whether M̂ |
Ẑ

is positive/negative definite or indefinite.
Moreover, if n+ equals 1 or n− 1 then w.l.o.g. we can set ξ1 = 1 or ξn = 1 in (37),
respectively. Let

Bk,ℓ = {(ξk, ξk+1, . . . , ξℓ)
⊤ ∈ R

ℓ−k+1 | ξ2k + ξ2k+1 + . . .+ ξ2ℓ = 1}
denote the (l − k)-dimensional unit sphere, where ℓ − k ≥ 1. We parametrize Bk,ℓ

by ℓ− k angle variables as follows:

ξk = cosαk ,

ξk+1 = sinαk cosαk+1 ,

... (38)

ξℓ−1 = sinαk sinαk+1 · . . . · sinαℓ−2 cosαℓ−1 ,

ξℓ = sinαk sinαk+1 · . . . · sinαℓ−2 sinαℓ−1 ,

where αi ∈ [0, 2π] for all k ≤ i ≤ ℓ− 1. Letting zi = tan αi

2 and using the fact that,

consequently, for all k ≤ i ≤ ℓ−1, cosαi =
1−z2

i

1+z2
i

as well as sinαi = 2zi

1+z2
i

, we obtain

from (38) that

ξi =





1−z2
i

1+z2
i

∏i−1
j=k

2zj

1+z2
j

if k ≤ i ≤ ℓ− 1 ,

∏ℓ−1
j=k

2zj

1+z2
j

if i = ℓ ,
(39)

where we use the convention that
∏k−1

j=k

2zj

1+z2
j

= 1. Next we utilize (37) and (39)

to construct a polynomial which characterizes the sign of 〈ξ, M̂ξ〉 for ξ ∈ Ẑ. In
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accordance with (37) we check the sign of 〈ξ, M̂ξ〉 for

ξ = (ξ1, . . . , ξn)⊤ ∈ Ẑ with ‖ξ‖ =
√

2 , (40)

depending on n+. If n+ = 2, . . . , n− 2 then

(ξ1, . . . , ξn+)⊤ ∈ B1,n+ and (ξn++1, . . . , ξn)⊤ ∈ Bn++1,n . (41)

If n+ equals 1 or n − 1 then w.l.o.g. ξ1 = 1 or ξn = 1 in (37), respectively. For
each of these different cases we construct a polynomial P which allows us to decide

whether M̂
Ẑ

is positive/negative definite or indefinite.

Case n+ = 1: Assume w.l.o.g. that ξ1 = 1. If n = 2 then (37) takes the form
ξ21 = ξ22 and we need to deal with this case separately.

Subcase n = 2: Since ξ1 = 1,

〈ξ, M̂ξ〉 = m̂11 + 2m̂12ξ2 + m̂22ξ
2
2 .

Replacing ξ2 by z and using the fact that ξ22 = 1 we get the polynomial

P (z) = m̂22z
2 + 2m̂12z + m̂11 with z ∈ {−1, 1} ,

and sign〈ξ, M̂ξ〉 = signP (z), i.e. (t0, x0) is hyperbolic/quasihyperbolic if

rangeP =
{
P (z) : z ∈ {−1, 1}

}

contains only positive/negative values and elliptic if it contains both positive and
negative values.

Subcase n ≥ 3: Since ξ1 = 1,

〈ξ, M̂ξ〉 =

n∑

i,j=2

m̂ijξiξj + 2

n∑

i=2

m̂1iξi + m̂11 (42)

with (40), i.e. (ξ2, . . . , ξn)⊤ ∈ B2,n. Substituting (39) into (42) yields a rational
function, and multiplying this function with its denominator

(1 + z2
2)2 · . . . · (1 + z2

n−1)
2 ,

we obtain the following polynomial P of degree 4(n− 2),

P (z) =

n∑

i,j=2

m̂ijPij(z) + 2

n∑

i=2

m̂1iQi(z) + m̂11R(z) , (43)

where

R(z) = (1 + z2
2)

2 · . . . · (1 + z2
n−1)

2 ,

and Pij(z), Qi(z), 2 ≤ i, j ≤ n are polynomials of the form

Pij(z) = Pi(z)Pj(z) and Qi(z) = (1 + z2
2) · . . . · (1 + z2

n−1)Pi(z)

with

Pi(z) =

{
(1 − z2

i )
∏i−1

j=2 2zj

∏n−1
j=i+1(1 + z2

j ) if 2 ≤ i < n ,
∏n−1

j=2 2zj if i = n .

