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Introduction

These are the TEXed and polished notes of the course Math 516 (Linear Analysis') as I
taught it in the fall terms 2000 and 2001. The most distinctive feature of these notes is
their complete lack of originality: Everything can be found in one textbook or another.

The book that is probably closest in spirit is
1. J. B. Conway, A Course in Functional Analysis. Springer Verlag, 1985.
Other recommended books are:

2. B. BOLLOBAS, Linear Analysis. An Introductory Course, Second Edition. Cam-
bridge University Press, 1999.

3. N. DUNFORD and J. T. SCHWARTZ, Linear Operators, I. Wiley-Interscience, 1988.
4. G. K. PEDERSEN, Analysis Now. Springer Verlag, 1989.
5. W. RUDIN, Functional Analysis, Second Edition. McGraw-Hill, 1991.

The notes, which are generally kept in a rather brutal theorem-proof style, are not intended
to replace any of these books, but rather to supplement them by relieving the students
from the necessity of taking notes and thus allowing them to devote their full attention

to the lecture.

Volker Runde, Edmonton August 22, 2003

called “baby functional analysis” by some



Chapter 1
Basic concepts

In this chapter, we introduce the main objects of study in this course:
e normed linear spaces, in particular Banach spaces, and

e the bounded linear maps between them.

1.1 Normed spaces and Banach spaces

All linear spaces considered in these notes are supposed to be over a field F, which can be
R or C.

Definition 1.1.1 Let E be a linear space. A norm on E is amap |- ||: E — [0, 00) such
that

(a) [|z]| =0 <= x=0 (x € E);
() Azl = [Allzll (A€ F, z € E);
() lz+yl <zl +lyll  (z,y€E).
A linear space equipped with a norm is called a normed space.

Ezamples 1. There are several canonical norms on the linear space E := FV. For
x=(A1,...,AN), let:

N
Izl =Y Il
j=1

1
2

N
lzlle == [DINP]
j=1

2]l := max{|A1],..., | n]}.



Then || - |1, || - ||2, and || - ||c are norms on E which satisfy the inequality

|zlloe < [l2]1 < VN||zll2 < Nzl (z € E). (1.1)
2. Let S # @ be a set and define
(S, F) := {f: S—TF: sgg|f(s)] < oo} :
For f € £>°(S,F), define
1£lloo := sup | £(s)l-

This turns £°°(S,F) into a normed space.

3. In fact, there is a norm on any linear space E. Let S be a Hamel basis (see Exercise
1.2 below) for E. Let x € E. Then there are (necessarily unique) A\q,... , A\, € F
along with s1,... ,s, € S such that z = >7"_; A;js;. Define

[ERED T
j=1

This defines a norm on E.

The last example emphasizes that a normed space is not just a linear space that can
be equipped with a norm, but a linear space equipped with a particular norm.

Exercise 1.1 Justify (1.1).
Exercise 1.2 Let E # {0} be a (possibly infinite-dimensional) linear space. A Hamel basis for E
is a set S of elements of E with the following properties:
e S is linearly independent.
e Each element of F is a linear combination of elements of S.
Show that F has a Hamel basis by proceeding as follows:
(i) Let S :={T C E : T is linearly independent}. Show that S # @.

(ii) Let 7 be a non-empty subset of S which is totally ordered by set inclusion. Show that
U{T : T € T} belongs again to S.

(iii) Use Zorn’s lemma to conclude that S has maximal elements.

(iv) Show that any such maximal element is a Hamel basis for E.

Exercise 1.3 Let p,q € (1,00) be such that ;l) + % =L



(i) Show that

+ = (z,y > 0). (1.2)
(Hint: Apply the logarithm to (1.2) and prove that inequality first.)

For z = (Aq,... ,An) € FV | let

N
lzllp o= | D AP
j=1

(ii) Hélder’s inequality. Show that, for x = (A\1,... ,An),y = (1, .. , un) € FY, we have

N
D amsl < lllpllylly-
j=1

Which known inequality do you obtain for p = ¢ = 2?7

(iil) Minkowski’s inequality. Show that
lz +yllp < llolly + llylly (2,5 €FY).
(iv) Conclude that | - ||, is a norm on FV.

Exercise 1.4 Let F be a linear subspace of a normed space E. Show that the closure of F' in F
is also a linear subspace of F.

Exercise 1.5 A seminorm on a linear space F is a map p: E — [0,00) with the following
properties:

e p00) = \p(x) (\EF,zeE),
e plz+y) <plx)+ply) (z.y€E).
What is missing from the definition of a norm?
(i) Show that F':= {x € E : p(x) = 0} is a linear subspace of E.
(ii) For x € E, define ||z + F|| := p(x). Show that ||| - ||| is @ norm on E/F.

If (E,|-]|) is a normed space, then
d: ExE —[0,00), (z,y)— |lz—1y|
is a metric. We may thus speak of convergence, etc., in normed spaces.

Definition 1.1.2 A normed space FE is called a Banach space if the corresponding metric

space is complete, i.e. every Cauchy sequence in E converges in F.

Exercise 1.6 Let E be a normed space, and let F' be a linear subspace of E. Show that, if F' is
a Banach space, then it is closed in F. Conversely, show that, if £ is a Banach space and if F is
closed in F, then F' is a Banach space.



Ezamples 1. (FM, |- |l;) is a Banach space for j = 1,2, cc.
2. Let (fn)2 be a Cauchy sequence in (¢°(S,F), || - ||oc). For each s € S, we have
[fn(s) = fm() < [l fo = finlle  (n,m €N).
Hence, (fn(s))72, is a Cauchy sequence in F. Define f: S — F by letting
£(5) = Tim_fu(s)

We claim that f € ¢>°(S,F) and that ||f, — fllcc — 0. We prove both claims
simultaneously. Let € > 0, and choose N € N such that

[fn = full <€ (n,m>N).
It follows that
|fn(5)_fm(5)| < an_me <€ (n,mZsteS),

We thus obtain for n > N and s € S:

Fals) = F&] = T [fuls) — fin(s)
lim sup|| o~ fin

m—0o0

€. (1.3)

IN

IN

In particular, we obtain

f < Nfn(s) +e < |[fnllo + 6

so that f € £°°(S,F). Taking the supremum over s € S in (1.3) yields

an_fHoo <e

3. Let X be a topological space, and define
Co(X,F) :={f € £*°(X,F) : f is continuous}.

By Theorem A.2.4, Cy(X,F) is a closed subspace of £*°(X,F) and thus a Banach
space by Exercise 1.4.

4. Let X be a locally compact Hausdorff space, and let Co(X,F) be defined as in
Definition A.3.13. Let (f,)52; be a sequence in Co(X,F) converging to f € Cy(X, )
(with respect to || - ||oo). Let € > 0, and choose N € N such that

lfa =Sl <5 (= N).



It follows that
€

(@) = F@) < 1 = Flloe < 5

and consequently

|f(z)] < [fn(x)] + %

Since fn € Co(X,F), there is a compact set K C X such that sup,cx\x [f(2)] < 5.
This implies

sup |f(z)] <e.
zeX\K

Hence, Cy(X,TF) is a closed subspace of the Banach space C,(X,F) and thus a Banach

space itself.
5. For N € N, define

CN([0,1],F) :={f:[0,1] = F: f is N-times continuously differentiable}.

Define

1 _ 1
f:[ovl]_)F’ .’1}0—){2 'fa l'E[Oai

]
].

Then f belongs to C([0, 1])*, but not to C™V([0, 1]). Since f is piecewise continuously

differentiable, it can be uniformly approximated by the sequence (s,)52; of the

z—35, €3

partial sums of its Fourier series. Since s, € CV([0,1]) for each n € N, we obtain
that C™V([0,1]) is not closed in (C([0,1]), || - [|so). Hence, (CN([0,1]),] - |lso) is not a

Banach space.

Define another norm on C¥ ([0, 1]):
N
Il =D 1P (F €CN([0,1)).
j=1

Let (f1)22, be a Cauchy sequence in (CV([0,1]), || - |~). Then (£))2, is a Cauchy
sequence in (C([0,1]),] - ||eo) for 7 =0,1,... ,N. Since C(]0,1]) is a Banach space,
there are go, g1,... ,9n € C([0,1]) such that

£ = gjlo — 0 (j=0,1,...,N).

We claim that

gj-i—l:g;' (]:0,,N—1)

Tf the field F is obvious or irrelevant, we often write Co(x), C™ ([0, 1]), etc., without the symbol F.



This, however, follows immediately from

gi(x) = lim fP(x)
= lim [ / ’ FIN @) dt + £9)(0)
n—oo 0

= /Oxgj-f—l(t)dt—i-gj(()) (z€[0,1,j=0,...,N—1).

Let f := go. Then we obtain inductively that fU) = g;j for 5 =0,1,... ,N. This
yields

N N
1fa = fllv = DI = PNl = DN = gilloc — 0.
j=0

=0
Hence, (CN([0,1]), | - |lv) is a Banach space.

The last example shows that a linear space equipped with one norm may fail to be a
Banach space, but can be a Banach space with respect to another norm.

Exercise 1.7 We write shorthand ¢>°(FF) for ¢*°(N,F). Let ¢(F) denote the subspace of ¢>°(IF)
consisting of all convergent sequences in F, let co(F) be the subspace of all sequences in F that
converge to zero, and let co(F) consist of all sequences (A,)52; in F such that A, = 0 for all but

finitely many n € N.
(i) Show that (¢(F),| - [leo) and (co(F),| - ||o) are Banach spaces.
(ii) Show that (coo(F), || - [leo) is not a Banach space.

Our first theorem is an often useful characterization of completeness in normed spaces

in terms of convergent series:

Definition 1.1.3 Let (z,)72, be a sequence in the normed space E. We say that the
oo
series Y > | &, converges in E if the sequence (Zgil :En> ) of its partial sums converges.

We say that S°°° | x,, converges absolutely if Y °° | ||x,|| < oo.
Exercise 1.8 For n € N, let

1
~, m=n

n:N=F, m—<{ n’ ’
0, else.

(i) Show that, for every permutation m: N — N, the series > -, Tr(n) converges in co to the
same limit. Which is it?

(ii) Show that the series Y | x, is not absolutely convergent.

Theorem 1.1.4 (Riesz—Fischer theorem) Let E be a normed space. Then the follow-

g are equivalent:



(i) E is a Banach space.

(ii) Ewery absolutely converging series in E converges.

Proof (i) = (ii): This is proven in the same fashion as for series in R.
(ii) = (i): Let (z);2; be a Cauchy sequence. Choose a subsequence (xy, )72, of
(x5)52 4 such that

1
||xnk - xnk+1|| < 2_k (k € N)'

Let
Yk = Tny, — Tny (k eN).

Then the series Y, ; y converges absolutely and thus converges in E. Since

K
Zyk = (wm - xnz) + ($n2 - xns) +oot (an - :UTLKH) = Tny — Tng gy (K eN),
k=1

it follows that (z,,)3>, is also convergent, with limit x, say. Let ¢ > 0, and choose
K,N e Nwithng > N

€
2
For n > max{N, K}, this means

lon — 2wl < = (mym>DN)  and  |lon, -zl < = (k> K).
[#n — || < [lzn — @n | + [|2n, — 2] <,
so that x = lim, o0 Tp,- O

Ezample Let (2,8, 1) be a measure space, let p € [1,00), and let

11 i= ([ 176 du<w>)’l’

for each measurable function f: ) — F. Define
LP(Q,6,p) :={f: Q—F: fis measurable with || f||, < co}.

Using Holder’s and Minkowski’s inequalities (compare Exercise 1.3), it can be shown that

LP(2, 6, ) is a linear space, and || - ||, is a seminorm on it. Let
Np ={f € LP(Q,&,p) : || fllp = 0},
and define

LP(,6, 1) = LP(Q, &, 1) /N,

10



By Exercise 1.5, || - ||, induces a norm on LP(§2, &, 1), which we denote by || - ||, as well.
We claim that (LP(€2, S, i), || - ||p) is a Banach space.

We will use Theorem 1.1.4. Let (f,)>2; be a sequence in LP(Q, S, u) such that
2 n=1 [[fnllp < 00. Define

0 p
g: 2 — [0, 00, w»—><Z|fn(w)\> .

n=1

We claim that g is integrable. To see this, note that

( /| (ém(wn)pdu(w)); -

By the monotone convergence theorem (Theorem B.3.1), this means

N p () p
/Qg(w)dﬂ(w): lim (Zlfn(wﬂ) dp(w) < (ZHJ%IM) < o0,
n=1

N—oo Jo 1
n—

N
> 15l
n=1

N
<Slfaly (Ve
P n=1

so that g is indeed integrable. Hence, for almost all w € €, the series > 7 | f(w) converges

absolutely. Define

Yot fa(w), if g(w) < oo,
0, otherwise.

fQ—TF, wr—>{

Then f is measurable with |f|P < g. For almost all w € €2, we have

N

D falw) = f(w)

n=1

=0 and < g(w).

For the dominated convergence theorem (Theorem B.3.2) it is then easily inferred that

limp— o HZL o — pr =0, ie f =5 fu

The following exercise is the measure theory free version of the preceding example:

Exercise 1.9 Let p € [1,00). Let £F be the set of all sequences (z,,)32; in F with Y7 | |z, [P < co.

(i) For z = (x,)52, € (P define

oo »
]y = (Z Ifcnl”> :
n=1

Show that || - ||, is a norm on ¢7.

(ii) Show that (¢7, | - ||,) is a Banach space.

11



Ezample Let (2,6, 1) be a o-finite measure space. A measurable function f: Q — F is
called essentially bounded if there is C > 0 such

{weQ:[fw)]=C} (1.4)

is a p-zero set. Let £°°(Q, &, ) denote the set of all essentially bounded functions on €.
For f € £L°(, &, 1) define

| flloo :=1inf{C > 0: (1.4) is a u-zero set}.

It is easy to see that || - ||« is a seminorm on £°(Q, S, ). Let Noo := {f € L>(Q, S, u) :
I fllcc = 0}, and define

LOO(Qa 67 M) = ‘600(97 6) :U)/NOO

Then L*>°(Q, S, ) equipped with the norm induced by || - ||c — likewise denoted by || - ||oo

— is a Banach space.

1.2 Finite-dimensional spaces

We have seen in the previous section, that there may be different norms on one linear
space: (CNV([0,1]), ]| - [loo) is not a Banach space whereas (CV([0,1]), | - ||l1) isn’t. On the
other hand, the norms || - ||1, || - ||l2, and || - |[sc on FV are related by (1.1), so that the

resulting topologies are identical. The following definition captures this phenomenon:

Definition 1.2.1 Let E be a linear space. Two norms ||-||; and ||-||2 are called equivalent
(in symbols: || - ||1 ~ || - ||2) if there is C' > 0 such that

lzlls < Cllzllz and  [lz]z < Cllzly  (z € E).

Exercise 1.10 Verify that the equivalence of norms is indeed an equivalence relation, i.e. it is

reflexive, symmetric, and transitive.

Exercise 1.11 Let E be a linear space, and let || - ||; and || - |2 be two equivalent norms on E.
Verify in detail that (E, || - ||1) is a Banach space if and only if (E, | - ||2) is a Banach space.

Ezamples Lo|l- 11, || - ll2, and || - [|oc on FY are equivalent by (1.1).

2. for z = (A\y)52; € coo(F) we have

9
I2lloo <> [Anl = 1.
n=1

On the other hand, let



Then
[Znlloo =1, but flzai=n  (neN),
50 that || - floc 2 [ - [[1-
3. || |loo and || - || v are not equivalent on CN(]0,1]). (Why?)

The next theorem shows that there is only one equivalence class of norms on a finite-

dimensional vector space.

Theorem 1.2.2 Let E be a finite-dimensional linear space. Then all norms on E are

equivalent.

Proof Let x1,...,xny € E be a basis for E. For x = A\jz1 4+ --- 4+ Anzy, let

Il := max{|Adl,..., [An]}-
It is sufficient to show that ||| - ||| ~ || - || for every other norm on FE.
Let x € E. Then we have:
el < Wil + -+ Daxllan]

N

(2]l + - -+ ) -
=:Ch
It remains to be shown that there is Co > 0 with |||z]|| < Cal|z|| for all x € E.

Assume otherwise. Then there is a sequence (z(™)%, in E with [|[z™]||| > n|z™)].
Let

(n)
(n) . _*T
y\" = (n € N).
e
For each n € N, there are unique )\gn), . ,)\5\7;) € F with y(") = Zjvzl )\g.n)acj. It follows
that
[ X)L =™ =1 men).
By the Heine—Borel theorem, the sequence (()\gn), . ’)\5\7)>>0071 has a convergent sub-

(o)
sequence (()\gn’“),... ,/\%’“))>k - Let pj = limg_.oo )\g.n’“) for 7 = 1,...,n, and define
Y= Z;VZI pjxj. It follows that

Myl = N(pa, - )l =1,

so that, in particular, y # 0, and
nk n
I =yl < Callly™ = ull = [ (N = o AR =) | =

On the other hand, the choice of (#(™)%_, implies n||y(™|| < 1 so that lim,, s ||y | = 0.
But this means that y = 0, which is impossible. O

13



Theorem 1.2.2 does not mean that finite-dimensional normed spaces are uninteresting:
It says nothing about the constant C showing up in Definition 1.2.1. To find optimal values

for C for concrete norms can be quite challenging. We won’t pursue this, however.
Corollary 1.2.3 FEvery finite-dimensional normed space is a Banach space.

Exercise 1.12 Prove Corollary 1.2.3.
Corollary 1.2.4 Every finite-dimensional subspace of a normed space is closed.

As an immediate consequence, each finite-dimensional normed space can be identi-
fied with FV, so that theorems for FV carry over to arbitrary finite-dimensional normed
spaces. In particular, a finite-dimensional space has the Bolzano—Weierstrafl property:
Each bounded sequence has a convergent subsequence. As we shall now see, this property

even characterizes the finite-dimensional normed spaces.

Lemma 1.2.5 (Riesz’ lemma) Let E be a normed space, and let F' be a closed, proper,
i.e. I # E, subspace of E. Then, for each 6 € (0,1), there is xg € E with ||xg|| = 1, and
|z — xg|| > 6 for all x € F.

Proof Let z € E\F, and let ¢ := inf{||x —y|| : y € F'}. Then there is a sequence (z,)5° ;
in F' with lim,,_, ||z — x| = d. If § = 0, the closedness of F' implies x € F, which is a
contradiction. Hence, § > 0 must hold. Since 6 € (0,1), we have § < g Choose y € F
with 0 < ||z — y| < §. Let

y—x

Ty = ——
ly — |’

so that trivially ||| = 1. For any z € F', we then have:

2 — || = Z_u'
|y — |l
= ||z — Y + : ‘
ly ==z vy —=|
1
= m\l(llx—yllz—l—y)—ml\
— —_———
33
>5
0
D)
)
= 4.
This completes the proof. O

Theorem 1.2.6 For a normed space E, the following are equivalent:

14



(i) Every bounded sequence in E has a convergent subsequence.
(i) dim F < oo.

Proof (ii) = (i) is elementary.
(i) = (ii): Suppose that dim E' = co. Choose z; € E with ||z;| = 1. Suppose that

z1,...,Zy have already been chosen such that
lz;l=1  (=1,...,n)
and

N =

Let F' := lin{z1,...,z,}. Since dim F' < oo, F is a proper and automatically closed

subspace of . By Riesz’ lemma, there is x,41 € E with
1
lznilf =1 and  flz — 2l 25 (2 € F).
Inductively, we thus obtain a sequence (x,)5° ; of unit vectors such that
1
ln —amll =5 (£ m) (15)
By (1.5), (z)22; has no Cauchy subsequence. O

Theorem 1.2.6 is the first example for the many subtle and often surprising links
between algebra and analysis that surface in this course: A purely algebraic property —
a linear space has finite dimension — turns out to be equivalent to the purely analytic

Bolzano—Weierstrafl property.

1.3 Linear operators

One of the major topics in linear algebra is the study of linear maps between finite-
dimensional linear spaces. A considerable part of this course will be devoted to the study

of linear maps between (possibly, but not necessarily) infinite-dimensional spaces.

Definition 1.3.1 Let E and F be linear spaces. A map T': F — F is called linear if
T(Ax + py) = MNTx + pTy (r,y € E, \,u €F).

Linear maps are also called linear operators. A linear operator from E to F is called a

linear functional.

15



Examples 1. Let E:=FVN, let F:=FM and let A be an M x N-matrix. Then
Tpr: E— F, x+— Ax
is a linear operator.

2. Let @ # Q C RY be open, and let CM () denote the linear space of all functions f:
Q) — T for which all partial derivatives of order at most M exist and are continuous.
For each multiindex o € N}’ with |a| := a1 + -+ +ay < M, let f, € C(Q). Then

M o f
DicM@) —c@), fo 3 f2t

ozr®
la]<M
is linear. Operators of this type are called linear (partial) differential operators.

3. Let k:[0,1] x [0,1] — F be continuous. For f € C([0,1]), define T'f: [0,1] — F
through

1
(Tf)(x) = /0 fkEy)dy  (x <0, 1),

We claim that Tf € C([0,1]). Fix z¢ € [0,1], and let ¢ > 0. Since [0,1] x [0, 1] is
compact, k is uniformly continuous. Hence, there is § > 0 such that

€
[ flloc +1
for all (z,y), («/,y') € [0,1] x [0,1] with |[(z,y) — (2/,¥')||2 < §. Let x € [0,1] such
that |z — zo| < 6. It follows that

k(2 y) — k(2',)] <

Iz, y) = (o, 9)ll2 = |z —xo| <6 (y €[0,1]).

We thus obtain:

1
(T (@) = (Tf)(xo)| = /Of(y)[k(w,y)—k(xo,y)]dy

1
< / F@)] [k y) — ko, )] dy
0 S~~~ ~~

<lfllos <m

Hence, T'f is continuous.

It is immediately checked that
T:C([0,1]) = C([0,1]), f=Tf

is a linear operator, the Fredholm operator with kernel k. Fredholm operators are

part of the larger class of linear integral operators.
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The first examples suggests that we may view linear operators as generalizations of
matrices.

Exercise 1.13 Let E be a linear space with Hamel basis s, let F' be another linear space, and
let (ya)ses be an arbitrary family of elements of F'. Show that there is a unique linear operator
T: E — F such that T's =y, for all s € S.

There is virtually nothing of substance that can be said on linear operators between
arbitrary linear spaces. We have to confine ourselves to the setting of normed spaces —

preferably Banach spaces — and continuous linear operators.

Theorem 1.3.2 Let E and F' be normed spaces. Then the following are equivalent for a

linear operator T: E — F':
(i) T is continuous at 0.
(ii) T is continuous.
(iii) There is C' > 0 such that | Tz| < C||z|| for all x € E.
(iv) sup{||Tz| : xz € E, ||z]| < 1} < o0.
Operators satisfying these equivalent conditions are called bounded.

Proof (i) = (ii): Let « € E, and let (z,)22, be a sequence in E such that x, — =.
Then

[Tz = Ta|| = |T(zn —2)| — 0
——
—0
holds, which proves (ii).
(ii) = (iii): Assume that (ii) holds, but that (iii) is false. Then there is a sequence
(xn)02 4 in E such that | Tx,|| > n||zy]| for all n € N. Let

Tn
[Tl

Yn = (n € N).

Since 1 > nl|y,|| for all n € N, it follows that y, — 0. On the other hand, we have
||Txy,|| = 1, which is impossible if 7" is continuous at 0.

(iii) = (iv): Clearly, (iii) implies
sup{||Tz| :z € E, ||z|| <1} < C.
(iv) = (i): Assume that T" is not continuous at 0. Then there is a sequence (z,)7 4

in E such that x,, — 0, but ¢ := inf || Tz,| > 0. Let

Tn
Yp = (n €N),
T Nzl

17



so that ||y,|| =1 for all n € N. On the other hand, we have

)
1 Tynll = | Tz > T — 00,
|nll

22

which contradicts (iv). O

Exercise 1.14 Show that the following are equivalent for a normed space E:
(a) dim F = co.
(b) For each normed space F' # {0}, there is an unbounded linear operator T: F — F.

(¢) There is an unbounded linear functional on E.

Exercise 1.15 Let E be a normed space. Show that the following are equivalent for a linear
functional ¢: E — F:

(a) ¢ ¢ E".
(b) o({z € E:[lz| <1}) = F.
(c) ker ¢ = ¢~1({0}) is dense in E.

Exercise 1.16 Let E and F be Banach spaces, and let T' € B(E, F') be such that there is C' > 0
with

e <ClTz|  (z € E).

Show that T is injective and has closed range.