Then (t0, x0) is hyperbolic/quasihyperbolic if

rangeP = {P (z) : z = (z2, . . . , zn−1)
⊤ ∈ R

n−2}
contains only positive/negative values, and elliptic if rangeP contains both positive
and negative values.
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Case n+ ∈ {2, . . . , n−2}: To check the sign of 〈ξ, M̂ξ〉 for ξ satisfying (41) we define

z = (z1, . . . , zn+−1, zn++1, . . . , zn−1) and substitute (39) into 〈ξ, M̂ξ〉. As before,
this yields a rational function which we again multiply with its denominator

(1 + z2
1)2 · . . . · (1 + z2

n+−1)
2 · (1 + z2

n++1)
2 · . . . · (1 + z2

n−1)
2

to obtain a polynomial P of degree 4(n− 2),

P (z) =
n∑

i,j=1

m̂ijPij(z) ,

where each Pij(z), 1 ≤ i, j ≤ n, is a polynomial of the form Pij(z) = Pi(z)Pj(z)
with

Pi(z) =





(1 − z2
i )

∏i−1
j=1 2zj

∏n+−1
j=i+1(1 + z2

j )
∏n−1

j=n++1(1 + z2
j )

for 1 ≤ i ≤ n+ − 1 ,

∏n+−1
j=1 2zj

∏n−1
j=n++1(1 + z2

j ) for i = n+ ,

(1 − z2
i )

∏i−1
j=n++1 2zj

∏n−1
j=i+1(1 + z2

j )
∏n+−1

j=1 (1 + z2
j )

for n+ + 1 ≤ i ≤ n− 1 ,

∏n−1
j=n++1 2zj

∏n+−1
j=1 (1 + z2

j ) for j = n .

Consequently, (t0, x0) is hyperbolic/quasihyperbolic if

rangeP = {P (z) : z = (z1, . . . , zn+−1, zn++1, . . . , zn−1) ∈ R
n−2}

contains only positive/negative values, and elliptic if rangeP contains both positive
and negative values.

Case n+ = n − 1: Note that only the case n ≥ 3 has to be considered here, since
n = 2 implies n+ = 1, which case has been discussed earlier. Assume w.l.o.g. that
ξn = 1 so that

〈ξ, M̂ξ〉 =

n−1∑

i,j=1

m̂ijξiξj + 2

n−1∑

i=1

m̂inξi + m̂nn , (44)

where (ξ1, . . . , ξn−1)
⊤ ∈ B1,n−1. We define z = (z1, . . . , zn−2) and substitute (39)

into (44). The result is again a rational function, and multiplying this function with
its denominator

(1 + z2
1)

2 · . . . · (1 + z2
n−2)

2

we obtain the polynomial P of degree 4(n− 2),

P (z) =

n−1∑

i,j=1

m̂ijPij(z) + 2

n−1∑

i=1

m̂inQi(z) + m̂nnR(z) , (45)

where

R(z) = (1 + z2
1)

2 · . . . · (1 + z2
n−2)

2 ,

and Pij(z), Qi(z), 1 ≤ i, j ≤ n− 1 are polynomials of the form

Pij(z) = Pi(z)Pj(z) and Qi(z) = (1 + z2
1) · . . . · (1 + z2

n−2)Pi(z)
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with

Pi(z) =

{
(1 − z2

i )
∏i−1

j=1 2zj

∏n−2
j=i+1(1 + z2

j ) if 1 ≤ i < n− 1 ,
∏n−2

j=1 2zj if i = n− 1 .

Thus (t0, x0) is hyperbolic/quasihyperbolic if

rangeP = {P (z) : z = (z1, . . . , zn−2) ∈ R
n−2}

contains only positive/negative values, and elliptic if rangeP contains both positive
and negative values.

Example 1. The polynomial P which characterizes the strain acceleration on the
zero strain set in three dimensions, i.e. for x ∈ R3, is of the form (see (43) and (45))

P (z) = A4z
4 +A3z

3 +A2z
2 +A1z +A0 (z ∈ R) ,

where the coefficients Ai, 0 ≤ i ≤ 4, are determined as follows: If n+ = 1 then

A4 = m̂11 − 2m̂12 + m̂22 ,

A3 = 4m̂13 − 4m̂23 ,

A2 = 2m̂11 − 2m̂22 + 4m̂33 ,

A1 = 4m̂13 + 4m̂23 ,

A0 = m̂11 + 3m̂12 + m̂22 ,

and if n+ = 2 then

A4 = m̂11 − 2m̂13 + m̂33 ,

A3 = −4m̂12 + 4m̂23 ,

A2 = −2m̂11 + 4m̂22 + 2m̂33 ,

A1 = 4m̂12 + 4m̂23 ,

A0 = m̂11 + 2m̂13 + m̂33 ,

cf. [10] for a similar but slightly different formula. If |z|>max
{

1, |A0|+|A1|+|A2|+|A3|
|A4|

}

then |P (z)| > 0, since

|P (z)| ≥ |A4||z|4 − |A3||z|3 − |A2||z|2 − |A1||z| − |A0|
≥ |A4||z|4 − (|A3| + |A2| + |A1| + |A0|)|z|3
= |z|3

(
|A4||z| − (|A3| + |A2| + |A1| + |A0|)

)
> 0 .