Ezamples 1. Let £ and F be normed spaces, and let T': E — F be linear. Suppose
that dim £ < co. Define

| := max{[l«], [T=]}  (x € E).

Then ||| - ||| is a norm on E. By Theorem 1.2.2, ||| - ||| and || - || are equivalent, so
that there is C' > 0 with

[Tzl < [[lz]]| < Cllzf] (2 € E).
Hence, T is bounded.
2. Let
T:cl((0,1]) = c([o, 1), f
and let both C!([0,1]) and C([0, 1]) be equipped with || - |[|co. For n € N, define
ful@) =" (z €[0,1]),

18



so that || fn]lcc = 1 for n € N. However, since

, nl.nfl

ful@) =

- (neN, z€[0,1]),

we have || T f,|lc = 1, so that T is not bounded. If, however, C1(]0,1]) is equipped

with the Cl-norm || - ||1, T becomes bounded:
ITflloo = 1l < 1floc + 1l = ILflL (f €CH([0,1])).

3. Let k:[0,1] x [0,1] — F be continuous, and let T': C(]0, 1]) — C([0, 1]) be given by

1
(Tf)(x) = /0 f@k@ )y (f €C((0.1]), z € [0,1]).

For each f € C([0,1]), we have:

1
1T flloo < sup /0 [F @)K, y)] dyl| floo || Fllco-

z€[0,1]
Hence, T is bounded.

4. Let (2,6, 1) be a o-finite measure space, let p € [1,00], and let ¢ € L*>°(Q, S, u).
Define My: LP(Q2, S, ) — LP(S2, &, 1) through

M¢f = Qbf (f € LP(Q,G,,U,))

It is easy to see that

1My flloo < Nolloollfll (f € LP(Q, 6, p)).

The first of these examples shows that the requirement of boundedness is vacuous for
any operator between finite-dimensional spaces.
Given two normed spaces, we shall now see that the collection of all bounded linear

operators between them is again a normed space in a natural manner:
Definition 1.3.3 Let E and F' be normed spaces.

(a) The set of all bounded linear operators from E to F is denoted by B(E, F). If
E=F,let B(E,F) = B(E); if F =F, let B(E, F) =: E*.

(b) For T' € B(E, F), the operator norm of T' is defined as
1T} := sup{[|Tz| : = € E, ||=[| < 1}.

Proposition 1.3.4 Let EE and F' be normed space. Then:
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(i) B(E, F) equipped with the operator norm is a normed space.
(ii) For T € B(E,F), ||T|| is the smallest number C > 0 such that

[Tz|| < Cllell (2 € E). (1.6)

(iii) If G is another normed space, then for T € B(E,F) and S € B(F,G), we have
ST € B(E,G) such that

ISTI < ISTIT-

Proof (i): It is straightforward to see that B(E, F') is a linear space. We have to check

the norm axioms:

(a) Let T € B(E, F) be such that ||T'|| = 0. Let z € E'\ {0}. Then we have

i =7 ()| < 1m =e

so that Tx = 0. Since x was arbitrary, this means T = 0.
(b) It is routine to see that

AT = INITI - (AeF, T € B(E, F)).

(c) Let z € E be with ||z|| < 1. Then we have
1Sz + Ta|| < [|Szf| + [Tl < |[S| + [T} (S, T € B(E, F))
and thus

IS+ Tl <[ISI+ Tl (ST eB(E,F)).

(ii): Let x € E'\ {0}. Since

gt = (g ) < e

it follows that ||Tx| < ||T']|[|z||. Let C' > 0 be any other number such that (1.6) holds.
Then

sup{||Tz| :z € E, ||z|| <1} < C.
(iii): Let € E. Then we have
[STz|| < [ISI[I[T=] < [ISIIITH|=]-

From (ii), it follows that [|[ST|| < ||S||||T]. 0
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Exercise 1.17 Let p € [1,00), and let L, R: £7 — ¢? be defined through

L(l‘l,Ig,Z‘g,...) = (0,$1,IQ,...)

and R(x1,x9,%3,...) = (22, T3, T4,...) (1,22, 23,...) € LP).

Show that L, R € B(¢P) and calculate ||L|| and || R]].

.....

Theorem 1.3.5 Let E be a normed space, and let F' be a Banach space. Then B(E, F)

1s @ Banach space.
Proof Let (T,,)22, be a Cauchy sequence in B(E, F'). Let x € E. Then
[Thx — Tnz|| < | Tn — Tl ||| (n,m € N),

so that (T,2)22

oo 1 is a Cauchy sequence — and thus convergent — in F'. Define

T:-E—F, x+— lim T,x.

n—oo

Clearly, T is linear.
We claim that T' € B(E, F') and that ||T,, — T'|| — 0. Let = € E with ||z|| < 1, and let
€ > 0. There is N € N — independent of z — such that

| Thx — Tzl < ||Thn — Thl| <€ (n,m > N).
For n > N, this entails that

|Thx — Tzl = lim [T,z — Trx| < limsup ||T;, — Tl < e. (1.7)
m—0o0

m—0o0
In particular, we have | Tz| < || Tn]| +¢, so that T' € B(E, F). Taking the supremum over
x € E with ||z]| <1 in (1.7), we see that ||T,, — T|| < e for n > N. 0

Corollary 1.3.6 For every normed space E, its dual space E* is a Banach space.

As turns out, arbitrary bounded linear operators between Banach spaces are still very

general objects. To obtain stronger results, we have to look at a smaller class of operators:

Definition 1.3.7 Let E and F be normed space. A linear operator T': EE — F' is called
compact if T({z € E : ||z| < 1}) is relatively compact in F'. The set of all compact
operators from F to F is denoted by K(E, F).
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Proposition 1.3.8 Let E and F' be normed spaces. Then:
(i) K(E,F) is a subspace of B(E, F).

(ii) T € B(E, F) is compact if and only if, for each bounded sequence (x,)52, in E, the

sequence (Txy)22, has a convergent subsequence.

Proof (i): The set T({x € E : ||z|| < 1}) is relatively compact and thus bounded in F.
This proves C(E, F') C B(E, F'). From (ii), it follows easily, that K(E, F') is a subspace of
B(E, F).

(ii): We have:

T is compact < Tz € E:|z| <1}) is relatively compact

= rT'({x € E : ||z|| <1}) is relatively compact for each r > 0

= T({x € E: |z|| <r}) is relatively compact for each r > 0.
This implies (ii). 0

Exercise 1.19 Let F, F, and G, be normed linear spaces, and let T' € B(E, F') and S € B(F,G).
Show that ST € K(E,G) if T or S is compact.

Exercise 1.20 Let E be a linear space. A linear operator P: E — FE is called a projection if
pP2=p.

(i) Show that a linear map P: F — F is a projection if and only if its restriction to PFE is the
identity.

(ii) Let E be normed, and let P € B(E) be a projection. Show that P has closed range.
(iii) Let E be normed. Show that a projection P € B(E) is compact if and only if it has finite

rank.

Exercise 1.21 Is one of the operators L and R from Exercise 1.17 compact?

Ezamples 1. Let dim F = co. Then idg: F — FE is not compact.

2. Let T' € B(E, F) have finite rank, i.e. dimTFE < co. Then T is compact. To see this,
let (z,,)02, be a bounded sequence in E. Then (Tx,); is a bounded sequence in

TFE and thus has a convergent subsequence by Theorem 1.2.2.

3. Let k:[0,1] x [0, 1] — F be continuous, and let T' € B(C([0, 1])) be the corresponding
Fredholm operator. Let (f,,)22; be a bounded sequence, and let C' := sup,,cy || fn|/oo-
Let € > 0, and choose § > 0 such that

. 1o €
[k(z,y) = k(2,9 < 57
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whenever ||(z,y) — (¢/,9/)|l2 < d. Let , 2" € [0,1] with |z — 2’| < §. It follows that

1
(Tf)(@) — (Tha) ()] < /0 a0 Bz, y) — B o)| dy < e.
<C

<oh
Hence, (T'f,)5%; is bounded an equicontinuous. By the Arzela—Ascoli theorem,

(T fn)52; thus has a uniformly convergent subsequence.

Theorem 1.3.9 Let E be a normed space, and let F' be a Banach space. Then K(E, F)

18 a closed, linear subspace of F.

Proof Let (T,)22, be asequence in K(E, F'), and let T' € B(E, F) be such that ||T,,—T|| —
0. Assume that T ¢ K(E, F'). Then there is a bounded sequence (z,,)72; in E such that
(T'zy,)22, has no convergent, i.e. Cauchy, subsequence. Passing to a subsequence, we may

thus suppose that

§:= i;lf |Txy — T > 0. (1.8)

Let C := sup,¢y ||znl|, and choose N € N so large that [|T' — Tx|| < ﬁ. For n,m € N,

we then have:

| Txn — Tawm| < |[|[Txn— Tnen| HI|TNEn — TNZm|| + | TNTm — T ||
—_——

SINT=Tn |l SITw =Tl

2

Since Ty € K(E, F'), the sequence (Tyxy,)o2; has a Cauchy subsequence. In particular,
there are n,m € N, n # m, such that || Tz, —TNTm| < %. It follows that || Tx, — Tz <
d contradicting (1.8). O

1.4 The dual space of a normed space

We now focus on a particular space of bounded linear operators:

Definition 1.4.1 For a normed space E, the Banach space E*(= B(E,F)) is called the

dual space or dual of E.
We want to give concrete descriptions of some dual spaces.
Definition 1.4.2 Let E and F' be normed spaces.

(a) An isomorphism of E and F is a linear map T € B(E, F') such that S € B(F, E)
exists with ST = idg and T'S = idg. If there is an isomorphism between F and F,
we call E and F' isomorphic (in symbols: F = F').
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(b) A isometry from E to F'is a linear map T': E — F such that
[Tz| = llzl  (x < E).

If there is an isomorphism of E' and F’ which is also an isometry, then £ and F' are
called isometrically isomorphic (in symbols: E = F).
Exercise 1.22 Let F and F' be normed spaces, and let T': E — F' be an isometry.
(i) Show that T is injective.
(ii) Suppose that T is surjective. Show that there is an isometry S € B(F,FE) exists with
ST =idg and TS = idF.

Exercise 1.23 Let cgg := co(F) be equipped with the following norms:

oo
|2lloo = sup z(n)] and |lz]l:= )" |z(n)] (= € coo)-
n€N n=1
Show that the identity map id: (cgo, || - ||1) — (coo, | - ||so) is @ continuous bijection, but not an

isomorphism.
Examples 1. Let E and F' be normed spaces with dim £ = dim F' < oco. Then F = F.

2. Let p € (1,00), and let ¢ € (1,00) be such that % + % = 1. Define T': ¢ — (¢?)* by
letting for = = (2,)02; € (? and Y = (yn)02, € ¢*:

(Tx)(y) = anyn-

Since

N N % N %
(@) < Jm S faal < lim (Zw) (Z rynV’) = el
n=1 n=1 n=1

the map T is well defined and satisfies ||T'|| < 1. Let z € ¢¢ with ||z||, = 1, and

define (y,)52 as follows:

y '_{ %, if x, # 0,
n -

0, otherwise.
We have
Sl =>" P =Dz = J2lly = 1,
_ — n _
n=1 ;;;10 n=1

so that [|y||, = 1. It follows that
o0
Tz > [(T2)(y)| =) _ |zal® = |l2llf = 1.
n=1
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For arbitrary x € ¢\ {0}, we thus have:

x
r(2)| 2 el
‘ ]

We claim that T is surjective. Let ¢ € (¢P)*. For each n € N, define e € (P
through

1Tz = ||z

Hence, T is an isometry.

(n) 1, n=m,
& =
" 0, n#m

Define z = (x,)°%, by letting z,, := ¢(e™) for n € N. If x € £9, then Tz = ¢
(Why?). For N € N, define 2(N) € ¢7 through

N)_ l'n, TLSN,
0, n>N.

For any y = (yn)22, € P define z = (z,); through

Tn

{ lynzn] if n <N and z,, # 0,
Zp 1=

0, otherwise.

If is clear that z € 7 with ||z]|, < |ly||,. We now have:
N
(Tz™M)) < ) lzayal
n=1
o
= Dz
n=1

n=1

= ¢(2)
= [o(2)]
< llollllzll,
< llolllyllp-

It follows that
N
oy = i 3 onl” = Jim =Vl = i 1251 < ol

so that x € 9 with ||z|/; < [|¢]l.

All in all, we have (¢P)* = (4.
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3. Similarly (Exercise 1.24 below), we have (£1)* = £> and (co)* = (1.

4. If (Q, 6, p) is any measure space, and if p,q € (1,00) are such that % + % =1, we
have an isometric isomorphism 7': L4(Q, &, u) — LP(Q, &, u)* given by

TH)0) = [ F)gle)duo).
so that LP(Q, &, u)* = L1(Q, S, u).
5. For o-finite (2, &, i), we also have L'(Q, &, u)* = L=(Q, &, u).
Exercise 1.24 Show that (¢})* = (> and (co)* = '

We now have concrete descriptions of E* for a few normed spaces . But what can
we say about E* for a general normed space E7 So far, the only linear function on F
of which we positively know that it’s in E* is the zero-functional. Are there any others?

The answer to this question is “yes”, as we shall see in the next chapter.
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Chapter 2

The fundamental principles of

functional analysis

In this chapter, we prove four fundamental theorems of functional analysis:
e the Hahn—-Banach theorem;
e Baire’s theorem;
e the open mapping theorem;
e the closed graph theorem.

We illustrate the power of each theorem with application, e.g. to complex variables

and initial value problems.

2.1 The Hahn—Banach theorem

Given an arbitrary normed space E with dual E*, we cannot tell right now if £* contains
any non-zero elements. This will change in this section: We will prove the Hahn—Banach
theorem, which implies that there are enough functionals in £* to separate the points of
E.

Roughly speaking, the Hahn—Banach theorem asserts that, if we have a linear func-
tional on a subspace of a linear space whose growth can somehow be controlled, then
this functional can be extended to the whole space such that the growth remains under

control.

Definition 2.1.1 Let E be a linear space. A map p: E — R is called a sublinear

functional if
p+y) <p)+ply) (z,y€E)
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and
p(Az) = Ap(z) (xe E,ANeR, A>0).

Lemma 2.1.2 Let E be a linear space over R, let F' be a subspace of E, let xog € E'\ F,
and let p: E — R be a sublinear functional. Suppose that ¢: F' — R is a linear functional
such that

¢(z) <plz)  (zeF)
Then there is a linear functional ¢~): F 4+ Rxg — R which extends ¢ and satisfies
qz(x) < p(z) (x € F 4 Ruxy).
Proof We need to show that there is @ € R such that
o(x) + ta < p(z + txg) (x € F,teR).

If this is done, we can define ¢ by letting ¢(z + txo) := ¢(x) +to for all z € F and ¢ € R.

For any z,y € F, we have
¢(x) + ¢(y) = ¢z +y) < ple —zo + 20 +y) < p(x —x0) + p(zo +y)
and thus
¢(z) —p(z —x0) < p(y +20) —dy)  (z,y €F). (2.1)
Let o == sup{¢(z) — p(z — 20) : = € F}. Tt follows from (2.1) that
¢(z) —plz —xz0) Sa<ply+zo) —oy)  (z,yeF)

and thus

¢(z) —a<plx—mz) (ze€F) (2.2)
and

d(a) +a<pl+zy) (zeF) (2.3)

Let t € R, and let z € F. If t > 0, we obtain from (2.3):

p(z) +ta=t (qﬁ (%x) + a) <tp (%a: + xo> = p(x + tao).

For t < 0, inequality (2.2) yields:

a1 (o) ) < tn (L) <ot )

This completes the proof. O
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Theorem 2.1.3 (Hahn—Banach theorem) Let E be a linear space over R, let F be a
subspace of E, and let p: E — R be a sublinear functional. Suppose that ¢: F — R is a

linear functional such that

¢(z) <plz) (zeF)

Then there is a linear functional qz: E — R which extends ¢ and satisfies

o(z) <p(z) (z€b).
Proof Let S be the collection of all pairs (X, ) with the following properties:
e X is a subspace of E with F' C X;
e ¢: X — R is linear with ¢|p = ¢;
o Y(z) <p(z) (zeX).

Clearly, (F,¢) € S.

Define an order < on S:
(X1,91) < (X2,02) = X1 C X and ¢o|x, = 1.
Let 7 C S be totally ordered. Define
Xo=J{x: (X, ¢)eT}

Then X is a subspace of E with F C X. Define ¢»: X — R by letting ¢ (z) := t(z) if
x € X for (X,9) € 7. Then ¥: X — R is well-defined, linear, extends ¢, and satisfies

It follows that (X,¢) € S is an upper bound for 7. Hence, by Zorn’s lemma, S has
a maximal element (Xpax, ¥max). We claim that Xp,.x = E. Otherwise, there is zy €
E\ Xnax. By Lemma 2.1.2; there is a linear extension @Zmaxz Xmax + Rxg — R of Ymax
such that

Q;max(x) < p(x) (.%' € Xmax + R.ﬁl’,’o)
This contradicts the maximality of (Xpax, ¥max)- O

Exercise 2.1 A Banach limit on £*°(R) is a linear functional Lim: £>°(R) — R such that for any
sequence (x,,)5% ;(we write Lim,, o, 2z, instead of Lim((z,)52)):

(a) liminf,, o =, < Lim, o z, < limsup,,_, . Tn;

(b) Limy— o0 Ttk = Limy, o0 2, for all k € N.
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What is Lim,, e @, if (2,,)22, converges?
(i) Show that || Lim| = 1.

(ii) Show that Banach limits do exist. (Hint: Let F' be the subspace of ¢>°(R) consisting of
those sequences (z,,)32; for which lim, o 2 3} z, exists; define Lim on F to be that

limit, and apply the Hahn—Banach theorem.)

Exercise 2.2 Let E be a C-linear space.

(i) Let ¢: E — C be C-linear. Show that
¢(x) = Re ¢(z) — i Re p(ix) (x € E).
(ii) Let ¢: E — R be R-linear. Show that ¢: E — C defined through
¢(z) = o(x) —ip(iz)  (z€E)
is C-linear.

We will rarely apply the Hahn—Banach theorem directly, but rather one of the following

corollaries:

Corollary 2.1.4 Let E be a linear space, let F' be subspace of E, and let p: E — [0, 00)

be a seminorm. Suppose that ¢: F — F is linear such that
[¢(z)| <p(z) (z€F).
Then ¢ has a linear extension (;3: E — F such that
|6(x)| <p(z)  (z€E).

Proof Suppose first that F = R. By Theorem 2.1.3, we have a linear extension ¢: E — R
such that

If (x) < 0, then

so that
—p(z) < P(x) <p(z)  (z€E).
Now consider the case where F = C. Define ¢): F' — R through
¥(z) :=Reg(z)  (zek).
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By Exercise 2.2(i), we then have
o(z) = ¢(x) —ig(iz)  (ze€F).
By the first case, ¢ has an R-linear extension 1;: E — R with
()| <plz)  (z€E).
Define ¢: E — R by letting
O(a) :=h(x) —ig(ir)  (x€ E).

By Exercise 2.2(ii), ¢ is C-linear and clearly extends ¢. Let # € F, and choose A € C
with [\| = 1 such that ¢(x) = A|¢(x)|. We obtain:

|6(2)] = Ad(x) = d(Ax) = P(Az) < p(Az) = p(=).
This proves the claim in the complex case. ad

Corollary 2.1.5 Let E be a normed space, let F' be subspace, and let ¢ € F*. Then ¢
has an extension ¢ € E* with |¢|| = ||¢||.

Proof Apply Corollary 2.1.4 with p(z) := ||¢||||x| for z € E. O

Exercise 2.3 Let S # @ be a set, let F be a normed space, and let F' be a subspace of E. Show
that any operator T' € B(F,£>°(S)) has an extension T € B(E, (>*(S)) with ||T| = ||T||.

Corollary 2.1.6 Let E be a normed space, let F be a closed subspace of E, and let
xo € E\ F. Then there is ¢ € E* with ||¢|| =1, ¢|r =0, and ¢(xo) = dist(zg, F).

Proof Define
p: E—[0,00), x> dist(z,F)(:=inf{z —y| :y € F})

and

¢: F+Fxy, x4 Axg+— Adist(xo, F).
It follows that

|p(x)| < dist(z, F) (x € F 4 Fxy).
By Corollary 2.1.4, ¢ has a linear extension ¢~) to all of F with

|b(z)| < dist(z, F) < ||zl| (= € E),

so that, in particular, ||¢|| < 1. Let e > 0. Then there is y € F with [jzg — y|| <
dist(zg, F) + €. Let z := 2= so that ||z|| = 1. Tt follows that

— llzo—yll
lzo =yl llwo =yl — dist(zo, F) + €
Since € > 0 was arbitrary, this means ||¢|| > 1. O
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Corollary 2.1.6 can be used to prove approximation theorems: Let xy be an element
of a normed space E and assume that it is not in the closure of a subspace F. Then
Corollary 2.1.6 yields ¢ € E* which vanishes on F' but not in xg. Since for many spaces E
we have a concrete description of E*, this may then be used to arrive at a contradiction,
so that xp must lie in the closure of F.

Exercise 2.4 A metric space is called separable if it has a countable dense subset (any subset of

a separable metric space is again separable).
(i) Show that ¢y as well as ¢? for p € [1,00) are separable.

(ii) Show that £>° is not separable (Hint: Show that the subset of £>° consisting of those f € £
such that f(N) C {0,1} is uncountable and conclude that, for this reason, it cannot be

separable.)

Exercise 2.5 Let F be a normed space such that E* is separable. Show that F must be separable
as well. Proceed as follows:

o Let {¢, : n € N} be a dense subset of {¢ € E* : |¢|]| = 1}. For each n € N pick z, € E
with ||z, || <1 and |¢n ()| > 1.

e Use the Hahn—Banach theorem to show that the linear span of {x,, : n € N} is dense in E.

Does, conversely, the separability of E imply that E* is separable? Can (£>°)* = ¢! hold?

Corollary 2.1.7 Let E be a normed space, and let x € E. Then there is ¢ € E* with
[l =1 and ¢(z) = ||z||.

Proof Apply Corollary 2.1.6 with F' = {0}. O

2.2 Applications of the Hahn—Banach theorem
We now present several application of the Hahn-Banach theorem.
2.2.1 The bidual of a normed space
Definition 2.2.1 The bidual E** of a normed space E is defined as (E*)*.
There is a canonical map J: E — E** defined by
(Jz)(9) = o(x)  (x€E, ¢€E).
By Corollary 2.1.7 we have:
[Jz|| = sup{[p(x)| : ¢ € B, |9l <1} = [lz]|  (x € E).

Hence, J is an isometry and we may identify JFE with E. In particular, every normed

space “is” the subspace of a Banach space.
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2.2.2 Transpose operators

Definition 2.2.2 Let E and F be normed spaces, and let T € B(E, F'). The transpose
T*: F* — E* of T is defined through

(T7¢)(z) := ¢(Tx) (€ E,dcF)

Exercise 2.6 Let E, F and G be normed spaces, let S,T € B(E,F), R € B(F,G), and A\, u € F.
Show that:

(i) (AT + pS)* = AS* + pT*;
(i) (RT)* = T*R*,

Theorem 2.2.3 Let E and F be normed spaces, and let T € B(E,F). Then T* €
B(F™, E*) with [T = [[T]].

Proof For x € E and ¢ € F*, we have

(T ) ()| = |o(Tx)| < [|olIIIT |,

therefore

1Tl < T[],

and eventually ||| < |||
Consider T%*: E** — F**. We have ||T**|| < ||T%||. On the other hand, we have for
r € FEand ¢ € F*:

(T Jz)(9) = (J2)(T7¢) = (T"¢)(z) = ¢(Tz) = (JTx)(¢).
Hence, T** extends T, so that, in particular, [|T%*|| > ||T||. O

The following theorem has nothing to do with the Hahn—Banach theorem, but we will

need it later and it fits into the discussion of transpose operators.

Theorem 2.2.4 (Schauder’s theorem) Let E and F be normed spaces, and let T €
K(E,F). Then T* € K(F*, E*).

Proof Let (¢,)52; be a sequence in F™* bounded by C > 0. Let

K:=T{z e E:|z|| <1}).
Then K is a compact metric space. For y,z € K and n € N, we have
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Consequently, the sequence (¢,|x)52; in C(K) is bounded and equicontinuous. By the
Arzela—Ascoli theorem, there is a subsequence (¢, |K)5>, converging uniformly to some
function in C(K). In particular, (¢n,|x)32, is a Cauchy sequence with respect to the

uniform norm. For k,[l € N, however, we have:

||d)nk|K - ¢nz|K||OO = sup |¢nk(y) — on, ()l
yeK
> sup{|¢n, (Tx) — o) (Tx)| s x € E, [Jf| < 1}
= HT*QSHIC - T*¢nz||'
Hence, (T%¢p, )72 is a Cauchy sequence in E* and thus convergent. O

2.2.3 Quotient spaces and duals

Definition 2.2.5 Let F be a normed space, and let F' be a closed subspace of F. The

quotient norm on E/F is defined as
|z + F| :==inf{llz —yl| :y € F}  (z € E).

Theorem 2.2.6 Let E be a normed space, and let F' be a closed subspace. Then E/F

equipped with the quotient norm is normed space. If E is a Banach space, then so is E/F.

Proof 1t is routine to verify that the quotient norm is indeed a norm.

Let (x,)5, be a sequence in E such that > >° | ||zp+ F|| < co. For each n € N, choose
Yn € F such that ||z, —y,|| < 3. It follows that >0 | |2, —yn | < co. Since E is a Banach
space, Y o2 (xn — yn) converges in E to x E. It is clear that « + F =3 2 (v, + F).
O

Exercise 2.7 Let E be a normed space, and let F' be a closed subspace. Let G be another normed
space, and let T' € B(E, G) vanish on F. Show that

T(x+ F):=Tx (x € E)

defines T € B(E/F,G) with ||T| = ||T|.

Definition 2.2.7 Let E be a normed space. For any subset S of E, we define
St :={pec E*:¢ls =0}

Theorem 2.2.8 Let E be a normed space, and let F be a closed subspace of E. Then
T:E* —F*, ¢ dlp

induces an isometric isomorphism of E* /F+ and F*.
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Proof Clearly, ||T|| < 1and ker T'= F*, so that T, by Exercise 2.7, T induces an injective
map T: B*/FL — F* with ||T| < 1. We claim that this map is surjective and an isometry.

Let ¢ € F*. By Corollary 2.1.5, there is ¢ € E* with ||¢|| = ||¢|| extending 1. We
thus have T'¢ = 1 and

o+ FH 2 1T (6 + FH = [0l = ol = ll¢ + F-|.
which completes the proof. O

Theorem 2.2.9 Let E be a normed space, and let F' be a normed subspace. Then T :
Ft i (E/F)* defined by

(Té)(x +F):=¢(x) (o€ F zeE)
is an isometric isomorphism of F+ and (E/F)*.

Proof 1t is routinely checked that T is well-defined and linear.
Let m: E — E/F be the quotient map. For any ¢ € (FE/F)*, the functional ¢ o 7
belongs to F- such that T(mw o ¢)) = v. Hence, T is surjective. From Exercise 2.7, it

follows that 7" is an isometry. O

2.2.4 The dual space of C([0, 1])

Definition 2.2.10 A function «: [0,1] — F is said to be of bounded variation if

n
||| By := sup Z\a(xj) —a(zj1)|:neNO=zg<z1 < - <zxp =1, < o00.
j=1

We define:
BV ([0,1]) :=={a:[0,1] = F : « is of bounded variation}
The following are easily checked:
e BV ([0,1]) is a linear space;
e || - |IBv is a seminorm on BV ([0, 1]);

e |loflpy =0 <=« is constant.

We let
BVy([0,1]) :={a € BV([0,1]) : «(0) = 0}.
Then || - || gy is a normed space.
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Theorem 2.2.11 The linear map T: BVy([0,1]) — C([0,1])* defined by

<Taxf>:1£ f(z) da(z)

18 an isometric isomorphism.

Proof 1t is obvious that | Ta|| < ||a|py for all a« € BV,([0,1]).
Conversely, let ¢ € C(]0,1])*. Let ug := 0, and for any « € (0, 1], define u,: [0,1] — R
by letting

o 1, 0<t<u,
Uu =
‘ 0, z<t<l.

By Corollary 2.1.5, there is an extension ¢ € £°°([0,1])* of ¢ with ||¢|| = ||¢||. Define
a:[0,1] = F, z— ¢(uy).

We claim that a € BV;([0,1]). Let 0 = 29 < z1 < -+ < x, = 1, and define, for

j=1,...,n

oo | SRR (@) £ ales)
0, otherwise.

We then have:

> la(zy) —az)| = > ojlalz;) — alz; 1))
j=1 Jj=1

= Y 0i(d(ug,) — Hua,_,))
j=1

n
= ¢ Zgj(ul"j_uwj—l)
j=1

l[-lleo<1

IN

1]l
= ol
Hence, « is a bounded variation such that ||a||py < |||
Next, we claim that Ta = ¢ (this establishes at once that T is a surjective isometry

and thus an isometric isomorphism). For any f € C([0,1]) and any partition P = {0 =
xo < w1 <---<wp=1}of [0,1], let

(P) = ~sup |z —xj_1]



and

n

S(f,P) =) flag)ale;) — alzj-1)).

=1

From the properties of the Riemann—Stieltjes integral, we know that

1
Jim S(P) = [ f(a)dafa),

Define

Ip = Zf(xjxul‘] - uxjfl)

=1

From the uniform continuity of f, we infer that limsip)_g [|fp — fllcc = 0. We thus have:

o(f) = _lim o(fp)

5(P)—0

- 6(%202]0 :CJ u"”ﬂ gb(um] 1)

This establishes the claim and thus completes the proof. a

This result is only a rather special case of Riesz’ representation theorem (Theorem
B.3.8).

Exercise 2.8 Let C' > 0, ¢1,¢2,... € F,and f1, fa,... € C([0,1]) be given. Show that the following

are equivalent:

(a) There is o € BV[0,1] with ||a||py < C such that
1
cn = / fn(t) da(t) (n € N).
0
(b) For all n € N, and for all A\q,... , A, € F, we have

<C
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2.2.5 Runge’s approximation theorem

We now use Corollary 2.1.6 to prove an approximation theorem from complex analysis:

Theorem 2.2.12 (Runge’s approximation theorem) Let K C C be compact, and let
E C Cx \ K be such that E has at least one point in common with each component of
Co \ K. Let U C C be an open set containing K, and let f: U — C be holomorphic.
Then, for each € > 0, there is a rational function with poles in E such that

sup |f(z) —r(z)] < e.
zeK

Proof Note that f|x € C(K). Let

REe(K) :={r|k : r is a rational function with poles in E}.

We need to show that f|x € Rp(K).
Assume that this is not true. By Corollary 2.1.6, there is ¢ € C(K)* with

Plrpx) =0  and  o(f|k) #0.

By the Riesz’ representation theorem (Theorem B.3.8), there is u € M(K) such that

o(g) = /K o(2)du(z) (g€ C(K)).

Define

p:C\K —-C, wr d,u(z).

KR —W

We claim that i = 0. Let V be a component of C, \ K, and let p e ENV.
Case 1: p # co. Then choose r > 0 such that B,(p) C V. For fixed w € B,(p), we

then have uniformly in z € K:

1 1
Z—w (z=p)—(w—p)
1 1

i-pl-p

- LECE)

z=pig\z—p

_ N (wop)
o Z(z_p)nJrl‘

n=0

Hence, the function —- of z belongs to R (K). It follows that fi(w) = 0. Since w € B,(p)
was arbitrary, the identity theorem yields /|y = 0.
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Case 2: p = oo. Choose r > 0 so large that |z| < r for all z € K, and let w € C with

|w| > r. Then we have uniformly in z € K:

1 2 "

-1 - Z wntl’
n=0

It follows again that f(w) = 0 for |w| > r and thus f]y = 0.

1

zZ—Ww

gl

£
w

Let " by a cycle in U whose winding number around each point in K is 1 and around
each point in C\ U is zero. By the Cauchy integral formula, we have

1) = g [ I

= d K).
21 Jp z —w v (z € K)

But this yields

i) = = [ [ aw] duee)
/, o L2
_ L/F[ Mdu(z)] dw

271 KZ—W

— o )| [ L )]
- / F(w)ir(w)dw
= 0,

which contradicts the choice of ¢. O

The advantage of this functional analytic proof is its brevity and its elegance. The
drawback is that it is not constructive: It depends on the Hahn-Banach theorem and

therefore on Zorn’s lemma.

2.3 Baire’s theorem

00
n=1

Theorem 2.3.1 (Baire’s theorem) Let X be a complete metric space, and let (Uy,)

be a sequence of dense open subsets of X. Then (\o—, Uy is dense in X.

Proof Assume that the theorem is wrong. Then there are zg € X and € > 0 such that
o0
Be(xo) € X\ () Un.
n=1

Let Vi := Be(xg). Since U; is dense in X, there is ;1 € U; N Vp. Choose 11 € (0,1) so
small that

B, (1'1) cUinW.
Let Vi := U, (x1). Suppose that open subsets Vj, Vi,...,V, of X have already been

constructed such that
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o VisiCcUjpinVjfor j=0,...,n—1, and
° diamWﬁ%forjzl,...,n.

Since Up41 is dense in X, there is 41 € Ups1 NV, Choose 11 € (0, %_H) so small
that

BT‘n+1 ($n+1) C Un-i-l N Vna

and let V41 := By, (¥p41). Continue inductively.
Since diam V,, < % for all n € N, and since X is complete, there is x € (_; V,. By

construction, however,

ze(\VaC(\Un and zelJVacVocCX\[)Un
n=1 n=1 n=1

n=1

which is impossible. a

Corollary 2.3.2 Let X be a complete metric space, and let (F,)5%, be a sequence of
closed subsets of X such that \J,~ | Fy, has an interior point. Then at least one F,, has an

interior point.
Proof Let U, := X \ F,. O

Ezample Let E be a Banach space with a countable Hamel basis. We claim that dim E' <
00.
Assume that E has a Hamel basis {z,, : n € N}. For n € N, let

E, :=lin{x1,... ,xz,}.

Then E, is a closed subspace of E. Since E = ;2| E,,, Corollary 2.3.2 yields that there
is N € N such that Ex has interior points, i.e. there is zg € En and € > 0 such that
Be(xz0) C En. Let x := 20+ gllixﬁll’ Then x € Bc(zg), but z ¢ En.

In particular, there is mo norm on cgg turning it into a Banach space.

For our next application of Baire’s theorem, we need the following approximation

theorem:

Theorem 2.3.3 (Weierstraf3’ approximation theorem) Let a,b € R, a < b, let f €
C([a,b]), and let € > 0. Then there is a polynomial p such that || f — plle < €.

Proof Without loss of generality, let a =0, b =1, and F = R.
For each g € C([0,1]), let

B =3 (F)ia-o () cepa

k=0
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be its n-th Bernstein polynomial. 1t is routinely checked that

n

B,(1,t) = Z(Z)tk(l—t)”_k’

Bu(z,t) = Y

Il
(3=
7/ N N /X
> 3 S
(-
==
N————
~
ol
—~
—_
|
N
i
ol

k=1
n—1 1
_ n-— )tk:-i-l(l t)n—(k-i-l)
k
k=0
1
- ¢ < >tk(1 t)(n—l)—k
k
k=0
= tt+(1—t)" !
=

and

k=0
n—1
n—1 e kE+1
_ Z( . >tk+1(1_t) (k+1) -
k=0
t el n 1 k k
= - (1 — )=k 2y
_ £+n—1t2
n n
t(l—t
_ U )+t2.
n

Since f is uniformly continuous, there is § > 0 such that |f(s) — f(¢t)] < € for all
s5,t €[0,1] with |s —t| < V5. Let C := %. We claim that

[f(s) = FO < e+ Clt—5)* (st €]0,1]). (2.4)
This is clear if |s — t| < V/3; if |s — t| > /9, it follows from
e+ C(t—5)* > e+ 2/ flloo > [F ()| + 1F(D)] = |f(5) = F(D)].
Fix t € [0,1], and let f;(s) := (¢t — 5)%. Then (2.4) implies

—e—Cfi < [—f(t)<e+Cf
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and thus
_BTL(E + Cftv ) = BTL(_E - Cfta ) S Bn(f - f(t)v ) S B(6 + Cfta )

Since Bn(f - f(t)v ) = Bn(f> ) - f(t)> we obtain for p, 1= Bn(fa )

n

pn(s) — F()] < Bule + Cfsys) = e+ O — 20ts + C (S(l —s) 52> (s €[0,1]).

Letting s = t, this yields

t(l—t C
polt) - fO)] < 00D <y €
n n
Since € > 0 and ¢ € [0,1] are arbitrary, this yields ||p, — f|lcc — 0. O

There are proofs of Theorem 2.3.3 that use the Hahn—Banach theorem, but they are

in no way easier than the one given here.

Ezample We will now use Baire’s theorem to prove that there is a continuous function
on [0, 1] which is nowhere differentiable.
For n € N, let

t
F, =4 f€C([0,2]) : there is t € [0,1] such that sup <ng.
he(0,1) h

Obviously, if f € C([0,2]) is differentiable at some ¢ € [0, 1], then supy¢(g 1) w <
o0, so that f € (U2 Fy.

Let (fr)32, be a sequence in F;, such that || fi, — f|loc — 0 for some f € C([0,2]). For
each k € N, there is ¢, € [0,1] such that

sup | fu(tr + h) — fr(te)] <n
he(0,1) h

Suppose without loss of generality that (¢x)72, converges to some ¢ € [0,1]. Fix h € (0,1)
and € > 0, and choose K € N so large that

|[f(t+h) = f(tx + h)|
1f = frlloo <
|f(te) = £(2)]

ho (k> K).

A~ o

For k > K, this implies

[f(t+h) = fB)]
< S +h) = flte+h)|+[f (e + h) = fr(te +h)| + | fr(tr + 1) — fe(te)|

<gh <gh <nh
+ [f(tk) — fu(te) [+ f(t) — f(tx)]
<Eh <3h
< nh+eh,
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so that M}W < n-+e. Since h and € were arbitrary, this means that f € F},. Hence,

F}, is closed.

Assume that every f € C(]0, 2]) is differentiable at some point in [0, 1]. Then C([0,2]) =
Uo2, Fn, so that, by Corollary 2.3.2, there are N € N, f € C([0,2]), and € > 0 such that
B(f) C Fn. By Theorem 2.3.3, B.(f) contains at least one polynomial. Without loss of
generality, we may thus suppose that f € C!([0,2]).

FormeNand j=0,...,m, let tj := %J Define gy,: [0,2] — F by letting

gm(t) == {

Then g,, € C([0,2]) with [|gn[| = §, but

m(t — tjfl), t e [tjfl,tjfl + %] ,
m(tj—y —t), te[t;j— L. t].

Nl D

sup |gm(t + h) B gm(t)|
he(0,1)

> —m (2.5)

N ™

holds for any ¢ € [0, 1]. Since f + gm € Be(f) C Fu, there is t € [0, 1] such that

wp [T+ 00— (9O _

he(0,1) h -

This, however, yields

|gm(t + h) — gm(t)’

sup

he(0,1) h
< s [(f +gm)E+h) = (f + 9m) @) + sup |ft+h) = f()
he(0,1) h he(0,1) h
= N+|f'lloo

which contradicts (2.5) if we choose m € N so large that §m > N + || f'| .

Exercise 2.9 Let (f;)?2, be a sequence in C([0,1]) which converges pointwise to a function
f:10,1] — F.

(i) For # > 0 and n € N let
F,:={te[0,1]:|fn(t) — fr(®)| <0 for all k > n}.
Show that F, is closed, and that [0,1] = [J,2, F)..

(ii) Let € > 0, and let I be a non-degenerate, closed subinterval of [0,1]. Show that there is a
non-degenerate, closed subinterval J of I such that

ft)—f(s)[<e  (t,s€).

(Hint: Apply (a) with 6 := £ and Baire’s theorem.)
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(iii) Let I be a non-degenerate, closed subinterval of [0,1]. Show that there is a decreasing

sequence of non-degenerate, closed subintervals of I such that

e the length of I,, is at most %, and

o [f(t)— f(s)| < L forall s,te€l,.
What can be said about f at all points in (2 I,,?

(iv) Conclude that the set of points in [0, 1] at which f is continuous is dense in [0, 1].

2.4 The uniform boundedness principle

Theorem 2.4.1 (uniform boundedness principle) Let E be a Banach space, let
(Fu)a be a family of normed spaces, and let T, € B(E, Fy,) be such that

sup || Tax|| < oo (x € E). (2.6)
(e
Then sup,, ||Tw|| < oo holds.

Proof Forn €N, let
E, = {:L' € E:sup ||Tyx| < n} .
«

Then (2.6) implies that £ = |J;~ ;. Let (z3)%2, be a sequence in E,, such that z, — x € E.

For any index «, we have
ITox| = lim || Tazk| < n.
k—oo

It follows that x € F, so that FE,, is closed.
By Corollary 2.3.2 there are thus N € N, zp € E, and € > 0 such that Uc(zg) C En.
Let x € E be such that ||z| < 1. It follows that ex + o € En. Hence, we have for all a:

€| Tacell = | Ta(ex)l| < | Talex + z0)l| + [ Tazo|l < 2N,

and consequently

2N
[Toz|| < -

It follows that sup, || T.| < 2. O

Examples 1. Let E be a Banach space, let F' be a normed space, and let (7,,)2°; be
a sequence in B(FE, F') such that lim, . T, exists in F for each z € E. We claim
that T': E — F defined through

Tz := lim T,z (x € E).

n—oo
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Since (Tpz)52, is convergent and thus bounded for each x € E, Theorem 2.4.1
implies that C' := sup,ey || Tn]| < co. Let z € E. Then there is N € N such that
|Tnz — Tz|| < ||z||. This yields

[Tz]| < [Tzl + [Tz = Tz|| < Clle|| + [|l2]] = (€ + D]

. For each continuous function f: [—7,n] — R, its Fourier series is

% + i(ak cos(kz) + by sin(kz)), (2.7)
=
where
o= / 7; f(@)cos(ka)dz (k€ No)
and
by = % / : F(@)sin(kz)de  (k € N).

We will show that there are f € C([—m,7|) for which (2.7) does not converge in

every point x € [—m, 7.

For n € N, let

and define

Sp:C([—m,7]) = R, fr— % _ﬂ f(x)Dy () dx.

It can be shown that, for any f € C([—n,n|) with Fourier series (2.7), we have
a n
0
Sn(f) = ? +kzlak7

i.e. sp(f) is the n-th partial sum of (2.7) at = = 0. It is easy to see that (s,)22, is

a sequence in C([—m, 7], R)* such that
1 s
Isnll < — | |Dn(z)ldz (n €N).

Let € > 0, and let z1,... ,zy,, € [—m, x| be the zeros of D,, in [—m,7|. Choose § > 0
such that

20m|[Dalloc _ €
T -2
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Define f € C([—m,n]) through

Dy (x m .
f(z):= { |Dn—gl‘;" v ¢ Uil () — 0,25+ 0) = s,

linear in between.

It is clear that || f]|eo < 1. It follows that

Isnll = [sn(f)]

1
-1 / Du(@)|dz+ [ f(2)Du(e) da
7T [—7r,7r]\15 Is
1 1
> o[ @lde - [ Da@)]ds
T [_Wvﬂ]\lé @ 15
;%
> l/ Dp(@)|da — &
IS VA 2’
consequently
€ 1
i lsall > L / Do) da
2 T J—mm\Is
1 1
- ! / Do) dr — - / Dy ()| da
T [77T,7T] ™ I& ,
<%
1
> _/ Dy (2)] d — &,
™ [—7r,7r] 2
and finally

1
ctlsall =2 [ Dua)lde

)

Since € > 0, this yields

1 ™ 2 [T
lsall = = / Do) da = 2 / Dy(a)] d.
T - v 0

Since

[Emeedal,, e,

sin

z
2 2

_ 2/(’”%)” | siny| dy
Y

0
— 00,

it follows that ||s,|| — oco. Hence, Theorem 2.4.1 implies that there is f € C([—m, 7))
such that sup,cy |sn(f)] = oco. In particular, the Fourier series of f diverges at

z = 0.
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Exercise 2.10 Prove the Banach—Steinhaus theorem: Let E and F be Banach spaces, let T €
B(E,F), and let (T,,)52; be a sequence in B(E, F'). Then the following are equivalent:

(a) Tz =lim,— o Tz for each z € E;
(b) sup,en [|Tn|| < 00 and Tx = lim, .o T,z for all z in some dense subspace of E.
Exercise 2.11 A family (z4), of elements in a normed space E is called weakly bounded if

sup [ (2q)| < 00

for all ¢ € E*. Show that a family (24,), in a normed space is bounded if and only if it is weakly
bounded.

Exercise 2.12 Let FE, F, and G be Banach spaces, and let T: E x FF — G be a bilinear map
which is continuous in each variable. Show that there is C' > 0 such that

IT(z, )l < Cllelllyl  (x € E,yeF).

2.5 The open mapping theorem

Definition 2.5.1 Let E and F be normed spaces. A linear map T: £ — I is called open
if TU is open in F for every open subset U of E.

Theorem 2.5.2 (open mapping theorem) Let E and F be Banach spaces, and let
T € B(E, F) be surjective. Then T is open.

Proof We claim that, for each r > 0, the zero vector 0 is an interior point of 7B, (0).

Since T is surjective, we have

F= G TBx (0).

n=1

By Corollary 2.3.2, there is N € N such that

TBx: (0) = NTB;(0)

has an interior point, say zo. Hence, there is € > 0 such that Be(zo) C T'Bz(0). For any
x € B((0), we then have

v =1+ 30— 29 € TB1(0) + TB; (0) C TB,(0).

This proves the first claim.

Secondly, we claim that T'B:(0) C T'B,(0) for all r > 0.

Fix y; € TB:(0). Since 0 is an interior point of T'Bz(0), it follows that

(y1 —TB:(0)) NTBz(0) # 2.
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Choose 21 € Br(0) such that Ty € y; — TB:(0). Then choose y2 € TB:(0) such that
Tx1 = y1 — y2. Continuing in this fashion, we obtain sequences (z,,)72; in E and (y,)02
in F' such that

ITn € BzL" (0),
yn € TB: (0), (n € N).
Yn+1 = Yn — Txy,.
Since Y o7, |||l < oo, the series > > | x, converges to some z € E with ||z| < r.

Moreover, we have

= i -
Ngnoo(yl YN+1)
= Y1,
so that y; € T'B;(0).
Finally, we deduce that T is indeed open.
Let U C E be open, and let € U. Choose r > 0 such that B,(x) C U. Since 0 is

an interior point of 7B, (0), it follows that T’z is an interior point of T'B,(x) and thus of
TU. Since x € U was arbitrary, this means that TU is open. O

Exercise 2.13 Let E and F be Banach spaces, and let T' € B(E, F') be such that dim F/TE <
oo. Show that T has closed range. (Hint: Choose a finite-dimensional subspace G of F with
F=TFE+ G and TENG = {0}, and consider

S:E®G—F, (x,y)—Tx+y.

Apply the open mapping theorem.)

Exercise 2.14 Let E and F' be normed spaces, and let T: ' — F' be an open linear map. Show

that T' is surjective. (Warning Trick question.)

Corollary 2.5.3 Let E and F be Banach spaces, and let T € B(E, F') be bijective. Then
T is an isomorphism, i.e. T~' € B(F, E).

Exercise 2.15 Let F and F be Banach spaces, and let T € B(E,T) be surjective. Show that
there is C' > 0 such that, for each y € F, there is x € E with ||z|| < C||ly| such that Tz = y.
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Exercise 2.16 Let E be a Banach space. An operator T € B(E) is called quasi-nilpotent if
lim {/|T"|| = 0.

Show that a quasi-nilpotent operator can never be surjective unless £ = {0}. (Hint: Previous

problem.)

Exercise 2.17 Let F and F be Banach spaces. Show that the following are equivalent for T €
B(E,F):

(a) T is injective and has closed range.

(b) There is C' > 0 such that

e <CTz|  (z € E).

Examples 1. Let E be a Banach space. A closed subspace F' is called complemented
in FE if there is another closed subspace G of E with £ = F' + G and F' NG = {0}.
We claim that, if F'is complemented, then the canonical projection P: E — F with

ker P = (G is continuous.

Clearly,
E=FaG
with
(@, )| = max{[lz[|, Iyl  (z€F, yeq)

is a Banach space. Let 7: E — F be the projection onto the first coordinate, and
let

T:E—E, (z,9)—z+y.