Thus we can easily estimate the compact domain which contains all possible zeros
of P . It is worth pointing out that for x ∈ Rn with n ≥ 4 the polynomial P
depends on z ∈ R

n−2. While it is possible to decide in polynomial time whether
either |P (z)| > 0 for all z ∈ Rn−2 or else P (z1) > 0 > P (z2) for some z1, z2, such a
decision can be a practically hard problem already for n = 6, see e.g. [1].

2.4. An example. In this final section we compute the dynamic partition for the
equation

ẋ = (x3 − x)(y2 − 1)z ,

ẏ = (x2 − 1)(y3 − y)z , (46)

ż = (x2 + y2 − 1
4 )(z2 − 1) ,

for (x, y, z) ∈ [−1, 1]3 ⊂ R3 with respect to the Euclidean norm. The faces of the
cube [−1, 1]3 are invariant under the flow. All horizontal edges {(x, y, z) : |z| =
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Figure 4. The vector field of (46) and some trajectories.

1, (|x| − 1)(|y| − 1) = 0} consist of equilibria. A heteroclinic orbit connects the
two equilibria (0, 0,−1) and (0, 0, 1), see Figure 4. Since (46) is autonomous, by
Remark 5, its dynamic partition is independent of time, i.e., the regions T (t) ≡ T
for T ∈ {A,R, E ,H,Q,D} as well as S, Z and M do not depend on t. For example,
the components of the strain tensor S(x, y, z) = (sij)i,j=1,2,3 at a point (x, y, z) ∈
[−1, 1]3 are

s11 = (3x2 − 1)(y2 − 1)z , s22 = (x2 − 1)(3y2 − 1)z , s33 = 2(x2 + y2 − 1
4 )z ,

s12 = s21 = xyz(x2 + y2 − 2) , s13 = s31 = 1
2x(x

2y2 − x2 − y2 + 2z2 − 1) ,

and

s23 = s32 = 1
2y(x

2y2 − x2 − y2 + 2z2 − 1) .

An easy but lengthy computation shows that a point (x, y, z) is attracting if and
only if

s11 + s22 + s33 < 0 ,

s11s22 + s11s33 + s22s33 − s12s21 − s13s31 − s23s32 > 0 ,

s11s22s33 − s11s23s32 − s22s13s31 − s33s12s21 + 2s12s23s31 < 0 ,

and it is repelling if and only if

s11 + s22 + s33 > 0 ,

s11s22 + s11s33 + s22s33 − s12s21 − s13s31 − s23s32 > 0 ,

s11s22s33 − s11s23s32 − s22s13s31 − s33s12s21 + 2s12s23s31 > 0 .

The points satisfying either of these two sets of polynomial inequalities define the
open interior of a solid torus, see Figure 5. We use the algorithm described in Section
2.3 to compute the elliptic region E in [−1, 1]3. Figure 6 shows the boundary of the
elliptic region (in red), as well as some yellow points indicating on which side of the
boundary the elliptic points are actually located. In fact, the plane z = 0 consists
of degenerate points, since
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Figure 5. The lower torus consists of attracting points, and the
upper torus contains all repelling points of (46) in [−1, 1]3.

S(x, y, 0) =




0 0 s13
0 0 s23
s31 s32 0




is degenerate. To better visualize the elliptic region we do not display the square
{(x, y, z) ∈ [−1, 1]3 : z = 0} belonging to the boundary of E so as not to hide the
structures underneath. Figure 6 again shows the top and bottom torus consisting

Figure 6. Part of the boundary of the elliptic region E of (46) in
[−1, 1]3 (in red; the square {(x, y, z) ∈ [−1, 1]3 : z = 0} ⊂ D is not
displayed). E is indicated by yellow diamonds.
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of repelling and attracting points, respectively. Outside the tori, the elliptic region
is indicated by yellow diamonds.

The remaining boundary of E consists of two cones which meet at the origin and
a tent-like structure which altogether form the boundary to the hyperbolic region.
The results of the computation of the hyperbolic region H in [−1, 1]3 are displayed
in Figure 7. In agreement with Theorem 2.9, the hyperbolic rest points (0, 0,−1)
and (0, 0, 1) together with cone-shaped neighbourhoods thereof are contained in H.

Figure 7. The boundary of H of (46) in [−1, 1]3 (in red). The
hyperbolic region H itself is indicated by yellow diamonds.
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