Then T is continuous and bijective and thus has a continuous inverse. Since P =

7o T~ this shows that P is continuous.
2. Given fo, f1 € C([0,1]), the initial value problem
v'+ Ay + foy=9,  y0)=uy1, ¥(0)=1p (2.8)

has a unique solution in C?([0,1]) for all g € C([0,1]) and y1,y2 € R. Let E =
C2([0,1]) (equipped with || - ||2, and let

F:=C(0,1]) aR®R
be equipped with

1(f, 21, ) || := max{|| fllos |21, [22]}  (f € C([0,1]), z1, 22 € R).
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Define T': E — F through
T :=(¢" + f1d' + fod,(0),4'(0)) (4 € C*([0,1])).
Then T is linear such that, for any ¢ € C2([0, 1]):
1Tl = max{[|¢" + fid' + fodllo: [¢(0)], 16 (0)]}
max {1, [| f1/loo; \fo\loo}i 169 oo -

Jj=0

IN

=[loll2

Hence, T is bounded. The existence and uniqueness of the solutions of (2.8) imply
that T is a bijection. By Corollary 2.5.3, T~! is also continuous. Hence, the solutions
of (2.8) depend continuously on the data g, y;. and ys.

Exercise 2.18 Show that ¢j is not complemented in £°°:

(i) Show that there is an uncountable family (S, ) of infinite subsets of N such that S, N Sgs
is finite for all @ # 3. (Hint: Replace N by Q (you can do that because they have the same
cardinality), use R as your index set, and utilize the fact that every real number is the limit

of a sequence in Q.)

(ii) There is no countable subset ® of (£°°/cg)* such that for each non-zero f € £*°/cq there is
¢ € ® with ¢(f) # 0. (Hint: Choose (S,)q as in (i) and consider the family (f,)q of the
cosets in £>°/cq of the indicator functions of the sets S, ; show that, for fixed ¢ € (£2°/co)*,
the set {fa : @(fa) # 0} is at most countable.)

(iii) Conclude from (i) and (ii) that cg is not complemented in £°°.

2.6 The closed graph theorem

Definition 2.6.1 Let E and F' be normed spaces.

(a) A partially defined operator from E to F'is a linear map T': Dy — F, where Dr is

a subspace of F.

(b) A partially defined operator is called closed if its graph
Gr T :={(z,Tx):z € Dr}

is closed in £ & F.
Ezample Let E = F :=C([0,1]), let Dr := C*([0,1]), and let

T:Dr — F, f—f.
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Let ((fn,Tfn))2, be a sequence in Gr T with (f,,Tf,) — (g,h) € E® F, i.e.
Ifn = gllse =0 and  |[f;, = hlloc — 0.

It follows that (f,)°, is a Cauchy sequence in C'([0,1]) with respect to || - ||1. Let
f €C(]0,1]) be the limit of (f,,)%,, i.e.

[frn = fllooc — 0 and Hf'rlz_f,‘|00_>0'

It follows that ¢ = f and h = f’, so that (¢g,h) € Gr T. Consequently, T is closed

(although not continuous).

Theorem 2.6.2 (closed graph theorem) Let E and F be Banach spaces, and let T :

E — F be closed. Then T is continuous.
Proof Define

m:GrT—E, (z,Tx)w— z.
Then T is a continuous bijection and thus its inverse

1:E—-Gr T, z~ (z,Tx)

is continuous as well. Let

m:Gr T —F, (z,Tx)w— Tx.
Then 7o is continuous, and so is T' = mg o ¢. O

Corollary 2.6.3 Let E and F' be Banach spaces, and let T : E — F be linear with the
following property:

If (zn)02 is a sequence in E and y is a vector in F' such that z, — 0 and

Tx, -y €F, theny=0.
Then T is continuous.
Proof Let (z5,)72, be a sequence in E, and let z € E and y € F be such that
|zp —z| =0  and ||z, — ylloo — O.
It follows that
Tp—x— 0 and T(xy —z)=Txy —Ter —y—Tax.

The hypothesis on T implies that y — Tz = 0, so that (z,y) € Gr, T. Hence, Gr T is

closed, and T is continuous by Theorem 2.6.2. a
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Exercise 2.19 Let F and F' be Banach spaces, and let T: EE — F be linear. The separating space
of T is defined as

oo
n=

S(T) :={y € F : there is a sequence (z,,)°2; in E with x,, — 0 and Tz, — y}

(i) Show that &(T') is a closed, linear subspace of F'.

(ii) Show that &(T) = {0} if and only if T € B(E, F).

Ezample Let X be a locally compact Hausdorff space, and let ¢: X — F be such that
of € Co(X) for all f € Cy(X). Define

My: Co(X) = Co(X), f+— of.
Let (fn)o2; be a sequence in Cy(X), and let g € Co(X) be such that
fn—0 and Tf, —g.

For all z € X, we have that

g9(x) = lim ¢(z)fn(x) =0,

n—oo

so that g = 0. With Corollary 2.6.3, it follows that M is bounded. (It can then be shown
that ¢ € Cp(X).)

Exercise 2.20 Let X be a locally compact Hausdorff space. A multiplier of Co(X) is a linear
map T: Co(X) — Co(X) such that

T(fg)=fTg  (f,9€Co(X))

Show that T is continuous.
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Chapter 3

Spectral theory of bounded linear

operators

In this chapter, we develop the basics of the spectral theory of bounded, linear operators
on Banach spaces.
3.1 The spectrum of a bounded linear operator

The spectrum can be thought of as the appropriate infinite-dimensional analogue of the

set of eigenvalues of a matrix.

Definition 3.1.1 Let E be a Banach space. We let
Inv B(E) :={T € B(E) : T is invertible}.
Definition 3.1.2 Let E be a Banach space, and let T' € B(FE). Then
o(T):={NeF:\-T ¢ InvB(E)}
is called the spectrum of T'. The complement p(T) := C\ o(T) is the resolvent set of T
Ezamples 1. Let dim ¥ < oo. Then:

A€ ao(T) = A — T is not bijective
= A — T is not injective
= there is x € E'\ {0} such that Tz = \z
—

A is an eigenvalue of T.

0 1

2. Let E=R? and let T =Ty for A = . Then o(T') = @.
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3. Let ¢ € C([0,1]) and let

My: C([0,1]) — C([0,1]), f— of.

Let A € F\ ¢([0,1]). Then

V)= oo (el
defines an element of C([0,1]). We have
My(A = M)f = (M) = Myf = =5 =1 (£ ec(o.1)).

so that My = (A — My) ™! and A & o(My). It follows that o(T) C ¢([0,1]).
Conversely, let A € ¢([0,1]) and assume that X ¢ o(T). Let ¢ := (A — M) '1.

Then we obtain

A=) = (A= My =1,
which is impossible.

Exercise 3.1 Let F be a Banach space, and let P € B(FE) be a projection. Show that o(P) C

{0,1}.
Exercise 3.2 Let T € B(C([0,1])) be defined through
(THx) :==zf(x)  (f€C([0,1]), z €[0,1]).
(i) Show that T has no eigenvalues.
(ii) What is o(T)?
Exercise 3.3 Let E be a Banach space, and let T' € B(T'). Show that o(T") = o(T™).
Exercise 3.4 Let p € [1,00], and let L, R: ¢? — (P be defined through

L(zy,x0,x3,...) = (0,21,22,...)
and R(x1,x9,x3,...) = (2, T3, T4,...) ((x1,29,23,...) € LP).
(i) Show that every A € C with |A| < 1 is an eigenvalue of R.
(ii) Conclude that o(R) ={A € C: |\ < 1}.
(iii) Show that L has no eigenvalues, but o(L) = {\ € C: |\| < 1}. (Hint: Take adjoints.)
As Exercise 3.2 shows, a bounded linear operator on an infinite-dimensional Banach

space may have an empty set of eigenvalues. As we shall see in the remainder of this

section, the spectrum of a bounded, linear operator is a compact set, which is non-empty
if F=C.
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Lemma 3.1.3 Let E be a Banach space, and let T € B(E) be such that ||idg — T|| < 1.
Then T € Inv B(E).

Proof Let

It follows that

S—TS = (idg—T)S

o0

_ Z(idE _ T)n—l—l

n=0
oo

= > (idg—1T)"

n=1

= S—idg,
so that T'S = idg. In a similar way, ST = idg is proven. a

Corollary 3.1.4 Let E be a Banach space, and let T € B(E). Then o(T') is bounded by
17|

Proof Let A € F be such that |A| > ||T']|. Then

T T
_ _ = | il 1
|- (=)= 150 <

)\—T:)\<1—§> € InvB(E)

so that

by Lemma 3.1.3. This means that A € p(T). O

Corollary 3.1.5 Let E be a Banach space. Then Inv B(E) is open in B(E).

Proof Let T € InvB(FE), and let S € B(E) be such that ||S—T|| < ﬁ It follows that
n=T7s| =TT - 9l < 1,

so that 715 € Inv B(E) by Lemma 3.1.3. O

Corollary 3.1.6 Let E be a Banach space, and let T € B(E). Then o(T) is closed in F.
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Proof Let A € p(T), i.e. A\ =T € Inv B(E). By Corollary 3.1.5, there is € > 0 such that
S € Inv B(E) whenever ||A —T — S|| < e. For u € F with |\ — p| < €, we then have

[A=T) = (p=T)[ = —nl <e
so that p — T € Inv B(E). O

Lemma 3.1.7 Let E be a Banach space, and let (T,,)52, be a sequence in Inv B(E) which
converges to T € Inv B(E). Then T,;! — T—1.

Proof We first show that sup,,cy || 75, ]| < oco. Since T,,7~! — idg, there is N € N such
that

1
lidg — T, 77| < 5 (=N)

In the proof of Lemma 3.1.7, we saw that

(T, T~ = i(idE ~T, 7Y  (n>N),

k=0

so that

o0

ITT, M = (LT )M <Y llide =TT HF <2 (n>N).

k=0

Consequently,
1T < ITHITT M < 2IT7Y (n > N).
Since
1T =T H = TN T = T)T Y ST = TallIT™H (e ),

it follows that lim,,— s Tn_1 =71 O

Theorem 3.1.8 Let E # {0} be a Banach space over C, and let T € B(E). Then o(T)

is a non-empty, compact subset of C.

Proof In view of Corollaries 3.1.4 and 3.1.6, it is clear that o(T") is compact (this does
not require that the Banach space be over C).

All we have to show is therefore that o(7T") # @. Assume towards a contradiction that
o(T)=2,ie. \—T € InvB(F) for all A € C. Let ¢ € B(E)*, and define

f:C—C, A—=o(A=T)"1).
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Let h € C\ {0}. Then we have:

FOEW I yath-1) — (=)

= HOHR=T) A =T) = A+ A== T) )

= O =T A= T) = (A A=A -T)7)
" (A -T)72).
Hence, f is holomorphic. Moreover, since

F) = 31 - A7) )

the function f is also bounded. By Liouville’s theorem, this means that f is constant.
In conjunction with (3.1), this means f = 0. In particular, 0 = f(0) = ¢(T~!). Since
¢ € B(E)* was arbitrary, Corollary 2.1.7 yields T~! = 0, which is impossible. O

[A|—o0

0, (3.1)

Exercise 3.5 Let @ # K C C be compact. Show that there are a Banach space E over C and
T € B(E) such that o(T) = K.

Exercise 3.6 Let p € [1,00], and let L, R: % — ¢? be defined through
L(xy,29,23,...) = (0,21, 22,...)
and R(z1,x9,x3,...) = (2,23, 24,...) ((x1,29,x3,...) € 7).
(i) Show that every A € C with |A| < 1 is an eigenvalue of R.
(ii) Conclude that o(R) ={A € C: |A| < 1}.
(iii) Show that L has no eigenvalues, but o(L) = {A € C: |A\| < 1}. (Hint: Take adjoints.)
Exercise 3.7 Let E be a Banach space over C, and let T € Inv B(E).
(i) Show that A € o(T) if and only if A1 € o(T71).
(ii) Suppose further that T is an isometry. Show that o(T) C {A € C: |A\| = 1}.

Exercise 3.8 Let E be a Banach space over C. Let T € B(F) \ Inv B(E) be such that there is a
sequence (71},)°; in Inv B(E) such that T' = lim,, o, T},. Show that lim,—; |7} = oo.

Exercise 3.9 Let E be a Banach space over C. An element A € C is called an approzrimate

eigenvalue for T if
inf{|A=T)z| :z € E, ||z|| =1} = 0.
Show that

0o (T') C {approximate eigenvalues of T} C o(T).

As Exercise 3.5, there is nothing more that can be said about the spectra of bounded,
linear operators on Banach spaces over C except that they are non-empty subsets of C.

To get more detailed information, we need to look at a smaller class of operators.
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3.2 Spectral theory for compact operators

In this section, all spaces are over C.

Lemma 3.2.1 Let E be a Banach space, let F be a closed subspace of E, let T € K(FE),
and let A € C\ {0} be such that

inf{||[(A=T)z|| : x € F, ||z =1} = 0.
Then F Nker(A — E) # {0}.

Proof Let (x,)22, be a sequence in F with ||z,| =1 for all n € N and (A — T')z,, — 0.
Since T' is compact, (T'z, )52, has a convergent subsequence (T'z,, )3 ,. Hence (Azy, )72,
converges and since A # 0, so does (xy, )72 ,. Let x := limy_ 2,,. Then x € F with
||z|| = 1 belongs to ker(A — T). O

Proposition 3.2.2 Let E be a Banach space, let T € KC(E), and let X € o(T)\{0}. Then
the following hold:

(i) dimker(A —T') < o0.
(ii) (A =T)E is closed and has finite codimension.
(iii) There isn € N such that ker(A—T)" = ker(A—T)"*! and A\ —T)"E = (A —T)"1.

Proof For (i), observe that

. 1
id|yer(r—1) = XT|kcr()\—T)

is compact. This implies dimker(A — T') < co.
For (ii) choose that a closed subspace F of E such that E = ker(A—T) @ F. It follows
that (A —=T)F = (A —T)E. Since F'Nker(A —T) = {0}, Lemma 3.2.1 implies that

C:=inf{|[AN=T)z| :x € F, ||z|]| =1} > 0.
Hence,

so that (A —T)F = (A —T)E is closed.
To see that (A — T')E has finite codimension, note that

A=T)z|| = Cllz|  (z € F),

A=T)E+ = {pcE* :¢((\=T)x)=0forall z € E}
= {¢peE": (A=T)¢)(x) =0 for all x € E'}
= ker(A—T7).
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Since T* is also compact by Theorem 2.2.4, (i) yields dim(A—T)E+ < oo, so that (A—T)E
has finite codimension (since it is closed).
We only prove the first statement of (iii) in detail (the second one is established

analogously). Assume towards a contradiction that
Epy1:=ker(A = T)" Dker(A - T)" =: E, (n eN).

For each n € N choose x, € E,41 such that |lz,| = 1 and dist(zn, E,) > 3. Let

n >m > 2. Since

Try, —Txy =Axy, — (A=T)zp+ (N =T)xm — A\tm,

ceby, €EEnCEn

we have

>

| Tzy, — Txp|| >

|

Hence, (T'zy,)2% ; has no convergent subsequence. To prove the second statement, proceed

similarly, first noting that

n—1

n __ - LAY’ n—k _ yn k n—=k
A=1r =3 (D =0 = ST e ),
k=0 k=0
EK(E)
so that (A —T)"E is closed for each n € N. 0

Lemma 3.2.3 Let E be a Banach space, let T € K(E), and let X\ € o(T) \ {0}. Then X

is an eigenvalue of T or of T™.
Proof Suppose that A is not an eigenvalue of 7. By Lemma 3.2.1, this means that
inf{||[(A=T)z||=0:2 € E, ||z =1} > 0.

As in the proof of Proposition 3.2.2, we conclude that A\ — T is injective and has closed
range. Since A € o(T), we have (A — T)E C E. Choose ¢ € E*\ {0} such that ¢ €
(A—T)E*. Again as in the proof of Proposition 3.2.2, we see that ¢ € ker(\ —T)*. O

Lemma 3.2.4 Let E be a Banach space, let T' € K(E), and let (A\,)52 be a sequence of

pairwise distinct eigenvalues of T'. Then limy, oo Ay = 0.

Proof Without loss of generality suppose that A, # 0 for all n € N. For each n € N,
choose z,, € ker(\,, —T')\ {0}. Let

E,:=lin{z,... 2.},
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sothat F1 C ---C E, C Fpy1 C---. For each n > 2, choose y, € E,, such that
. 1
lonl =1 and  dist(yn, En1) > 5.
Let a1,...,a, € C be such that y, = ajz1 + - -+ + anzy,. It follows that
(>\n - T)yn = O41()\n - )\1)1'1 + -+ Oénfl()\n - Anfl)xnfL

For n > m > 2, this yields:

TG ) — T m) = A O — Ty — At = T Y + Y —Yn-

EEnfl
Consequently,
_ _ 1
HT()‘nlyn) - T(Amlym)H 2 5 (TL 7é m, n,m > 2)7
so that (T(\,;'y,))%; has no convergent subsequence. Since T is compact, this means
that (A, 14,,)22; has no bounded subsequence, i.e. |\, 1y,|| = |\, 1| — oo and thus \,, — 0.
0

Lemma 3.2.5 Let E be a Banach space, and let X € o(T) \ {0}. Then X is an isolated
point of o(T).

Proof Assume that there is a sequence (\,)52; in o(T') \ {\} such that A\,, — \. Without
loss of generality, we may suppose that the \,s are pairwise distinct. By Lemma 3.2.3,

there is a subsequence (A, )72, of (A\,)pe; such that
(a) each \,, is an eigenvalue of T', or
(b) each X, is an eigenvalue of 7.

However, (a) contradicts Lemma 3.2.4, and (b) leads equally to a contradiction with

Lemma 3.2.4 if we apply that lemma with 7™ instead of 7. ad

Theorem 3.2.6 Let E be a Banach space with dim E = oo, and let T € K(E). Then one
of the following holds:

(i) o(T) = {0};

(ii) o(T) ={0,A1,..., A}, where A, ..., Ay are eigenvalues of T such that dimker(\;—
T)<oo forj=1,...,n.

(iii) o(T) = {0, A1, Aa, ...}, where A1, Ag, ... are eigenvalues of T such that dim ker(\,, —
T) < oo forn € N and limy, . Ay, = 0.
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Proof Since dim F = oo and T € K(E), certainly 0 € o(T). By Lemma 3.2.5, o(T) is at

o0

o1 is a sequence of pairwise

most countably finite, by Lemma 3.2.4, A\,, — 0 whenever (\,)
distinct eigenvalues of T', and Proposition 3.2.2(i) ensures that dim ker(A—1") < oo for each
non-zero eigenvalue A\. We are thus done once we have shown that every A € o(T) \ {0}
is an eigenvalue.

Let A € o(T) \ {0}. By Proposition 3.2.2(iii), there is n € N such that (A — E)"E =
(A — E)"*LE. Since

Proposition 3.2.2(ii) yields that (A—T")"E is closed and has finite codimension. Assume
that \ is not an eigenvalue of 7', so that A — T is injective. Consequently, (A —T)|x—1)ng
is bijective. Let S € B((A —T)"E) be the inverse of (A — T')|(x_7)n, and define

P:E—FE, x—8S"AN=-T)"x.
It follows that
P2 =S"A=T)"S"(A\—=T)" = S"(A\—T)" = P.
We also have:

A-T)P = (A=T)S"(A=T)"
= S iA-1)"
= S"ISA-T)(A=T)"
= S"(A-T)"*!
= PA\-T).

Since A —T is not bijective, but A—T is assumed to be injective, there is z € E\ (A—-T)E,
so that y := x — Px # 0. On the other hand, we have

AN=T)"y=PA—T)"y=N=-T)"Py=(A—T)"(Px — P2:1:) =0,
so that ker(A — 7)™ # {0} and thus ker(A —T") # {0}. O
Exercise 3.10 Let ¢ € ¢*°. Show that My € B(¢>) is compact if and only if ¢ € co.

Corollary 3.2.7 (Fredholm alternative) Let E be a Banach space, let T € K(FE), and
let X\ € C\{0}. Then the following are equivalent:

(i) A =T is bijective.
(il) A =T is injective.

(iii) A =T is surjective.
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Proof (i) = (ii), (iii) is trivial.

(ii) = (i): clear by Theorem 3.2.6.

(iii) = (i): Assume that A\ — T is not bijective, i.e. A € o(T) = o(T*). Hence, A is
an eigenvalue of T*. Hence, there are non-zero elements in ker(A — T%) = (A — T)E*.
Consequently, (A — T')E # E must hold, contradicting the surjectivity of A — 7. O

Ezample Let A € C\ {0}, and let k € C(]0, 1] x [0,1]), and consider, for f,g € C([01,])

the integral equations

1

A (@) — ; fk(z,y)dy = g(z)  (z€[0,1)) (3.2)

and

1
M@ = [ Sk d=0  @e ) (33)
Then there are the following alternatives:

(i) (3.2) has a unique solution f € C([0,1]) for each g € C([0,1]); in particular, (3.3)
only has the trivial solution f = 0.

(ii) There is g € C([0, 1]) such that (3.2) has no solution f € C([0,1]). In this case, (3.3)
has non-trivial solutions f € C([0,1]), which form a finite-dimensional subspace of

C([0,1]).

Since the Fredholm operator on C([0,1]) with kernel k is compact, this is an immediate

consequence of Corollary 3.2.7.

To make stronger assertions on the spectral theory of compact operators, we need to

leave the general Banach space framework.

3.3 Hilbert spaces

Hilbert spaces are, in a certain sense, the infinite-dimensional spaces which behave most

like finite-dimensional Euclidean space.

3.3.1 Inner products

Definition 3.3.1 A semi-inner product on a vector space E is map [-,-]: Ex E — F such
that

(&) Az +py, 2] =Nz, 2] +ply, 2] (MpeF, z,y,2€E);

(b) [z hx +py] = Az, 2] +7lz, 9] (N p €T, 2,y,2 € E);
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(¢c) [z,z] >0 (x € E);

(d) [z, 9] =ly,2] (2,9 € E),

A semi-inner product is called an inner product if
[t,z] =0 <= 2=0 (x € E).
Ezample Let (2,8, 1) be a measure space. For f,g € £2(Q2, &, i), define
(fa)i= | f)aidu) (3.4)

Then [-, -] is a semi-inner product.

Proposition 3.3.2 (Cauchy—Schwarz inequality) Let E be a vector space with a se-

mi-inner product [-,-] on it. Then
e, o) < [z,2lly, 9] (2,y € B)
holds.
Proof Let x,y € E. For all A € F, we have:
0 <[z —Ay,z— My] = [z,2] = Aly, o] = Az, y] + [\[y, /. (3.5)

Choose p € F with |u| = 1 such that [y, z] = pl|ly,z]|. For ¢ € R and A\ = ¢ we obtain
from (3.5):

0 < [z,2] —taly, =] — tplz,y] + [y, y]
= [z, 2] — taplly, 2] — tuml [z, y]| + [y, y]
= [w,2] = 2tl[y, ]| + [y, ]
= q(t).

Then ¢ is a quadratic polynomial in ¢ with at most one zero in R. Hence, the discriminant

of ¢ must be less than or equal to zero:

0> 4|y, z]|* — 4z, z][y, y].

This yields the claim. O

Corollary 3.3.3 Let E be a vector space with a semi-inner product [-,-]. Then
o]l == [z,2]7  (a € E)

defines a seminorm on E, which is a norm if and only if [-,+] is a inner product.
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Proof Only the triangle inequality needs proof. For x,y € FE, we have:

lz+yl* = [z+y,z+y]
= [z, 2] + [z, y] + [y, 2] +[y. y]
——
z,y)

=
= [z,2] +2Re(z,y] + [y, y]

< [z 2]+ 2[[z, ]l + [y, v
<z, @]+ 20z, 22 [y, y] 2 + [y, ), by Proposition 3.3.2,
= la|® + 2llz/llly]l + [yl
= (llll +lly)*.
Taking roots yields the triangle inequality. O
Exercise 3.11 Let E be a linear space, and let [-, -] be a semi-inner product on E.

(i) Show that F:= {x € E : [z,z] = 0} is a linear subspace of E.

(ii) Show that
(z+Fy+F):=[z,y (z,y€Eb)

defines an inner product on E/F.

Definition 3.3.4 A vector space ) equipped with an inner product (-, -) is called a Hilbert
space if § equipped with the norm

[NIES

€]l := (€, €) (€ €9)

is a Banach space.

Ezample Let (2,6,u) be a measure space. Then (3.4) induces a inner product on
L?(2, 6, 1) turning it into a Hilbert space. In particular, for each index set I # @,

the space
(1) = {f]—ﬂFZ\f(Z)\Z<OO}
i€l

equipped with

(f,9):=>_ fli)g(i)  (f,g€l*(])

i€l

is a Hilbert space.
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3.3.2 Orthogonality and self-duality

Definition 3.3.5 Let § be a Hilbert space. We say that £, € § are orthogonal — in
symbols: £ L n —if ({,n) = 0.

Exercise 3.12 Let $ be a Hilbert space, and let &1,... ,&, € $ be pairwise orthogonal. Show
that

€1+ +&all® = &l + - + [1€all®.

How do you interpret this geometrically?

Lemma 3.3.6 (parallelogram law) Let ) be a Hilbert space. Then we have:
1€+l + 1€ = nll* = 2(I€l* + [InlI*) (& € 9).

Proof We have

€ +nl* = (€ +n,&+m) = [ElI* + [In]]* + 2Re (&, )

and

1€ =nll* =€+ n,&+m) = [€1>+ Inl* — 2Re (&, 7).

Adding both equations yields the claim. O

Theorem 3.3.7 Let K be a closed, convex, non-empty subset of a Hilbert space $. Then,
for each & € $, there is a unique n € K such that ||§ —n|| = dist(&, K).

Proof Let & € $, and let § := dist(, K), so that there is a sequence (1,)52; in K such
that || — n,|| — J. Note that, for n,m € N, we have

1 2

Hi(nn - nm)
1 2
- 3t -9-m-9)
1 ) ) 1 2
- 3 (H77n — &7+ |l =&l ) - H 5(% + m) =N by Lemma 3.3.6. (3.6)
|
€K
>462

Let € > 0. Choose N € N such that

1
I — €12 < 8+ 3¢ (n=N).
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Then (3.6) yields

1 ? 1 2 12 2 12
i(nn_nm) <§ 20 +§€ -0 :ZE (n,m > N)

and thus
|7 — |l <€ (n,m > N).

Thus, (7,)52; is a Cauchy sequence which therefore converges to some n € K. It is
obvious that [|{ — 7| = 4.
To prove the uniqueness of 7, let 11,72 € K be such that || —n;|| = ¢ for j = 1,2.

Since 1(m + 1) € K, we have

1
< SUE=mll +[l§ = nal)) = 9,

S Hf — %(771 +n2)|| = H%(ﬁ —m)+ %(5 —12)

so that ||¢ — 5 (1 + n2)|| = 6 as well. This, in turn, implies that

2

1 1
2 _ |t 2l —
# = |5e-m+ge-m
= 2| e—m| 2 e - ~[2on -]
= 9 m 5 2 2771 2
RE RE
and thus
1 2
# =d = |5m—m
This means that n; = ny. O

Lemma 3.3.8 Let $ be a Hilbert space, let 8 be a closed subspace, and let £ € §. Then
the following are equivalent for n € R:

(i) 1€ = nll = dist(¢, K);
(i) € —n L R, i.e. £ —n L 7 for each 1 € R.
Proof (i) = (ii): Let 7 € 8. Then
g = nll* < llg =+ M)* = 1€ = nl* = 2Re (€ — . 7) + || (3.7)

holds, so that 2Re (¢ — 7,7) < ||7||*>. Choose A\ € F such that [A\| = 1 and (¢ —n,7) =
A€ —n,7)|. Replacing 7 in (3.7) with tA7 for ¢ € R thus yields

2Re (€ —n,tAd) < |7l (t€R),
N——

=2t[{(§—n,7)|
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ie.
20 —n, | <tlqgl>  (t>0).

Letting t — 0 yields (¢ —n,n) =0, i.e. £ —n L 7.
(iil) = (i): Let 77 € R, so that £ —n L n — 7. It follows that

1€ = l1* = 1€ =) + (0 = AP = 1€ = nll* + Il — 7lI* = 1€ = nll?,
which proves the claim. a

As you saw in Exercise 2.18, a closed subspace of a Banach space need not be com-

plemented. This situation is different for Hilbert spaces:

Theorem 3.3.9 Let $ be a Hilbert space, and let R be a closed subspace of $. Then there
is a unique P € B($)) with the following properties:

(i) PH = R;

(i) P2 =P;

(iii) ker P = &1 = {¢ €9 : & L R},

() |P] < 1.
This map P 1s called the orthogonal projection onto R.
Proof For £ € 9, define

P¢ := the unique 1 € 8 such that ||{ — || = dist(§, R).
It is then clear that P: ) — § satisfies (i). By Lemma 3.3.8, this means that
P¢ := the unique 1 € K such that £ —n L K.

This yields immediately that P is linear, is the identity on R, i.e. satisfies (ii), and also
satisfies (iii).
Since £ — P§ L R for all £ € §, we have

€117 = (€ = PE) + PE|* = (1€ — PEI + IPEI? > |PEII> (€ € 9),
which yields (iv). 0
Exercise 3.13 Let $ be a Hilbert space, and let & be a closed subspace of §). Show that $ =

Ao st
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Corollary 3.3.10 Let $ be a Hilbert space, and let K be a closed subspace of $). Then R

1s complemented in £.

Theorem 3.3.11 Let  be a Hilbert space, and let ¢ € H*. Then there is a unique n € §
such that

&) =&m  (£€9) (3.8)
Moreover, n satisfies ||¢|| = ||n|.

Proof The uniqueness of 7 is clear.

For the proof of existence, we may suppose without loss of generality that ||¢|| = 1. Let
R :=ker ¢, and let P € B($)) denote the orthogonal projection onto K. Choose 19 € 9\ R.
Then ng — Png L K and 19 — Png # 0, so that

~ _ Mo —Pno
lIm0 — Pnol|

is well-defined. Define ¥ € H* as
v —=F, (&),
so that ker ¢ = R C kert. This means that there is A € F such that ¢ = A\i. Since

[ = K&l < llallligl = Mgl (€ € 9)

by the Cauchy—Schwarz inequality, we have
L2 |9l = [p(@)] = 7l =1,
which implies |\| = 1. Letting n := A, we obtain (3.8). O

Corollary 3.3.12 Let $ be a Hilbert space, and define, for each n € $, a functional
¢y € H* by letting

(&) ==(&m)  (£€9).

Then the map
H—-N oy
18 a conjugate linear isometry.

As an application of this so-called self-duality of Hilbert spaces, we will now give a

Hilbert space theoretic proof of the Radon—Nikodym theorem from measure theory.
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Definition 3.3.13 Let (2, &) be a measurable space, and let u and v be measures on
(©,6). We say that v is absolutely continuous with respect to p — in symbols: v < pu —
if v(N) =0 for every N € & such that pu(N) =0.

Ezample Let (22, G, 1) be any measure space, and let f: Q — [0, co] be measurable. Then
v: 6 — [0, 00] defined by

u(s) = /S f@)du(w) (e )
is absolutely continuous with respect to pu.

Theorem 3.3.14 (Radon—Nikodym theorem) Let (2, S) be a measurable space, and
let  and v be finite measures on (2, S) such that v < u. Then there is a non-negative
h € LY(Q,6, ) such that

U(S) = / he)duw) (S €S)
s
Proof Let A := u+ v, and define ¢ € L?(2, &, \; R)* by letting
o= [ F@de) (€ IO
Q
By Theorem 3.3.11, there is a unique g € L?(Q, &, \) such that
o= [ @) (e 1@,

so that

/Q (1 - g(@))f () dv(w) = / @) @) du(w)  (f € L3(Q,6,0).

Q
Let A:={w € Q:g(w) < 0}. It follows that

Oz/Ag(w)du(w) Z/Qg(w)XA(w) dpu(w) 2/(1—9(w))XA(w) dv(w) = 0,

Q
so that p(A) =0 and hence v(A) =0. Let B := {w € Q: g(w) > 1}. Similarly, we have

0> [ (=g dne) = [ g(e)dne) >0,

so that u(B) = v(B) = 0 as well. We may therefore suppose without loss of generality
that g(w) € [0,1) for all w € Q.
For S € G and n € N, define f,, :=(14+g+---+ ¢")xs. It follows that

/ (1— g(w)™ ) dv(w) = / (1= gw) fu(w) dr(w)
S Q
- / 9() fulw) dpa(w)
Q

- L<g<w) 9@+ g(w)™) du(w).
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Let h:=)">7, ¢". Since ¢g(2) C [0,1), this series converges; for the same reason, we have

1 —¢"*t! — 1 pointwise. All in all, we have:

v(S) = / dv(w)
S
= lim [ (1-g(w)"™dv(w), by dominated convergence,
o+ g(W)") dp(w)
= / h(w) dp(w), by monotone convergence.
S

This completes the proof. O

3.3.3 Orthonormal bases

Definition 3.3.15 Let $) be a Hilbert space. A family (e,)q of vectors in § is called

orthonormal if ||eq|| =1 and e, L eg for a # .

Ezamples 1. Let § =FY, and let ¢; := (0,...,0,1,0,...,0) for j =1,..., N, where

the non-zero entry is in the j-th position. Then (ej);\’:l is orthonormal.

2. More generally, let § = ¢2(I) for I # @, and define, for i € I, a vector e;: I — F by
letting e;(j) := 6; ; for j € I. Then (e;);ecs is orthonormal.

3. Let 5 = L?([0,27]; C). For n € N, define e, € L*([0,27]) by letting

1
en(x) := e’ (x €0, 27]).
V2T
Then, clearly, |le,|| = 1. For n # m, we have

L[ i) L i
n,€m - anml'd — . 1(n—m)x — .
{ens em) 27 /0 ¢ v 2im(n —m) ¢ 0 0

Hence, (e5,)22 is orthonormal.

Lemma 3.3.16 (Bessel’s inequality) Let $ be a Hilbert space, and let (ey)s be an

orthonormal family in . Then
D g ea)® <€l ()

holds.
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Proof For any finite number of indices ar, ... , an, let n 1= =371 (&, €q;)€q,. It follows
that n L e,; for j =1,... ,n. Consequently, we have

2
n
||£”2 = HUHQ + Z<€?€Qj>eaj
j=1
n
= I+ (6 eap)l
j=1
n
> Z |<§’€aj>’2
j=1
Since ay, ... ,ay, were arbitrary, this yields the claim. O

Lemma 3.3.17 Let $ be a Hilbert space, and let (eq)q be an orthonormal family in ).
Then (&, ea)ea converges for every £ € §).

Proof By Lemma 3.3.16, the set {a : |(¢,eq)| > 1} is finite for each n € N. Hence, there
are only countably many « such that (£,e,) # 0. Without loss of generality, we can
therefore suppose that we are dealing with a sequence (e,)02 ;.

For n > m, we have:

n m
Z 67 6k: Z 57 ek
k=1 k=1

Let € > 0. Since Y 5o, [(€, ex)]? < [|€]|? < 0o by Lemma 3.3.16, there is N € N such that

2 2

n

> (Eenen

k=m+1

n

= Y el

k=m+1

n

Z |<£>ek>|2<62 (nvaN)a

k=m+1
so that
n m
Zf;ek Zf,ek )er (n,m > N).
k=1 k=1
Hence, (3_5_1 (&, ex)er),—, is Cauchy and thus converges. O

Theorem 3.3.18 Let §) be a Hilbert space, and let (eq)q be an orthonormal family in $).

Then the following are equivalent:
(i) (ea)a is mazximal.
(ii) If € L eq for all a, then & = 0.
(i) $ = lin{eq : a}.
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(iv) If € € $, then

§= (& ea)ea

o

holds.
(v) If&n €9, then
<£a T]> = Z<£a 604><6a7 77)

[0}

holds.

(vi) Parseval’s identity holds for each & € $:

11 = 1(€  ea)l.

If (eq)q satisfies these conditions, it is called an orthonormal basis of ).

Proof (i) = (ii): Assume that there is £ € § \ {0} such that £ L e, for all . Then
we may add the vector Ié_ll to the family (eq)o and thus obtain an orthonormal family
strictly larger than (eq)q.-

(ii) = (iii): Assume that 8 := lin{e, : @} C $. By Corollary 2.1.6, there is ¢ €
$*\ {0} such that ¢|g = 0. By Theorem 3.3.11, there is € $) such that

o) =(&m  (E€n).
It follows that 0 = ¢(eq) = (€a,n), so that n L e, for all a and hence n = 0. This,

however, contradicts ¢ # 0.
(i) = (iv): Let £ € $, and define n := & — " _ (£, €q)eq, which is well defined by
Lemma 3.3.17. It follows that
(n,¢5) = (€.e) = D (€ ea)(carep) = (€,e5) — (€, e5) =0

for any index . Since $ = lin {e,, : a}, this implies (n,7) = 0 and thus n = 0.
(iv) = (v): Let &, € $. By (iv), we have

§= Z(& €a)ea and n= Z(n, €a)ea-

«

This implies

<£7 77) - <Z<§7 604>€OH Z<n7 65>€g>

@ B
= YD ea)lmen) (easen)
B

«

= Z<§’ €a><eon 77)'

«
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(v) = (vi): Let n =¢&.
(vi) = (i): Let (fg)p be an orthonormal family such that (eq)q is a proper subfamily.
Then there is one fg, such that fg, L e, for all a. It follows that

D I fsorcad =07 1= | fall%,

which contradicts (vi). O
Corollary 3.3.19 Let $ # {0} be a Hilbert space. Then $) has an orthonormal basis.

Proof Use Zorn’s lemma to obtain a maximal orthonormal family in . a

Exercise 3.14 Let $) be a Hilbert space, let & be a closed subspace, and let (e,), be an orthonor-
mal basis for £ Show that the orthogonal projection P onto £ is given by

PE=3 (Eea)ea  (E€9).

Exercise 3.15 Show that every orthonormal basis for a separable, infinite-dimensional Hilbert
space is countably infinite.

Lemma 3.3.20 Let (eq)q and (fz)s be orthonormal bases for a Hilbert space $). Then
(ea)a and (f3)p have the same cardinality.

Proof Let k be the cardinality of (eq)q, and let A be the cardinality of (f3)g.

Case 1: k is finite.

In this case, dim $) < oo, and (eq)q is a Hamel basis. It is easy to see that orthonormal
families are always linearly independent. Hence, A must be finite, too. Since (f3)s spans
9, we have that (f3)g is also a Hamel basis for §. It follows that A = dim $ = &.

Case 2: k is infinite.

By the first case, this means that A is also infinite. For any index «, define B, := {f :
(€, f3) # 0}; by Bessel’s inequality, B, is countable. It follows that

Uz

Similarly, one sees that x < A. O

A= <Np-K=k.

Theorem 3.3.21 The following are equivalent for two Hilbert spaces $) and K:

(i) Ewery orthonormal basis of $ has the same cardinality as every orthonormal basis
of R.

(ii) There are an orthonormal basis of $ and an orthonormal basis of 8 having the same

cardinality.
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(iii) There is a surjective operator U: $ — K such that
U Un) =(&n)  (§&neN).

If these conditions are satisfied, $ and R are called unitarily equivalent.

Proof (i) = (ii) is obvious, and (ii) = (i) follows with Lemma 3.3.20.
(ii) = (iii): Let (eq)a and (fa)a be orthonormal bases of $) and &, respectively, with

the same cardinality, i.e. we may use the same index set. Define

U:9H— R, 5'_>2<§7601>f04'

«

The same argument as in the proof of Lemma 3.3.17 shows that this is well-defined. We
then have for £, n € $:

<U£aU77> = <Z<£7 ea>fa7z<nveﬁ>fﬂ>

a B
= S eadles ) far £3)
B

a

= SUE cadearn)

a

= &)

In particular, [|[U¢]|| = ||£]| holds for each £ € $), so that U is an isometry and thus has
closed range.

Assume that U is not surjective. By Corollary 2.1.6 and Theorem 3.3.11, we can then
find n € 8\ {0} such that n L U$. This means in particular that n L Ue, = f, for all o,
which is impossible.

(iii) = (ii): Let (eq)a be an orthonormal basis for $. It follows that (Ue,)q is
orthonormal in & such that & = {Ue,, : a}. Hence, (Ueq)q is an orthonormal basis for .

Clearly, (eq)a and (Uey)q have the same cardinality. O

Corollary 3.3.22 Let § # {0} be a Hilbert space. Then $) is unitarily equivalent to £2(I)
for an appropriate index set I # &.

Corollary 3.3.23 Up to unitary equivalence, there is only one separable, infinite-di-

mensional Hilbert space.

Exercise 3.16 Show that the Hilbert spaces ¢2, L?(R), are L?([0,1]) all separable and thus uni-

tarily equivalent.

Exercise 3.17 Let $) be a Hilbert space, let T € K(), and let (e,)22; be an orthonormal
sequence in §). Show that ||Te,| — 0.
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3.3.4 Operators on Hilbert spaces

As we say in the previous subsection, Hilbert spaces are essentially “dull” objects. This
dullness, however, forces their bounded linear operators to be much more tractable than

in a general Banach space setting.

Theorem 3.3.24 Let $ and K be Hilbert spaces, and let T € B($,R). Then there is a
unique operator T* € B(R, $)) such that

(T¢,m) = (& T*n)  (E€H neR).
The operator T™ is called the adjoint of T.
Exercise 3.18 Let §) be a Hilbert space, and let T € B($)). Show that ker T' = (T*§)> .
Proof For fixed n € R, define ¢ € H* by letting

¢(&) = (T¢n)  (£€9).

By Theorem 3.3.11, there is a unique 7" € $) such that

(T, =9(&) =T  (£€9).
It is easy to see that 8 2 n — T™n is a bounded, linear operator from K to . a

Remark Despite the use of the same symbol, the adjoint of 7" is not to be confused with
the transpose defined earlier for operators between Banach spaces. Nevertheless, in many

ways, taking the adjoint operator behaves very much like taking the transpose.

Ezxamples 1. Let § =FN let R =FM and let T = Ty for

a1, ..., Q1N
A=
ampi, -+, AOMN
Then T* = T4+, where
ail, ---5 AaM1
A" =
ay,N, ", OMN

2. Let (Q, 8, 1) be a o-finite measure space, and let ¢ € L>=(2, S, ). Then My = Mg.

Proposition 3.3.25 Let $) be a Hilbert space, let T, S € B($), and let A\, € F. Then
we have:
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(i) (AT + pS)* = \T* + S*;
(i) (ST)* = T*S*;
(iif) T =T}
(iv) |77 = |T*|* = |T*T].

Proof (i), (ii), and (iii), are straightforward.
For (iv), let £ € $ be such that ||£|| < 1. Tt follows that

17| (T¢, T¢)
(T*T¢, )
IT*TE €]
|77

11Tl

IAN 1

IN

and hence
|1T||*> < |T*T| < ||T*|[|| 7).

It follows, in particular, that ||| < ||77||. On the other hand, (iii) yields that || 7| <
|T**|| = ||T||. Hence, || T|| = ||T*|| holds and also |T||* = || T*T|. 0

Definition 3.3.26 Let $) be a Hilbert space, and let T' € B(5)). Then:
(a) T is self-adjoint it T = T*.
(b) T is normal if T*T = TT*.

Exercise 3.19 Let $ be a Hilbert space. Show that a projection P € B($) is self-adjoint if and

only if it is an orthogonal projection.
Exercise 3.20 Let $ be a Hilbert space, and let T: $§ — $ be linear such that

(T&,n) =& Tn)  (&neH).

Show that T is bounded and self-adjoint.

Exercise 3.21 Let $) be a Hilbert space over C. Show that N € B($)) is normal if and only if
[NE] = [[N*E]] for all £ € 5.

Exercise 3.22 Let $ be a Hilbert space over C, let N € B($) be normal, and let £ € $ and
A € C be such that N¢ = A&, Show that N*¢ = A€,
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Exercise 3.23 Let ) be a Hilbert space over C. For T € B(£)) define
1 1
ReT := §(T+T*) and ImTz;(T—T*).
i
Show that N € B($) is normal if and only if Re N and Im N commute.

Proposition 3.3.27 Let $ be a C-Hilbert space. Then the following are equivalent for
T € B(H):

(i) T is self-adjoint.
(ii) (7€, &) €R foré e 9.

Proof (i) = (ii) is clear because

(T¢,€) = (6, T¢) = (TE,&)  (£€9).
(ii) = (i): Let {&,n € $, and let A € C. Then
(T(& 4 M), &+ An) = (T€, &) + XTE,n) + MTn, &) + [A*(Tn,n)
is real and thus equal to its complex conjugate. This, in turn, implies that

MTn, &) + MT¢,m) =

(& Tn) + An, TE)

A
NT*g,m) + MT™n, €).

Letting A = 1 and A = 4, respectively, we obtain:

{ (Tn, &)+ (T€,m) = (T*€n)+ (T™n,¢€),
(T, &) —i(T€,n) = —i(T*€,n) +i(T*n,€).

Dividing the second of those equations by i, we get

{ (Tn, &)+ (T€,m) = (T*&n)+ (T™n,¢€),
<T777‘5>_<T£777> = _<T*£777>+<T*777§>7

and adding them yields 2(Tn, &) = 2(T*n,§), i.e. T =T*. O
Proposition 3.3.28 Let §) be a Hilbert space, and let T € B($)) be self-adjoint. Then

1T = sup{[(T€, )| : € € 9, [|€]] < 1} (3.9)

Proof Let M denote the supremum in (3.9). It is clear that M < ||T||.
Let &,n € $ with [[£]], ||n|| < 1. Tt follows that

(T(E£n),E£n) = (T€,8 £ (T&n) = (Tn,&) + (Tn,n)
= (T€,&) =(T&n) £ (n, T + (Tn,n)
= (T€,§) £2Re(TE,n) + (T'n,n).
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Subtraction yields

4Re (T, n) = (T(E+n),§+n) —(T(E —n),§—n).
It follows that

ARe(T¢m) < M([€+n)* + 1€ —nl?)
2M([|€N1% + IInl|®)
< 4M.

Choose A € F with |A| = 1 such that (T¢,n) = M(T¢,n)|. Replacing & in the previous
argument by \¢ yields

(T, m)| = MTEm) = (T(X),m) < M.
For any & € $ with ||€]|| < 1, we thus have
IT¢] = sup{[{T&n)| : n € B, Inll <1} <M

and therefore || T|| < M. 0

Corollary 3.3.29 Let $ be a C-Hilbert space, and let T € B($) be such that (T¢,£) =0
forall& € 9. Then T is zero.

Proof First, note that

(T7¢,8) = (& T€) = (T€,&)  (£€9).
Let
ReT = %(T+T*) and  TmT = %(T—T*).

Then ReT and Im T are self-adjoint such that 7= ReT + iIm T and (S¢, &) = 0 for all
e, where S =ReT or S =ImT. By Proposition 3.3.28, this means ReT = ImT =0
and thus T = 0. O

Remark Proposition 3.3.28 is false for Hilbert spaces over R (take § = R and T' = T}y,
0 —1
).
1 0
Exercise 3.24 Let $ be a Hilbert space, and let F($)) be the family of all finite-dimensional

subspaces of ). For each & € F($), let Pg be the orthogonal projection onto K. Show that
(Pg)ser(s) is a net such that

where A =

|PsT —T|| — 0 and ITPs —T| —0

for all T € K().
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3.4 The spectral theorem for compact, self-adjoint opera-

tors

Throughout this section, all spaces are again over C.

In linear algebra, it is shown that a self-adjoint matrix can be diagonalized. This means
that such a matrix can be completely described once its eigenvalues and its eigenspaces
are known. In this section, we extend this theorem on matrices to compact, self-adjoint

operators on Hilbert space.

Lemma 3.4.1 Let $ be a Hilbert space, and let T € K($)) be self-adjoint. Then ||T|| or

—||T|| is an eigenvalue of T'.

Proof By Proposition 3.3.28, there is a sequence (§,)52; in $) such that [|&,| = 1 for
all n € N and [(T¢,,&,)| — ||T||. Passing to a subsequence, we may suppose that
((Tén,&n))52, converges to A € R. It follows necessarily that |A\| = ||T||. Note that

H(/\ - T)an2 = M- 2)‘<T§nu§n> + HT&LH2
< 202 —2\(T¢n, &)
— 0.
With Lemma 3.2.1, we conclude that A is an eigenvalue of T'. O

Corollary 3.4.2 Let $ be a Hilbert space, and let T € K(9) be self-adjoint such that
o(T)={0}. ThenT =0.

Lemma 3.4.3 Let $ be a Hilbert space, let N € K($)) be normal, and let X\ # p be
eigenvalues of N. Then ker(A — N) L ker(u — N).

Proof Let & € ker(A — N) and n € ker(u — N), and note that
MEm) = (A m) = (N&m) = (& N = (&) = (&)
It follows that (£,n) = 0. O
Lemma 3.4.4 Let $) be a Hilbert space, and let T € K($)) be self-adjoint. Then o(T) C R.

Proof Let X\ € o(T) \ {0}, so that A is an eigenvalue of T'. Hence, there is £ € $ \ {0}
such that T¢ = A\¢. Tt follows that T¢ = T*¢ = A\¢ and thus € € ker(A — T) Nker(\ — T)).
By Lemma 3.4.3, this is possible only if A = ), i.e. A € R. a

Theorem 3.4.5 (spectral theorem for compact, self-adjoint operators) Let § be
a Hilbert space, let T € K($)) be self-adjoint, let {\1,\a,...} be the distinct, non-zero
eigenvalues of T', and let P, denote the orthogonal projection onto ker(\, —T'). Then the
following hold true:
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(1) {A, A2, } CRy
(iii) T = 32525 AP

n=1

Proof (i) follows from Lemma 3.4.4.
For (ii), let £ € §, and note that, by Lemma 3.4.3, for n # m

Po€ € ker(\, — T) C ker(\,, — T)F = ker P,

and thus P, P,§ = 0. It follows that P, P, = 0.

(iii): Choose an eigenvalue A; of T such that |\;| = ||T'|| (this is possible by Lemma
3.4.1). Let $; := ker(A; — T') and let P; denote the orthogonal projection onto $;. Let
Ry = Hi (= ker P;). Let £ € Ry and 1 € $H; and note that

It follows that TRy C Ro. If T|g, = 0, finish. Otherwise — since Ty := T'|g, is also
compact — and self-adjoint, there is an eigenvalue A9 of Ty such that |A| = ||T%|. Let
2 :=ker(Ag — Tb). It is easy to see that $2 = ker(Ao — T'). Since 1 L $H2 by definition,
we have A\ # Ag. Let P, be the orthogonal projection onto £, and let K3 := ($)1 @fjg)l.

Continue inductively and obtain:

(a) A (possibly finite) sequence {A1, Ag, ...} of distinct eigenvalues of T" which satisfies
Al = Ao = -+

(b) A sequence of pairwise orthogonal closed subspaces ), of ) such that
Hn =ker(\, = T) and A1l = 1T (5, 0--@5,)~ -

Fix n € N, and let £ € $ with k € {1,... ,n}. It follows that

TE = NPiE = A& — M€ = 0.

j=1

Let £ € (H1@---®Hy)t. Then P& =0 for k=1,...,n and thus

TE—Y NPE=TEE (51D D Hu)"

j=1
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It follows that

T—Z/\ij = sup TE—Z)\J‘ij £ed, |l <1
j=1

j=1

= sup Tﬁ—Z)\ijf EEMD - ®H)T € <1

j=1
= swp{ITEl e (e @9 g <1}
= ’)‘n+1‘

— 0

and thus

<oo
T=> AP
n=1

Assume that 7" has an eigenvalue A which does not occur in the sequence {1, Ao, ... }.
Since ker(A — T') L ker(\, — T) for n € N, this means that

<oo
TE =) APué =0,
n=1

ie. A=0. O

With the exception of (i), the assertions of Theorem 3.4.5 still hold for compact, normal
operators.

Exercise 3.25 Read paragraphs I1.6 and I1.7 in Conway’s book (where the spectral theorem for

compact, normal operators is proven).

Remark The spectral theorem generalizes to arbitrary, not necessarily compact, bounded,
normal operators on Hilbert spaces. Since such operators need no longer have eigenvalues,
the projections onto the eigenspaces have to be replaces by a more general object: Given
a Hilbert space $) and a normal operator N € B(£)), there is a unique so-called spectral
measure F© — a measure whose values are orthogonal projections on $) — on o(N) such
that

N = / 2 dE(2).
o(8)
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Chapter 4

Fixed point theorems and locally

convex spaces

This last chapter of the lecture notes deals with fixed point theorems, i.e. theorems that
guarantee that a certain map of a certain family of maps has a fixed point. Fixed point
theorems are important because many problems concerning the solvability of equations
can be formulated as fixed point problems. In order to present these fixed point theorems
in sufficient generality, we develop the theory of locally convex vector spaces to some

extent.

4.1 Banach’s fixed point theorem

Banach’s fixed point theorem is one of the most elegant and most widely applicable the-

orems in all of analysis:

Theorem 4.1.1 (Banach’s fixed point theorem) Let X be a complete metric space,
and let T: X — X be a map such that, for some 0 € (0,1),

d(T(2), T(y)) < 0d(z,y)  (z,y € X).
Then T has a unique fized point in X.
Proof Let z,y € X be fixed points of X. Since
d(w,y) = d(T(2), T(y)) < d(z, )

and 0 € (0,1), it follows that d(z,y) = 0, i.e. x = y. This proves the uniqueness of the
fixed point.
For the proof of existence, choose xg € X arbitrary, and define inductively z, :=

T(xp—1) for n € N. We claim that the sequence (x,)5°, converges. An easy induction on
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n shows that
d(xp_1,2,) < 0" d(zg, x1) (n € N).

For n > m, we have

n

A(@m,2n) <Y dlapor,zp) < d(zo,m1) Y 0 (4.1)
k=m+1 k=m+1

Since 6 € (0, 1), the geometric series » .~ 6! converges. Hence, given € > 0, there is

N € N such that

Sl m>N)
k=m+1 d(:ﬁo, xl) +1

Together with (4.1), this shows that d(z,,zy,) < € for all n,m > N. Hence, (2,)5%, is a
Cauchy sequence, and x := lim,,_,o, 2, exists. Since T is clearly (uniformly) continuous,

we have

Txr = lim Tz, = lim Tx,_; = lim x, =z,
n—oo n—oo n—oo

i.e. x is a fixed point of T a

Remark Banach’s fixed point theorem not only guarantees that a fixed point exsists — it

also provides an effective way of computing such a fixed point along with error estimates.

Exercise 4.1 Is the following fixed point theorem true or not?

Let X be a complete metric space, and let T: X — X be a map such that

d(T(2), T(y)) <d(z,y)  (z,y€ X, z#y).
Then T has a unique fixed point in X.

Give a proof or a counterexample.

Exercise 4.2 Let (X, d) be a complete metric space, and let T: X — X be a map such that there
are 6 € (0,1) and n € N with

d(T"(z), T"(y)) < Od(z,y)  (z,y € X).

Show that T has a unique fixed point.

We apply Banach’s fixed point theorem to initial value problems:
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Theorem 4.1.2 (Picard—Lindel6f theorem) Let I = [a,b], and let f: I x R — R be

continuous such that there is C > 0 with

[f(z,y1) = f(z,92)| < Clyr =yl (z €1, 41,52 €R).
Then the initial value problem
v =fy), yla) =1y (4.2)
has a unique solution ¢ € C*(I) for each yo € R.

Proof If (4.2) has a solution ¢, it satisfies

/ F(t (1)) dt + yo. (4.3)

Conversely, every function ¢ € C(I) satisfying (4.3) is automatically in C*(I) and a solution
of (4.2).
Define T': C(I) — C(I) by letting

(To)(x / f(t,o(t)) dt + yo.

Then ¢ € C(I) solves (4.3) and hence (4.2) if and only if it is a fixed point of T'.
Let ¢1,¢2 € C(I). Then we have

T

[(T¢1)(x) = (To2)(2)| = (f(t, d1(2)) = f (2, ¢2(t))) dt

< c/ 61() — ga(t)] dt
= Cl—a)lor — b2l (ze€),

and therefore
[T¢1 — Talloc < C(b—a)ldp1 — d2[l0o-

The problem that arises at this point is that C(b — a) may not belong to (0, 1), so that
Theorem 4.1.1 is not directly applicable. We circumvent this problem by replacing || - ||oo

by an equivalent norm || - ||, for some parameter o > 0. Define for a > 0

0]l == sup{l¢(z)[e™** :z e I} (p€C(I)).

Then, for ¢ € C(I),

[0lla < l|@lloo supfe™" -z € I}
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and

[@lloc = sup{[@(z)[e™**e™ 1w € I} < |[¢]lasup{e™ : z € I},

so that || - ||c and || - ||o are equivalent. Moreover, we have for ¢, ¢ € C(I) and = € I:

|(T¢1)($)—(T¢2)($)|67Qm — e oz

[ teon0) - oty ar

IN

Ce / 161(t) — dalt)] dt
= (e @* /x lp1(t) — qbg(t)]e_ateat dt

IN

Ce= 6y — dalla / ot dt

o e
Ce™ |1 — ¢2Ho¢j

IN

C
= _||¢1 - ¢2||a-
(6

It follows that
C
1 To1 — Thalla < EH% — 02|l (1,92 € C(1)).

Choosing a > 0 so large that g < 1 and applying Banach’s fixed point theorem, we obtain

a unique fixed point of 7" and thus a unique solution of (4.2). ad

4.2 Locally convex vector spaces

The next fixed point theorem we are going to cover — Schauder’s fixed point theorem —
requires a compactness hypothesis for its domain. Since compactness in normed, infinite-
dimensional spaces is rather the exception than the rule, we have to leave the framework of
normed spaces and work in a more general context in order to obtain fixed point theorems

of sufficient generality.

Definition 4.2.1 A linear space E is called locally convez if it is equipped with a family

P of seminorms on E such that

({z € E: p(x) =0} = {0}

peEP

Ezample Let X be a topological space, and let C(X) denote the vector space of all
continuous functions on X. Let I be the collection of all compact subsets of X. For
K € K, define

pr(f) =sup{|f(z)] :x € K} (f € C(X)).

Then C(X) equipped with (px)kek is a locally convex vector space.
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Definition 4.2.2 Let E be a locally convex vector space. A subset U of F is defined as
open if, for each xg € U, there are € > 0 and py, ... ,p, € P such that

{er: max p;(z — xo) <e} cU.
Jj=1,...,n

Proposition 4.2.3 Let E be a locally convex vector space. Then the collection of open

subsets of E in the sense of Definition 4.2.2 is a topology, i.e.
(i) @ and E are open;
(ii) if (Ua)a is a family of open sets, then |J, Uq is open;
(iii) of Ur,...,U, are open, then so is Uy N---NU,.

Proof We only prove (iii).
Let zo € Ui N---NU,. For each k =1,... ,n, there are ¢, > 0 andpgk),... ,pg? epP
such that

Vi = {:U € F: max p(-k)(m — 1) < ek} c Uy.
j=1,....n 7
Let € := min{ey, ... , e}, and note that

{azEE:kmax max p§k)(x—xo)<e}CV1Q-~-ﬂVnCUlﬂ~-ﬂUn.

:1,... ,nj:l,... Mk

By Definition 4.2.2, this means that U; N --- N U, is open. a

Proposition 4.2.4 Let E be a locally convex vector space. Then a net (zq)q in E con-

verges to xg € E in the topology if and only if p(xq — x9) — 0 for each p € P.

Proof Suppose that z, — xo in the topology. Fix ¢ > 0 and p € P. Then U := {z €
E : p(xz — xp) < €} is an open neighborhood of . Hence, there is an index ag such that
ZTo € U, ie. p(xy — 29) < € for all @ = «ag. Hence, p(zq — x¢) — 0.

Conversely, suppose that p(x, — x¢) — 0 for all p € P. Let U be a neighborhood of
xg, i.e. there is an open set V C U with xg € V. By Definition 4.2.2, there are ¢ > 0 and
P1, ... ,Pn € P such that

{xEE: “max pj(m—x0)<e}CV.

j:17"'7
Since pj(zq — x9) — 0 for j = 1,... ,n, there is an index ag such that
pj(xa — x0) < € (j=1,...,n, a> ap).
This means, however, that z, € V C U for all o > «y. a

Exercise 4.3 Let E be a locally convex vector space, and let F' be a finite-dimensional subspace.

Show that the relative topology on F' is induced by a norm.
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4.2.1 Weak and weak* topologies
There is a canonical locally convex topology on each normed space:

Definition 4.2.5 Let E be a normed space. Then {py : ¢ € E*} with

po(z) = lo(z)]  (z€E, ek

is a family of seminorms on E such that (,cp.{z € E : py(x) = 0}. The corresponding
topology on F is called the weak topology on E.

Lemma 4.2.6 Let E be a linear space, and let ¢, ¢1,... ,¢, : E — F be linear. Then the

following are equivalent:
(i) there are A\1,...,Ap € F such that ¢ = \ip1 + -+ + A\ndn;
(i) Nj=; ker ¢; C ker ¢.
Exercise 4.4 Prove Lemma 4.2.6.
Theorem 4.2.7 Let E be a normed space. Then the following are equivalent:
(i) dim E < ooy
(ii) the weak topology and the norm topology coincide;

(iii) the weak topology is metrizable.

Proof (i) = (ii): If dim ' < oo, then dim E* < co. Let ¢1,...,¢, € E* be a Hamel
basis for E*. Define

o] = max |g;(@)]  (z € E).

goun

Then E is a norm on E, so that |- | ~ || - ||. Let U C E be norm open. This means that,
for every xg € U, there is € > 0 such that

{er:\x—x0\<e}:{a:EE:j_rrllaxn\qu(x—xo)]<e}CU.

From the definition of the weak topology, it follows that U is also weakly open. Since the
weak topology is coarser than the norm topology, every weakly open subset of E is norm
open.

(il) = (iii) is trivial.

(iii) = (i): Suppose that there is a metric d on E which induces the weak topology.
Hence, for all n € N,

U, = {xEE:d(z,O) < %}
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is weakly open. By the definition of the weak topology, there are, for each n € N, a
number €, > 0 and functionals gbgn), ces v¢l(c:) € E* such that

=1,.. kn

{x € F: max ¢§n)(x—x0)‘ < en} C U,.
j

Let ¢ € E*. Then ¢ is continuous with respect to the weak topology, i.e. if (z4)q is
a net in F with z, weakly 0, then ¢(z4) — 0. Assume that ¢ is unbounded on each U,,.
This means that, for each n € N, an element z,, € U,, with |¢(zy)| > n. It follows that
d(2,,0) <1 — 0 and thus z, okl 0, whereas ¢(x,,) /4 0. It follows that there is N € N

such that sup{|¢(z)| : z € Uy} < oo. Since

7j=1,...,

kn
ﬂ kerqbg.N) C {9: €cE: max ‘¢§.N)($)) < en} C Un,
i=1 N

the functional ¢ must be bounded on ﬂ?ﬁ 1 ker gzﬁg-N), which, in turn, is possible only if
ﬂfﬁl ker ¢§-N) C ker ¢. By Lemma 4.2.6, there are thus Ay,...,A;, € F such that ¢ =
Mo 4 Ao,

It follows that E* is the linear span of the countable set {gbg-n) meN j=1,..., k‘n}

Hence, £* has a countable Hamel basis. Since E* is always a Banach space, this means

that dim £* < oo and, consequently, dim F < oco. O

In analogy with the weak topology, one defines an even weaker topology on the dual

of a normed space:

Definition 4.2.8 Let E be a normed space. Then {p, : z € E} with

p=(9) = |o(x)] (¢ € EY, v € E)

is a family of seminorms on E* such that (,cp{¢ € E* : p.(¢) = 0}. The corresponding
topology on E* is called the weak™ topology on E*.

Exercise 4.5 Let E be a separable Banach space. Show that the relative topology of the weak*-
topology on the closed unit ball of E* is metrizable. (Hint: Let {z,, : n € N} be a countable dense
subset of F/, and define

WO = D 50 o) — dlam)] + 1

n=1

(p,0 € E™).

Show that d is a metric on E* which, on the closed unit ball of E*, defines the weak*-topology.)

Exercise 4.6 Let FE be a Banach space. Show that the following are equivalent:

(a) dim E < oo
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(b) the weak*-topology and the norm topology coincide;
(c) the weak*-topology is metrizable.

How does this go together with Exercise 4.57

Theorem 4.2.9 (Alaoglu—Bourbaki theorem) Let E be a normed space. Then the

closed unit ball of E* is compact in the weak® topology on E*.
Proof For each xz € F, let
K, ={XeF: |\ <|z|}

Since each K is closed and bounded, it is compact. By Tychonoff’s theorem (Theorem
A.7.4), [],cp Ke is compact in the product topology. Embed the closed unit ball of E*
into [[,cp Kz via

Bi[0] = [[ Kar ¢ = (6(2))zcE.

el

Let (¢a)a be a net in the closed unit ball of E*; we will show that it has a conver-
gent subnet. By Theorem A.6.6, the net ((¢n(z))zcr)a has a subnet ((¢(x))rer)a that
converges in the product topology, i.e. for each x € E, there is A\, € K, such that

Az = lim ¢p(x).
B
Define ¢: E — T by letting ¢(z) := A\, for x € E. For z,y € F and u € F, we have
Oz +y) = Aoty =1im ¢p(x +y) = lim d5(2) + lim Pp(y) = As + Ay = &(x) + #(y)
and
P(pr) = Ay = liga pp(pz) = plim ¢ = pAe = ().
Hence, ¢ is linear. Moreover, note that, for x € F with [|z| < 1,
[¢(@)] = [Aa] < 2] <1

because A\, € K. It follows that ¢ € E* lies in the closed unit ball. From the definition
weak™

of the weak* topology, it is clear that ¢, — ¢. Theorem A.6.6 eventually yields the

weak™® compactness of the closed unit ball of E*. O

Exercise 4.7 Let E be a normed space. Show that there is a compact Hausdorff space X and an
isometry ¢: E — C(X).

Exercise 4.8 A Banach space E is called reflexive if the canonical map J: F — E** is an

isomorphism.
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(i) Let (2,6, 1) be a measure space, and let p € (1,00). Show that LP(Q, S, p) is reflexive.
(ii) Conclude that every Hilbert space is reflexive.

(iii) Argue that £*° is not reflexive.

Exercise 4.9 Let E be a reflexive Banach space. Show that the closed unit ball of F is compact
in the weak topology.

4.3 Schauder’s fixed point theorem

We need the following fact from algebraic topology:

Theorem 4.3.1 There is no continuous map from the closed unit ball of RN to SN—1 .=
{x € RN : ||z||2 = 1} whose restriction to SN~1 is the identity.

Theorem 4.3.2 (Brouwer’s fixed point theorem) Let K := {z € RY : |jz|]z < 1},
and let f: K — K be continuous. Then f has a fized point in K.

Proof Assume that the theorem is false, i.e. f(z) # z for all z € K. Define ¢: K — RY
by letting

#(z) := the unique intersection point of the line from f(z) through z with S~~1.

Then ¢ is continuous with ¢(K) C SV~! and ¢|gn-1 = id, which is impossible by Theorem
4.3.1. O

Corollary 4.3.3 Let E be a finite-dimensional normed space, let @ #+ K C E be compact

and convex, and let f: K — K be continuous. Then f has a fixed point in K.
Proof Without loss of generality, let E = RY. Choose r > 0 such that
Kc{zeRY :|z|ls<r}=:B.
Define ¢: B — K by letting
¢(x) := the unique point y € K such that ||z — y|s = dist(x, K) (x € B).

Then ¢ is continuous, and ¢(x) = x for z € K. Hence, f o ¢ is continuous and maps B
into B. By Theorem 4.3.2, there is x € B such that f(¢(x)) = z. Since ¢p(B) C K, we
have = € K, so that f(z) = f(¢(x)) = . 0

Exercise 4.10 Use the intermediate value theorem to prove Corollary 4.3.3 in the one-dimensional

case: If f: [a,b] — [a,b] is continuous, then f has a fixed point.
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Schauder’s fixed point theorem is the infinite-dimensional generalization of Corollary
4.3.3.

Definition 4.3.4 A subset S of a linear space E is called balanced if {A\z : z € S, X €
F, A\ <1} CS.

Definition 4.3.5 Let E be a linear space, and let @ # K C E be convex and balanced.
Then the Minkowski functional pg of K is defined by

pr(z) :=inf{t >0: 2z € tK} (x € E).

Proposition 4.3.6 Let E be a locally convex vector space, and let & # U C E be open,

convez, and balanced. Then uy is a continuous seminorm on E such that
U={zxeE:puy(x) <1} (4.4)

Proof Since U is balanced, we have 0 € U. Let x € E. Since %x — 0, and since U is
a neighborhood of 0, there is n € N such that %x € U. Hence, uy(z) < oo. Clearly,
up(0) =0. Let 2 € E, and A € F\ {0}. We have that

e et <= zetAa'U
A A
= retA U, since —U =U,
Al RY
— zet\HU  (t>0),
and hence

pu(Az) = inf{t > 0:x € t|]A\"HU} = |Ainf{t > 0:z € tU} = |\ py(z).

Let z,y € E, and let € > 0. Choose t,s > 0 such that z € tU, y € sU, t < py(z) + 5, and
s < pu(y) + 5. It follows that

t
x € U and J S i
t+s t+s t+s t+s
and therefore
r+y t s

UcU

S
t+ s t+ s +t—i—3

because U is convex. It follows that

€ €
po(z+y) <t+s<upy(x) +3 + o (y) +3 = pu () + pu(y) +e

and therefore
po(x +y) < pu(z) + pu(y).

91



All in all, py is a seminorm.
Let z € U. Since

(0,00) — E, t—tlz

is continuous, and since U is open, there is t € (0, 1) such that t~'z € U. It follows that
pr(z) < 1. Since U is balanced, pg(z) > 1 holds trivially for « ¢ U. This proves (4.4).
Since U is open and contains 0, there are ¢ > 0 and p1,... ,p, € P such that

{ac € E: max pj(:r)} cU.

Jj=1,...,n

Let (zq)a be a net in E such that z, — 0, i.e. pj(zo) — 0for j =1,... ,n. Let § > 0.
Then there is ag such that pj(z,) < € for j = 1,... ,n and a > «p. This means that
Zo € 0U for all a = o and thus puy(z,) < 0 for all @ > «ag. It it follows that uy(zq) — 0.

Finally, let (x4)q be a net in E such that x, — = € E. Since z, —  — 0, we have
\no(za) — pu (@) < pu(za — ) = 0.
Hence, py is continuous. O

Lemma 4.3.7 Let E be a locally convexr vector space, let @ # K C E be compact, let
f:+ K — K be continuous and suppose that f(x) # x for all x € K. Then there is an

open, conver, balanced set W such that
(@, f@) 2 e K}+ W x W)n{(z,2) : 2 € E} = 2.
Proof Let
Grfi={(z,f(x):z€ K} and A:={(z,2):2¢€E}

Let (z, f(z)) € Gr f. Then there are open subset U and V of E with x € U, f(z) € V,
and (U x V)N A = @. Without loss of generality, we may suppose that there are ¢ > 0
and p1,... ,Pn,q1,--- ,qm € P such that

U:{yEE: _max pj(:n—y)<6}

j=1

and

Define

W, = {y € E: max {p;j(y) a(y) < 6} ‘

k=1,...,m
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Then W, is an open, convex, balanced set with ((z, f(x)) + W, x W) N A = &. Since K

is compact, there are x1,... ,x; € K such that
k
K < |J ), fx7)) + Way x Wa)).
j=1

Define W :=(}_, W,,. O

Exercise 4.11 Let E be a linear space, and let S be a non-empty subset of E. The convexr hull
conv S of S is defined as the intersection of all convex subsets of F containing S. Show that conv S
consists of all elements of F of the form 2?21 tjs;, wheren € N, s1,...,s8, € S,and ty,... ,t, >0
with 37 ¢ = 1.

Exercise 4.12 Let E be a locally convex vector space, and let x1,...,x, € E. Show that the

convex hull of {z1,... ,z,} is compact.

Theorem 4.3.8 (Schauder’s fixed point theorem) Let E be a locally convez space,
let @ # K C E be compact, and let f: K — K be continuous. Then f has a fixed point
mn K.

Proof Assume that the theorem is false, i.e. the hypotheses of Lemma 4.3.7 are satisfied.

Choose W as specified in Lemma 4.3.7, i.e., in particular,
flx)dxz+W (x € K). (4.5)

By Proposition 4.3.6, py is a continuous seminorm on E such that W = {x € E :
pw(z) < 1}. Define

a:E—R, z— max{0,1— uw(x)}.

Choose 1, ... ,z, € K such that K C Jj_;zj + W. For j =1,... ,n, define aj: £ — R
and 3;: K — R by letting

aj(x) = a(r — zj) (xeE,j=1,...n)
and

() = a;(z) . 1
Bilw) = s e @€ i=L.n).

Let F be the linear span of {z1,...,z,}, and let C := conv{xy,... ,x,}. Then C C K is

a compact, convex subset of the finite-dimensional (normed) space F. Define
n
g K—H, zw— Zﬁj(sc)az]
j=1
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Since g o f maps H into itself, Corollary 4.3.3 yields zy € H such that g(f(zo)) = xo.
Since fj(x) =0 for « ¢ x; + W, we have

r—g(@)=Y Bi@)e—z)eW (zeK).
j=1

In particular,

f(@o) — @0 = f(z0) — g(f(w0)) €W
holds. This, however, contradicts (4.5). 0

Exercise 4.13 Let B be the closed unit ball in ¢, and define f: B — (2 by letting, for x =
('rn)’?lo:h
fl@) = (@~ llz]*), 21, 22,...).

Show that f is continuous with f(B) C B, but has no fixed point.

4.3.1 Peano’s theorem

Like Banach’s fixed point theorem, Schauder’s fixed point theorem can be applied to initial

value problems:

Lemma 4.3.9 (Mazur’s theorem) Let E be a Banach space, and let K C E be com-

pact. Then conv K is also compact.

Proof Let € > 0. Choose z1,...,z, € K such that

n
K c | Be(x)).
j=1

Let C := conv{xy,... ,x,}. Since C is compact, there are y,... ,y, € C such that

m
¢ c | B:(y).
j=1
Let z € conv K. Then there is w € conv K such that [[w — z|| < §. Let t1,... ,tx >0
with ¢ty 4+ 4+t =1 and vy,... ,vg EKsuchthatw:Zthjvj. Foreach j =1,... k,
there is v(j) € {1,... ,n} such that ||v; —z,¢;)| < §. It follows that

k k
w= timg|l = |1t — )
Jj=1 j=1
k
< D tillv = 3l
j=1
< ¢
:
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Since Z v(j) € C, there is jo € {1,... ,m} such that

k
€
2 tiTuG) — Yo < 3
j=1

All in all, we have that

k k
Iz =yl < llz—wl+ w = timp| + D tizug) — vio
Jj=1 Jj=1
€ €
< 3 + 3 + 3
= e
Since z € conv K was arbitrary, this means that
m
conv K C U Be(y;),
j=1
so that conv K is totally bounded and thus compact. a

Theorem 4.3.10 (Peano’s theorem) Let I = [a,b], and let f € Cy(I x R). Then the

initial value problem
v =f(z,y), yla)=uyo
has a solution ¢ € C1(I).

Proof As in the proof of Theorem 4.1.2, we need to find ¢ € C(I) such that

/ f(t,o(t)) d+ yo. (4.6)

For the sake of simplicity, suppose that I = [0,1], yo =0, and || f|lcc < 1. Again as in the
proof of Theorem 4.1.2, define T': C(I) — C(I) by letting

x>:/“ﬂamwwﬁ (bec), xel).
0

Let B:={¢p € C(I) : ||¢]lco < 1}. Then T maps B into itself. Note that

(o)) - @@ < [ Iftowlit<y—o (=0

The family {T'¢ : ¢ € B} is therefore equicontinuous and thus relatively compact. Let
K :=convTB. By Lemma 4.3.9, K is compact and clearly TK C K. By Theorem 4.3.8,
T has a fixed point in K, i.e. a solution of (4.6). 0

Exercise 4.14 Give two different solutions of the initial value problem

y/ = \/57 y(O) =0.
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4.3.2 Lomonosov’s theorem

We now give a second application of Schauder’s fixed point theorem to a famous open

problem in operator theory.

Definition 4.3.11 Let E be a Banach space, and let T' € B(E). A closed subspace F of

FE is called invariant for T if
(a) {0} C FC FE, and
(b) TF C F.
If F is invariant for every S € B(E) commuting with 7', it is called hyperinvariant

The invariant subspace problem — posed by J. von Neumann — is the following

question:

Let $) be a (separable, infinite-dimensional) Hilbert space over C, and let T €

B($)). Does T have an invariant subspace?

For operators on Banach spaces, the answer is negative: Counterexamples have been
constructed by P. Enflo and C. J. Read. Read’s construction even yields an operator
T € B(¢') without invariant subspace.

Exercise 4.15 Let $ be a Hilbert space such that either 2 < dim$ < oo or that $ is not
separable. Show that every bounded linear operator on $) has an invariant subspace.

Theorem 4.3.12 (Lomonosov’s theorem) Let E be an infinite-dimensional Banach

space over C, and let T € IC(E) \ {0}. Then T has a hyperinvariant subspace.

Proof Assume towards a contradiction that the claim is wrong. Without loss of generality
suppose that | T|| = 1. Fix xp € E with | Txo|| > 1, and let B:={z € E: ||z — x| < 1},
so that

0¢B and 0¢TB.

For any = € E'\ {0} define

F,:={Sz:S5eB(E), ST=TS}.

Then F, # {0} is a closed subspace of E with SF, C F, for all S € B(E) with ST =T'S.
By assumption, this means that F, = E for all z € E\ {0}. Hence, for each y € T B, there
is Sy € B(E) commuting with T such that ||Syy — zo|| < 1. Since K := TB is compact,
there are Si,...,S, € B(E) commuting with 7" such that

n
K C U{y € E:|Sjy— ol <1}
j=1
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Forye Kand j=1,...,n, let
a;(y) := max{0,1 — [[Sjy — zol[}-
For j =1,... ,n, define

N . a;(y)
b K =Ry S T T o)

and let

n
fiB—E, xw— Y B(Tx)S;Tx,
j=1
so that f is continuous. Let = € B, so that Tz € K. If 5;(Tz) > 0, then o;(Tz) > 0
and therefore ||S;Tx — zo|| < 1, i.e. S;Tx € B. The convexity of B yields f(B) C B. The
compactness of T yields that f(B) is compact. Let C := conv f(B). By Lemma 4.3.9, C

is compact, and clearly f(C) C C. By Theorem 4.3.8, there is a fixed point yy of f in
C C B. Let

R := Z Bj(Tyo)Sj

J=1

Then T' commutes with 7" and satisfies RTyp = f(yo) = yo. Since yo € B C E'\ {0}, this
means that Fy := ker(RT —idg) # {0}. Since RT € K(E), we also have that dim F < oo
and thus Fyp C E. Clearly, Fp is invariant form 7T". Let A € C be an eigenvalue of T'|g,, so
that F':= ker(A —T') # {0}. If A =0, then F' =kerT # E, since T' # 0. If A # 0, then
dim F' < oo, so that ' # E as well in this case. Clearly, F' is hyperinvariant for 7. O

4.4 The Markoff-Kakutani fixed point theorem

We present yet another fixed point theorem, this time not for a single function, but for a

whole family of maps.

Definition 4.4.1 Let K be a convex subset of a linear space. A map T: K — K is called
affine if

Tz +(1—ty)=tTe+(1-tTy (v,y€ K, te0,1]).

Theorem 4.4.2 (Markoff-Kakutani fixed point theorem) Let E be a locally con-
vex vector space, let @ # K C E be compact and convex, and let S be an abelian semigroup

of continuous affine maps on K, i.e.

(a) each S € S is a continuous affine map on K,
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(b) ST € S for all S,T € S, and
(c) ST =TS forall S,T € S.
Then there is xg € K such that Sxg = xg for all S € S.

Proof ForneNand S €S, let

i
L

§°
Il
S|
e
é
U
e

It is easy to see that
SnT, = TS, (n,meN, ST €S8).
Let
K:={SK:neN, SeS}.

Then K consists of non-empty, compact, convex subsets of K. Let ni,...,n; € N and
SW . .., 8k e S and note that

ni

k
(5(1) . s}j;)) (K) C QS’%)K'
=

2
Hence, every finite family of sets in K has non-empty intersection. Since K is compact,

this means that
({SnK :neN, SeSt#a

Let x¢ be any point in this intersection. Fix S € § and n € N. Then there is z € K such
that

1
zg = Spx = —(x+ Sz +---+ 5" 12).
n
It follows that
S.’L‘o — Xy =

(Sx+52m+---+s%)—%(x+sx+--~+5”*1x)

(S"x — x)

33

e —(K-K).
(K - K)
Let € > 0, and let p1,... ,p, € P. Let

U:= {meE: _max pj(a:)<6}.

J=L

Since K is compact, so is K — K. Hence, there is N € N such that %(K — K) C U for all
n > N. It follows that lim,, . (Szo — zg) = 0, i.e. Sxo = xp. O

98



Definition 4.4.3 Let G be a group.

(a) A mean on (*°(G) is a functional m € ¢*°(G)* such that m(¢) > 0 for ¢ > 0 and
m(1) = 1.

(b) A mean on (*°(G) is called left translation invariant if
m(Lgp) =m(¢) (9 €G, ¢ el=(G)),

where
(Lg@)(h) == d(gh)  (9,h € G, ¢ € £7(G)).
(c) G is called amenable if there is a left translation invariant mean on (*°(G).

Ezamples 1. If GG is finite, then it is amenable: Define

m(@) = ﬁ Solg) (6 <(G)).

geG

2. The free group Fs in two generators, say a and b, is not amenable. To see this, let,
for x € {a,b,a"", b1},

W(z) ;== {w € Fy : w starts with z},
so that
Fo =W (a) UW(b)UW (a ) UW (b~ 1) U {e}, (4.7)
the union being disjoint. In terms of indicator functions, (4.7) becomes
I'=Xw(a) + Xwe) + Xwia-1) + Xwe-1) + X{e}-

Let w € Fy \ W(a). Then we have a~'w € W(a™!) and thus w € aW (a™!). Hence,

we have the union
Fo = Wi(a)UaW (a™t)
which means, in terms of indicator functions, that
1 < Xw() + XaW(@a-1) = XW(a) T La—1 XW(a—1);
similarly, we obtain

L =xwe) + Le-ixwe-1)-
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Assume now that we have a left translation invariant mean m € ¢*°(G)*. We have:

1 = m(1)

3

\Y
3

(
(Xw(a) T Xw ) + Xw(1) + Xwe-1))

(Xw(a)) + mxwe)) + mxwe-1) + mxwe-1)))

(Xwa)) + mxwe)) + m(Le-1Xw (1)) + M L1 Xwp-1)))
(

(

I
3

Il
3

|
3

XW(a) T La-1Xw(a—1y) + mXxwe) + Ly Xwe-1))
1) +m(1)

v

m

I
N

This is impossible.
3. Let G be an abelian group. Let
K :={m e (*(G)" :||m| <1 and m is a mean}.

Clearly, K is convex. Since K is weak*-closed in the closed unit ball of /*°(G)*, it is
weak™ compact by Theorem 4.2.9. Clearly, if m € K, then so is Lym for all g € G.
The family {L; : g € G} is an abelian semigroup of continuous affine mappings on
K. By Theorem 4.4.2, there is mg € K such that Lymg = mg for all g € G, i.e.

mo(¢) = (Lgmo)(#) = mo(Lg¢) (9 € G, ¢ € £7(G)).

Hence, G is amenable.

4.5 A geometric consequence of the Hahn—Banach theorem

Lemma 4.5.1 Let E be a locally convex vector space, and let U be a neighborhood of 0.
Then any linear functional ¢: E — F with sup{|¢(z)| : ® € U} < 00 is continuous.

Proof Let e >0, and let C := sup{|¢(z)|: © € U}. Then

€
V.—{C+1x.xEU}

is a neighborhood of 0 such that |¢(x)| < € for all z € V. Hence, ¢ is continuous at 0 and

thus everywhere. ad

Lemma 4.5.2 Let E be a locally convexr vector space, and let U and K be non-empty
conver subsets of E with UNK = @ and U open. Then there are ¢ € E* and ¢ € R such
that

Re¢(z) < ¢ < Reg(y) (xeU, yeK).
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Proof Consider first the case where F = R.
Fix z9 € U and yy € K. Let zy := yg — 9, and define

V:zU—K+Zo.

Then V is an open, convex neighborhood of 0. Let py be the corresponding Minkowski
functional. As in the proof of Proposition 4.3.6, one sees that py is a sublinear functional
on E with

V={zxeFE:uy(r) <1}

In particular, py (z9) > 1 holds. Let F' = Rz, and define ¢: F' — R by letting ¢ (tzo) = ¢
for t € R. It follows that

_ ) t=tuv(z0) = pv(tz0) (620)
w““”‘{t<o<uwm@ (t<0).

The Hahn—Banach theorem (Theorem 2.1.3) then yields ¢: E — R with ¢|p = ¢ and
¢(z) < py(z) for all x € E. Let z € U and y € K, and note that

p(x) —dy) +1=d(x —y+ 20) < pv(z—y+20) < 1;
eV

it follows that

o(z) <oly) (zelU yeK). (4.8)

Since ¢(x) < 1 for z € V, we have ¢(x) > —1 for z € —V and thus |¢(z)| < 1 for
x € VN (=V). By Lemma 4.5.1, this means that ¢ € E*. By (4.8), ¢(U) and ¢(K) are
disjoint convex subsets of R. Let ¢ := sup,c;; |¢(z)|. It follows that

¢(z) <c<¢ly) (zeUyek) (4.9)

It is easy to see that ¢(U) C R is open. Hence, the first inequality in (4.9) must be strict.

Next, consider the case where F = C. Find ¢ € R and a continuous, R-linear functional

¢: F — R such that
<;5(ar)<c§<§(y) (relU,yeK).

Define ¢ € E* by letting

This completes the proof. O
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Theorem 4.5.3 Let E be a locally convex vector space, let F' and K be non-empty, dis-
joint, conver subsets of & such that F is closed and K is compact. Then there are ¢ € E*
and c1,co € R such that

Reg(z) <c1 <ca <Reg(y) (r€K,yeF).

Proof As in the proof of Lemma 4.3.7, we find an open, convex, balanced neighborhood
V of 0 such that (K +V)NF = @. By Lemma 4.5.2, there are ¢ € R and ¢ € E* such
that

Rep(z) < c < Reo(y) (e K+V,yeF).
Let

c1 := sup Re ¢(z) and cp:= sup Re¢(x).
zeK zeK+V

Since ¢(K + V) and ¢(F') are disjoint convex subsets of R with ¢(K + V') open and to
the left of ¢(F'), we have

2 <Reoly) (yeF)
Since ¢(K) C ¢(K + V) is compact,
d(z) <c1 < (x € K)

follows. O

4.6 The Krein—Milman theorem

Definition 4.6.1 Let E be a linear space, and let KX C E be convex. A convex set
@ # S C K is called an extremal subset of K if tx + (1 — t)y € S with z,y € K and
t € (0,1) only if z,y € S. If x € K is such that {z} is an extremal subset of K, the
point z is called an extremal point of K. The set of all extremal points of K is denoted
by ext K.

Lemma 4.6.2 Let E be a locally convex vector space, let @ # K C E be compact and
convez, let ¢ € E*, and let C := sup,cx Re¢(x). Then

Ky:={x e K:Re¢(z)=C}

is an extremal, compact, convex subset of K.
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Proof Clearly, K4 is compact and convex.
Let 2,y € K and t € (0,1) be such that

Re¢(tx + (1 —t)y) = C.
On the other hand, we have
C=tC+(1-t)C >tRe¢(z)+ (1 —t)Red(y) =Reop(tx + (1 —t)y) = C,
which is possible only if Re ¢(z) = Re ¢(y) = C. O

The Krein—-Milman theorem asserts that under certain conditions extremal points exist

in abundance:

Theorem 4.6.3 (Krein—Milman theorem) Let E be a locally convex vector space, and
let @ # K C E be compact and conver. Then K := conv(ext K).

Proof Let K be the collection of all extremal, compact, convex subsets of K. By Lemma
4.6.2, K is not empty.

For Ky € IC, let Ky consist of those sets in K contained in K. Let Ky be ordered by
set inclusion. By Zorn’s lemma, Ky has a minimal element, say S. Let x € S, and assume
that there is y € S\ {z}. Choose ¢ € E* with Re¢(y) < Re¢(z). By Lemma 4.6.2,
S¢ € S is an extremal compact, convex subset of S. Since S is an extremal subset of K,
this means that Sy is also an extremal subset of K. This contradicts the minimality of .9,

so that S = {z}. In particular, we see that
Konext K # @. (4.10)

Clearly,

K := conv (ext K) CcCK

holds, so that K is compact. Assume that there is g € K \ K. By Theorem 4.5.3, there
is ¢ € E* such that

sup Re ¢(z) < Re ¢(zo) =: C. (4.11)
zeK

But then, by Lemma 4.5.2 again,
Ky={x € F:Re¢(x) =C}

belongs to K. By (4.11), we have Ky N K = @. This, however, contradicts (4.10) (with
Ky = K¢) d
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4.6.1 The Stone—Weierstrafl theorem

We conclude these notes with a generalization of Theorem 2.3.3 whose proof makes use

of a number of powerful theorems we have encountered:

Theorem 4.6.4 (Stone—Weierstrafl theorem) Let X be a compact Hausdorff space,
and let 2 be a closed subalgebra of C(X) such that:

(a) 1 e

(b) if f €, then f € A;

(¢) ifz,y € X with x £y, there there is f € U such that f(z) # f(y).
Then 2 = C(X).

Proof Assume that 2 C C(X). By Corollary 2.1.6, there is ¢ € C(X)* such that ||| = 1,
but 1|9 = 0. It follows that

K= {pC(X)": 4] <1and ¢ls = 0} # {0}.

Clearly, K is convex and closed in the weak™ topology. By Theorem 4.2.9, this means
that K is weak™ compact and Theorem 4.6.3 implies that ext K # @. Let ¢ € ext K; it
is easy to see that ||¢|| = 1. By Theorem B.3.8, there is a unique p € M (X) such that

o(f) = /X f@)duz)  (f €C(X)),

Let Xy := supp u, and let zg € Xj.

We claim that Xo = {zo}. Let z € X \ {zo}. By (c), there is fi € 2 such that
B = fi(x) # fi(xo). By (a), we have 5 € A and therefore fy := f1 — 5 € . It follows
that fo(xg) # 0 = fa(x). Let f3 = |f2|?> = fofo € 2. Then (c) implies that f3 € 2A, and it
is clear that f3(xz) =0 < f3(x). Finally, let

JR—

= a3
ol 17

so that
f(x)=0, f(zo) >0, and 0< f<1.

Since 2 is an algebra, we have fg, (1 — f)g € U for all g € A and therefore
0= /fgdu=/(1 —fgdp  (geA).

It follows that fu, (1 — f)u € K. Let
o =l = [ £l
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Since f(xg) > 0, there are ¢ > 0 and a neighborhood U of xy such that f > e on U. It
follows that

az/fmwzljduzdmun>o

because U N Xy # &. In a similar fashion, one shows that o < 1. We also have

1—a—l—/f®ﬂ—/0—ﬂﬂM—Hﬂ—ﬂM-

Hence,
Ju 1—fp
=+ 0=
holds. Since p € ext K, this means that
o
I1f pell”
ie. W = 1 |u|-alsmost everywhere. Since f is continuuos, f equals o on Xy. Since

zg € Xo, we have
a = f(zo) > f(z) =0,
so that x ¢ Xy. Consequently, Xo = {zo}. We thus have A\ € F with |A\| = 1 such that
[ = Ndg,. Since
/1d()\6z0) -
this contradicts the choice of . a

Corollary 4.6.5 Let @ # K C RY be compact, and let f € C(K). Then, for each € > 0,
there is a polynomial p in N wvariables such that || f — p|| < e.

Proof Apply Theorem 4.6.4 with

2 := {p|x : pis a polynomial in N variables}.
It follows that 2 = C(K). O

Definition 4.6.6 Let X and Y be compact Hausdorff spaces, and let f € C(X) and
g€ C(Y). Then f®g € C(X xY) is defined through

(f@g)(z,y) = flx)gy) (reX,yeY).

The tenor product C(X)RC(Y') of C(X) and C(Y) is defined as the linear span in C(X xY)
of theset {f®g: felC(X), gelC(Y)}

Corollary 4.6.7 Let X andY be compact Hausdorff spaces, and let f € C(X xY). Then
C(X)®C(Y) is dense in C(X xY).

Proof Let 2 :=C(X)®C(Y), and apply Theorem 4.6.4. O
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Appendix A

Point set topology

We need point set topology in this course for two reasons:

e spaces of continuous functions are important examples of Banach spaces;

e later in this course, we need to consider topological vector spaces which are not

normed.

This appendix contains the necessary background in point set topology. For most

statements, I have included proofs.

A.1 Open and closed sets

A topological space is a set that has just enough structure, so that we can speak sensibly

of continuous functions on it. The notion of an open set is crucial:

Definition A.1.1 A topological space is a non-empty set X together with a family 7 of
subsets of X such that the following properties are satisfied:

(i) 9, X €13

(ii) if U is a family of sets in 7, then (J{U : U € U} € T;
(iii) if Uq,... , U, €7, then UyN---NU, € 7.
The family 7 is called the topology of X.

Examples 1. Let (X, d) be a metric space. Define U C X as open if, for each z € U,
there is € > 0 such that

Be(x) :={ye X :d(z,y) <e} CU.

It is well known that the collection of open subsets of X forms a topology. Different

metrics can induce the same topology.
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2. The collection of all subsets of any non-empty set is a topology. This topology is
called the discrete topology of X.

3. For any non-empty set X, the collection {&, X} is a topology. This topology is
called the chaotic topology of X.

Exercise A.1 Verify the statement made in the first example. Show that, if (X, d) is any metric

space, then

d(z,y)

XxX — —
X [07OO>7 (l‘,y) = 1 +d($,y)

is also a metric and induces the same topology as d.

Definition A.1.2 Let (X, 7) be a topological space.
(i) A subset U of X is open if U € .

(ii) A subset F of X is closed if X \ F' is open.

Passing to complements, the following is an immediate consequence of Definitions

A.1.1 and A.1.2.

Theorem A.1.3 Let X be a topological space. Then the following are true:
(i) @ and X are closed;
(ii) if F is a family of closed subsets of X, the (\{F : F € F} is closed;

(iii) if Fy,...,F, are closed, then F1 U---UF), is closed.

A.2 Continuity

In order to define continuity for functions between arbitrary topological spaces, we first

introduce the notion of a neighborhood:

Definition A.2.1 Let X be a topological space, and let x € X. A set U C X is called a
neighborhood of x if there is an open set V C U such that z € V.

Exercise A.2 Show that a subset of a topological space is open if and only if its a neighborhood
of each of its points.

Definition A.2.2 Let X and Y be topological spaces. A function f: X — Y is continu-
ous at xg € X if f~1(U) is a neighborhood of zq for each neighborhood U of f(xq). If f

is continuous at each x € X, we simply say that f is continuous.
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Exercise A.3 Let X and Y be topological spaces. Show that f: X — Y is continuous if and
only if f=1(U) is open for each open U C Y if and only if f~!(F) is closed for each closed F C Y.

For metric spaces, Definition A.2.2 is (equivalent to) the usual definition:

Proposition A.2.3 Let (X,d) and (Y,A) be metric spaces, and let xg € X. Then f:
X — Y is continuous at xg in the usual sense if and only if f is continuous at xg in the
sense of Definition A.2.2.

Proof Suppose that f is continuous at xg in the usual sense. Let U be a neighborhood
of f(xzo). By the definition of a neighborhood, there is an open set V' C U such that
f(zg) € V. From the definition of an open set in a metric space, there is ¢ > 0 such that
B(f(x0)) € V. From the definition of continuity in the context of metric spaces, there is
0 > 0 such that, for all x € X,

d(zo,z) <d = A(f(x0), f(z)) <k, (A.1)
Bs(z0) C [~ (Be(f(0))) € f7H(V) C f7HU).

Since Bs(zo) is an open set containing g, this means that f~!(U) is a neighborhood of
xo.

Suppose conversely that f is continuous at x( in the sense of Definition A.2.2. Let
€ > 0. Then B.(f(x0)) is a neighborhood of f(z). By Definition A.2.2, f~1(B.(f(x0)))
is a neighborhood of zg, so that there is an open set V C f~}(B.(f(x0))) with zg € V.

From the definition of open sets in metric spaces, there is § > 0 such that
Bs(x0) CV C f~H(Be(f(20)))-
But this just states that (A.1) holds for all z € X. 0

Exercise A.4 Show that, if X is a non-empty set equipped with the discrete topology, then each
function from X into any topological space is continuous.

Exercise A.5 Let X be a non-empty set equipped with its chaotic topology. Describe the con-

tinuous functions on X into a metric space.

Theorem A.2.4 Let X be a topological space, and let (f,)22, be a sequence of F-valued
continuous functions on X that converges uniformly to a function f on X. Then f is

continuous.
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Proof Let xg € X be arbitrary, and let U C F be a neighborhood of f(xg). Without loss
of generality (Why?), we may suppose that U = Be(f(x)) for some ¢ > 0. Since f,, — f
uniformly on X, there is N € N such that

\h@%j@ﬂ<§ (z € X, n > N). (A.2)

This means, in particular, that fy(zo) € U. Let V := Be(fn(x0)). Then V is a neigh-
borhood of fy(z¢). By Definition A.2.2, this means that f5' (V) is a neighborhood of .
Hence, there is an open set W C f' (V) with 29 € W.

For x € W, we have

7@ = Fo)l < |f@) = fi(@)] + (@) = fv(@o)| + | f(an) = fzo)
< SHINE) - fueo)l+5. by (A2),

3
< S484€ by the choice of T
— — — € cnoice o

3 3 37 y 1 b

= 6’

i.e. f(x) € Be(f(w0)). Hence, W C f=H(B(f(x0))), so that f~1(Bc(f(z0))) is a neighbor-
hood of xg. a

A.3 (Local) compactness

You probably have already encountered the notion of compactness in the context of metric
spaces. Since we have a notion of openness, in arbitrary topological spaces, we can define

compact topological spaces through a finite covering property:

Definition A.3.1 A topological space K is called compact if for any family U of open
subsets of K such that K = (J{U : U € U} there are Uy,... ,U, € U such that K =
UyU---uU,.

Exercise A.6 Show that a topological space X is compact if and only if X has the finite inter-
section property, i.e. for each family F of closed subsets of X such that ({F : F € F} = @, there
are Fy,...,F, € Fsuch that F;N---NF, = a.

The following theorem, which we state without proof, characterizes the compact metric

spaces:
Theorem A.3.2 Let X be a metric space. Then the following are equivalent:
(i) X is compact.

(ii) Ewvery sequence in X has a convergent subsequence.
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Example A subset of FY is compact precisely when it is closed and bounded (this is

immediate from the Heine-Borel theorem).

We also need to speak of compactness of subsets of arbitrary topological spaces:

Definition A.3.3 Let (X, 7) be a topological space, and let Y C X be non-empty. Then
Tly ={YNnU:U e}
is the relative topology on X induced by 7.

Exercise A.7 Let (X, 7) be a topological space, and let Y C X be non-empty. Show that (Y, 7|y)

is a topological space.

When saying that a certain subset of a topological space is compact (or has some other
topological property), we just mean that it is compact (or has that other property) with

respect to its relative topology.

Theorem A.3.4 Let K be a compact, topological space, let Y be a topological space, and
let f: K —Y be continuous. Then f(K) is compact.

Proof Let U be a family of open sets of X such that f(K) C (J{U : U € U}. Then
{f~Y(U) : U € U} is a family of open subsets of K such that K = |J{f~}(U) : U € U}.
Since K is compact, there are Uy, ... ,U, € U such that

K=fU)u---uf(Un)
and hence
f(K)cUyU---UU,.

From the definition of the relative topology on f(K), this means that f(K) is compact
(in its relative topology). 0

Corollary A.3.5 Let K be a compact topological space, and let f: K — R be continuous.

Then f is bounded and attains both its minimum and its maximum on K.

Exercise A.8 Derive Corollary A.3.5 for Theorem A.3.4.

In a metric space, we can always separate two distinct points through disjoint open

balls. The following definition is a generalization of this property of metric spaces:

Definition A.3.6 A topological space X is called a Hausdorff space if, for any x,y € X
with & # y, there are open sets U,V C X with UNV =g, x € U,and y € V.
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Example Every metric space is a Hausdorff space.

Exercise A.9 Give an example of a compact topological space which is not a Hausdorff space.

Proposition A.3.7 Let K be a compact topological space and let F C K be closed. Then

F' 1s compact.
Proof Let U be a family of open sets of K such that ' C |J{U : U € U}. It follows that
K=|J{U:Ucutu(x\F).
Since K is compact and K \ F' is closed, there are Uy,... ,U, € U such that
K=UU---UU,U(K\F)
and thus
FcUU---uUU,.
This complete the proof. O

Proposition A.3.8 Let X be a Hausdorff space, and let K C X be compact. Then K is
closed in X.

Proof Let x € X \ K. For each y € K, there are thus open subsets U, and V}, of X with
U,NVy=@ and z € Uy and y € V. Since K C |J{V}, : y € K} and K is compact, there
are y1,... ,yn € K such that K =V, U---UV,, . Let

W, i=Uy, N---NU,,.

Then W, is open such that x € W, and U, C X \ K.

Since x € X \ K was arbitrary, we can define W, for each such z. Consequently,
X\K = J{W,:2eX\K}
is open, so that K is closed. a

Exercise A.10 Does Proposition A.3.8 remain true from compact subsets of non-Hausdorff s-

paces.

The following theorem is often useful when it comes to establishing the continuity of

a function:

Theorem A.3.9 Let K be a compact topological space, let X be a Hausdorff space, and

let f: K — X be continuous and bijective. Then f~1: X — K is also continuous.
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Proof Let F C K be closed. We have to show that (f~1)~}(F) = f(F) is closed. By
Proposition A.3.7, F is compact and so is f(F') by Theorem A.3.4. Since X is Hausdorff,
this means that f(F) is closed. O

Exercise A.11 Give an example that shows that Theorem A.3.9 becomes false if we drop the
demand that X be Hausdorff.

Definition A.3.10 Let X be a topological space, and let S C X be arbitrary. Then the

closure of S in X is defined as
?zﬂ{F:FCX is closed with S C F'}.

Definition A.3.11 Let X be a topological spaces. Then S C X is called relatively

compact if S = @ or if S is compact.

Definition A.3.12 A topological space X is called locally compact if for each point in X

has a relatively compact neighborhood.
Example TFY is locally compact, but not compact.

Definition A.3.13 Let X be a locally compact Hausdorff space. A continuous function
f: X — F is said to vanish at infinity if, for each € > 0, there is a compact subset K of
X such that |f(z)| < € for all z € X \ K. We write Co(X,F) for the linear space of all

continuous function on X into F that vanish at infinity.

Exercise A.12 Show that for X = R this yields the usual definition of a function vanishing at
infinity, i.e.

fECORF) <« lim f(t)=0.

We state the following theorem without proof; (i) is a consequence of Urysohn’s lemma,

and (ii) is proved on page 4.
Theorem A.3.14 Let X be a locally compact Hausdorff space. Then:

(i) For each compact subset K of X and each closed subset F' of X such that KNF = &,
there is f € Co(X,R) such that flp =0 and flx = 1.

(ii) (Co(X,F), |- |lso) is a Banach space.

Exercise A.13 Prove Theorem A.3.14(ii).
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A.4 Convergence of nets

In metric spaces, topological concepts such as closedness and continuity can be charac-
terized through convergent sequences. This is not possible anymore for topological spaces

(see below), but there is an appropriate substitute:

Definition A.4.1 A non-empty set A is called directed if there is an oder relation < on
A such that:

(a) If @« < f and 8 < 7, then o < .
(b) If « < B and 8 < a, then oo = 3.
(c) For any a, 3 € A, there is v € A such that a <y and 3 < 7.
Definition A.4.2 A net in a non-empty set S is a function from a directed set into S.

Example All sequences are nets.

If A is a directed set and s: A — S is a net, we denote s by (s4)aca and write s, for

s(a); if the index set A is obvious or irrelevant, we often write (sq)a-

Definition A.4.3 Let X be a topological space, let x € X, and let () be a net in
X. Then (z4)a converges to x — in symbols x = lim, 2, or z4 e if, for each

neighborhood U of z, there is an index « such that xg € U for each index 3 with a < (.

Proposition A.4.4 Let X a Hausdorff space, let x,y € X, and let (xq)q be a net in X
that converges to both x andy. Then x =y.

Proof Assume that x # y. Then there are disjoint open sets U,V C X such that x € U
and y € V. Since z = lim,, x,, there is o, such that z, € U for all « such that a, < «a.
Since y = lim, @4, there is a, such that xz, € V for all a such that oy < a. Choose 3
such that a; < 3 and ay < 3. Then z, € U NV for all o > 3, which is impossible since
Uunv=g. O

Exercise A.14 Let X be a nonempty set equipped with the chaotic topology. Show that every

net in X converges to every point of X.

A.5 Closedness and continuity via nets

Theorem A.5.1 Let X be a topological space, and let S be a non-empty subset of X.
Then the following are equivalent for x € X :

(i) z€5;
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(i) there is a net (xq)q in S such that x = lim, x4 .

Proof (i) = (ii): Let AV, denote the collection of all neighborhoods of z. For U,V € N,
define:

U<V «— UDV.

Then N, is directed. By the definition of S, there is, for each U € AN, an element
xzy € UNS. Then (zy)ven, is a net in S such that x = limy 2y .

(iil) = (i): Let (z4)q be a net in S such that x = lim, z,, and assume that x € U :=
X \'S. Then there is o such that 23 € U C X \ S for 8 > «, which is impossible. O

This theorem is wrong for sequences:

Example Let X be an uncountable set, and define a subset of X as open if it is empty
or has countable complement. It follows that a closed subset of X is the whole space
or countable. Pick x € X. Then the only closed set containing S := X \ {z} is X, so
that S = X. Assume that there is a sequence (r,)°%; in S such that x, —> x. Then
U:= X\ {z1,29,...} is an open neighborhood of z, but x,, ¢ U for all n € N.

Corollary A.5.2 Let X be a topological space. Then the following are equivalent for a
non-empty subset F' of X:

(i) F is closed;

(ii) for each net (xq4)q in F' that converges to x € X, we have z € F.

Proof (i) = (ii): Let (z4)q be a net in F' with limit € X. Assume that x ¢ F, i.e.
x € U:= X\ F. Since U is a neighborhood of z, there is o such that 3 € U for 8 > .
But this is impossible, since (z4)q is a net in F.

(i) = (i): It follows immediately from Theorem A.5.1 that F = F, so that F is
closed. O

Theorem A.5.3 Let X and Y be topological spaces, and let x € X. Then the following

are equivalent for a map f: X —Y:
(i) f is continuous at x;

(ii) for each net (x4)a in X such that x4 = x, we have f(zq) — f(x).

Proof (i) = (ii): Let U be a neighborhood of f(x). Then f~%(V) c f~1(U) is open,
so that f~1(U) is a neighborhood of x. Since z = lim, x4, there is an index « such that
x5 € f~1(U) for B = a. But this means that f(zg) € U for 8 > .
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(ii) = (i): Let U be a neighborhood of f(z), and assume towards a contradiction
that f~!(U) is not a neighborhood of z. Hence, V ¢ f~1(U) for each open subset V of
X with x in V. Let V, denote the collection of all open subsets of X containing X. Then
V, is directed in a natural way. By assumptions, we can choose zy € V'\ f~1(U) for each
V € V,. It is clear that limy zy = x (Why?). But since f(xy) ¢ U for all V € V,, it
follows that f(xy) 4~ f(x). O

A.6 Compactness via nets

Definition A.6.1 Let A and B be directed sets. A map ¢: B — A is called cofinal if, for
each o € A, there is # € B such that ¢(3) > a.

Definition A.6.2 Let X be a non-empty set, and let (z4)aca and (yg)gep be nets in X.
Then (yg)pep is a subnet of (¥a)aca if Y = T4() for a cofinal map ¢: A — B.

Exercise A.15 Does a subnet of a sequence have to be again a sequence?

Proposition A.6.3 Let X be a topological space, let (xq)q be a net in X, and let x € X

be a limit of (xo)a. Then each subnet of (xq)a converges to x.

Exercise A.16 Prove Proposition A.6.3.

Definition A.6.4 Let X be a topological space, and let (x,)q be a net in X. A point
x € X is an cluster point of (x4)q if, for each a and for each neighborhood U of x, there
is B = a such that xg € U.

Proposition A.6.5 Let X be a topological space, and let (x4)q be a net in X. Then the

following are equivalent for v € X :
(i) x is an cluster point of (To)a;

(ii) there is a subnet of (xq)a converging to x.

Proof (i) = (ii): Let NV, denote the collection of all neighborhoods of z. Let B := AXN.
For (a1, Un), (ae,Us) € B define:

(Oél,Ul)%(OZQ,UQ) <— a1 <agand Uy D Us.

This turns B into a directed set. Let (o, U) € B. By the definition of an cluster point,
there is ¢(a, U) € A with ¢(a,U) = « such that x4y € U. The map ¢: B — A is
cofinal, and the net (74(q,17))(a,0)eB cONVerges to .

(ii) = (i): Clear by definition. O
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We can now prove the analogue of Theorem A.3.2 for general topological spaces:
Theorem A.6.6 For a topological space X the following are equivalent:
(i) X is compact;
(ii) each net in X has a convergent subnet.

Proof (i) = (ii): Let (x4 )a be a net in X. By Proposition A.6.5, it is sufficient to show
that (z4)q has an cluster point. Assume that (x,), has no cluster point. Then, for each
x € X, there is a neighborhood U, of = (which we can choose to be open) and an index
oy such that zg ¢ Uy, for B > a. The family (U,)zex is an open cover of X and thus has
a finite subcover {Uy,,... ,Us,}. Chose an index « such that a > «a; for j = 1,... ,n.

Hence, for 8 >~ «
xg ¢ Uy, U---UU,, =X,

which is absurd.

(ii) = (i): Assume that K is not compact. Then there is an open cover Y which
has no finite subcover. Let F(4) be the collection of all finite subsets of 4l ordered by set
inclusion. For each U € F(Y), there is

vy e X\ JU:Ueuy =((X\U:Ucu}

(otherwise, U would have a finite subcover). By hypothesis, the net (xy)yecr(s) has an
cluster point x € X. For any U € 4, and for any open neighborhood V of x, there
is V = {U} with 2y € V and thus VN X\ U # @. Assume that z ¢ X \ U. Then
x € U, so that U would be an open neighborhood of z; by the foregoing, we would have
UNX\U # @, which is absurd. It follows that x € X \ U. Since U € i is arbitrary, we

have
ve({X\U:Ued} =X\ J{U:Ueu} =g,

which is again absurd. a

A.7 Tychonoff’s theorem

Tychonoff’s theorem is possibly the deepest theorem in point set topology. It states that
compactness is preserved under arbitrary Cartesian products.
If 7 and o are two topologies, the 7 is called coarser than o if 7 has fewer open sets

then o (o is then called finer than 7).
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Definition A.7.1 Let (X;);cr be a family of topological spaces, let X := [[;c; Xi, and
let m;: X — X, be the projection onto the i-th coordinate. The product topology on X is

the coarsest topology such that the projections m; are all continuous.

Lemma A.7.2 Let (X;)er be a family of topological spaces, and let X := [],.; Xi. Then

the open subsets of X in the product topology are exactly the unions of sets of the form

m U)o LU, (A.3)

1

wheren € N, iy,... i, €, and U;; C X5,,...,U;, C X, are open.

Proof The collection of all union of sets of the form (A.3) is a topology that makes the
projections continuous; hence, each open subset of X in the product topology is of that
form.

Conversely, any topology making the projections continuous, must contain the sets of

the form (A.3) and thus their arbitrary unions. 0

Proposition A.7.3 Let (X;)ic1 be a family of topological spaces, and let X := [];5 X;.

The the following are equivalent for a net (xq)q in X and a point x € X :
(i) zoq = z in the product topology;
(i) mi(zq) = mi(x) for each i € L.

Proof (i) == (ii): This is clear by Theorem A.5.3, since the projections are continuous.
(ii) = (i): Let U be a neighborhood of x € X. By Lemma A.7.2, there are n € N,
11,...,tn € I, and open sets U;; C X;,,...,U;, C X;, with

atETri_ll(Ui )N YU, C U

in
By hypothesis, there is a such that m;;(vg) € U;; for 8 = a and j = 1,... ,n. This,

however, means that

xg E?T;I(Ui NN YU

in in

ycU
for G = a. O

Exercise A.17 Let (X;);er be a family of Hausdorff spaces. Show that []
the product topology is also Hausdorff.

ser Xi equipped with

Theorem A.7.4 (Tychonoff’s theorem) Let (X;);cr be a family of compact topological
spaces. Then X := [[;c; Xi equipped with the product topology is also compact.
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Proof Let (x4)q be a net in X. Let J C I; we call an element x € X a J-partial cluster
point of (x4)q if 2[5 is an cluster point of (z4|y)a in [[;c; Xi. We call z € X a partial
cluster point of (x4)q if it is a J-partial cluster point of for some J C I; J is called the
domain of x.

Let P be the set of all partial cluster points of (z4)q. Let x1, 22 € P. We define

r1 < 1wy <= domain of x; C domain of z2 and z2|domain of z; = 1-

Since each X; is compact, (x4) has {i}-partial cluster points for each i € 1.

Let K be a totally ordered subset of P. Let J := |J{domain of z : x € K}. Define
Yy € Hje,]] X; by letting y(j) := x(j) if j € domain of x. Since K is totally ordered, y is
well defined. We claim that y is a J-partial cluster point of (¥ )a. Let U C [[;¢; X; be a
neighborhood of y. By Lemma A.7.2, we may suppose that

U=r;"(Up)N---nm; ' (U;,),

where n € N, j1,...,j, € J, and U;, C X;,,...,U;, C X, are open. Clearly, for each o
there is 8 > «a such that

xﬁ(jk)Zﬂ'j(xg) EUjk (k:L... ,n),

so that xg € U.

By Zorn’s lemma, P has a maximal element  with domain J. Assume there is i € I\ J.
There is a subnet (z4,)s of (Ta)a such that m;(za,) LA mj(x) for each j € J. Since X is
compact, we may find a subnet (zqj )y of (Ta,)g such that m(zq, ), converges to some
z; in X;. Define @ € J[;cj 0y X; by letting Z[y = 2 and Z(i) = ;. It follows that  is a

J U {i}-partial cluster point of (z4)q, which contradicts the maximality of x. 0
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Appendix B

Measure and integration

Like point set topology, measure theory is an important source of examples in functional
analysis.
In this appendix, I have collected the definitions and results we need. Proofs are not

given.

B.1 Measure spaces

Definition B.1.1 Let Q be a set. A o-algebra over 2 is collection & of subsets of {2 such
that the following are satisfied:

(a) Q€ G;
(b) if A € &, then A° € G;
(c) if (An)5, is a sequence in &, then (J;7 | A, € 6.
The pair (2, &) is called a measurable space.
Ezamples 1. P(Q) is a o-algebra.
2. {ACQ:Aor A°is countable} is a o-algebra.
3. {ACQ:Aor A is finite} is not a o-algebra if  is infinite.

4. If § C PB(N) is arbitrary, there is a smallest o-algebra over  containing S; this
o-algebra is called the o-algebra generated by S. If Q) is a topological space, the
o-algebra generated by its open subsets is called the Borel o-algebra over €); we
denote it by B().

Definition B.1.2 Let (£2,S) be a measurable space. A (positive) measure on (2, 8) is

a function p: & — [0, 00) such that:
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(b) p(UpZy An) = 3007, 1(Ay) for each sequence (A,)5 of pairwise disjoint sets in
G.

The triple (2, S, ) is called a measure space.
Ezamples 1. Counting measure: ) any set; & = P(Q); u(A) := |Al.

2. Dirac measure:  any set with w € Q fixed; & = P(Q); p = dy, ie. u(4) = 1if
w € A, otherwise u(A) = 0.

3. N-dimensional Lebesque measure: @ =RN: & = %(RN); u= AN, ie. N-dimensio-

nal Lebesgue measure.

Definition B.1.3 A measure space (2, &, i) (or rather the measure u) is called:

(a) o-finite if there is a sequence (A,)5 in & such that Q = J;2 | A, and p(A4,) < oo

for each n;
(b) finite if pu(2) < oo;
(c) a probability space (or rather probability measure) if p(2) = 1.
Ezxamples 1. N-dimensional Lebesgue measure is o-finite, but not finite.
2. Any Dirac measure is a probability measure.

3. Counting measure is finite if and only if € is finite, and o-finite if and only if €2 is

countable.
Definition B.1.4 Let (2, S, ) be a measure space.
(a) A set N € G is called a p-zero set if u(N) = 0.
(b) The completion of & with respect to yu is defined as

{S C Q: there are A,N € & with AC S C AUN and N is a p-zero set}.

(¢) A property is said to hold p-almost everywhere (short: p-a.e.) on Q if there is a
p-zero set N € & such that the property in question holds on Q\ N.

Exercise B.1 Show that the completion of a g-algebra with respect to a measure is again a

o-algebra.

Ezample The completion of B(RM) with respect to AV is the o-algebra of Lebesgue

measurable sets.
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B.2 Definition of the integral

Definition B.2.1 Let (2,&) be a measurable space. A function f: Q — R is called
elementary if there are aq,... ,a, € R and Ay,..., A, € & such that

n
f= Z QXA -
k=1

Definition B.2.2 Let (2, S, 1) be a measure space, and let f: Q — R be an elementary
function. The integral of f with respect to u is defined as

[ rn =3 awntan)
k=1

where f = >, agxa, with aq,... ,ap, € Rand A4;,... ,4, € 6.

Remark It can be shown that the value [ fdu is independent of the representation f =

ZZ:I akXAk .

Definition B.2.3 Let (2,8) be a measurable space. A function f: Q — R U {oco} is
called &-measurable if {w € Q: f(w) < a)} € & for each o € R.

Ezamples 1. Every elementary function is measurable.

2. If Q is any topological space, then every continuous function f: 2 — R is Borel-

measurable.
3. Every increasing function f: R — RU {oo} is Borel-measurable.

4. Measurability is preserved under taking pointwise suprema, infima, and limits.

Proposition B.2.4 Let (2,85) be a measurable space, and let f: Q — [0, 00| be &-mea-
surable. Then there is an increasing sequence (fn)02, of &-measurable functions on )
that converges to f pointwise; in case [ is bounded, we can even chose that sequence in

such a way that we have uniform convergence.

Definition B.2.5 Let (2, S, 1) be a measure space, let f: Q — [0, 0] be G-measurable,
and let (f,)>2, be as in Proposition B.2.4. Then the integral of f with respect to p is

defined as
/fd,u = lim /fnd,u.

Remarks 1. It can be shown that the value [ fdu is independent of the choice of the

sequence (fr)o% .
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2. As the limit of an increasing sequence [ fdu always exists, but may be oo.
3. If [ fdu < oo, then {w € Q: f(w) = oo} is a p-zero set.

4. We have always [ fdp > 0, and [ fdu = 0if and only if f = 0 y-almost everywhere.

Definition B.2.6 Let (2,8, 1) be a measure space. A measurable function f: Q —
R U {oo} is called p-integrable if [ fi dp < oo and [ f_ du < co. The integral of f with

respect to u is defined as
[ran= [ sedn= [ 1-dn.

Remark Treating real and imaginary part separately, one can also define the integral of

C-valued functions.
Proposition B.2.7 Let (2, S, p) be a measure space, and let
LY, 6, 1) :={f: Q= R: f is integrable}.
Then:
(i) LY, &, ) is a linear space;

(i) the integral is linear on L1(Q, &, ), i.e.
/(Ozf+ﬁg)du = a/fdwrﬂ/gdu (a, B €R, fg€ LN, 6,p));

(iil) the integral is positive, i.e. if f > 0 p-a.e. for some f € LY(Q, &, p), then [ fdu > 0.

Examples 1. For (RN, B(RN), \N) we get the familiar N-dimensional Lebesgue inte-
gral.

2. For (92,B(9), ), every function f: 2 — R is integrable, and we have
[ro=1@)  (ec@emn)

3. For (N,B(N), u) with u counting measure, a function f: N — R is integrable if and

only if the series Y 7, f(n) converges absolutely; in this case, we have

/fduzglf(n).
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B.3 Theorems about the integral

The main advantage the Lebesgue integral has over the Riemann integral is the ease with
which it can be interchanged with pointwise limits. These limit theorems hold in a more

abstract measure theoretic context:

Theorem B.3.1 (monotone convergence theorem) Let (2, S, 1) be a measure spa-
ce, let (fn)22, be an increasing sequence of [0, 0o]-valued, S-measurable functions on €,

and let f: Q — [0,00] be their pointwise limit. Then

/fdu_nlggo/fndu.

Theorem B.3.2 (dominated convergence theorem) Let (2, S, 1) be a measure spa-
ce, let (fn)02, be a sequence of R U {oo}-valued, p-integrable functions functions on €,
and let f,g: Q — RU{oo} be such that:

(a) f=limy oo fr p-a.e.;
(b) g is p-integrable;

(¢) |ful < g p-a.e. for alln € N.

/fdu:nlgrolo/fndu.

Definition B.3.3 Let (2, &) be a measurable space, and let x4 and v be measures on

Then f is p-integrable with

(©,6). Then v is said to be absolutely continuous with respect to p (in symbols: v < )

if every p-zero set is already a v-zero set.

Ezamples 1. Let (2,8) be a measure space, let u be a measure on (£, S), and let
f:Q — [0, 00] be &-measurable. Define v: & — [0, oo] through

WA>:1/fXAmL (Ac®),

Then v is a measure on (€2, &) (which is finite if and only if f is p-integrable) such
that v < p.

2. Let a € BV]a,b]. Then there is a unique measure p on ([a, b], B([a,b])) such that
(e, ) = a(d) — ale) (e, € [a,1])

(the integral with respect to p is just the Riemann—Stieltjes integral with respect
to a). The measure p is absolutely continuous with respect to Lebesgue measure if

and only if « is absolutely continuous.
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Theorem B.3.4 (Radon—Nikodym theorem) Let (2, &) be a measurable space, and
let p and v be measures on (2,6) such that v < p and p is o-finite. Then there is a

S-measurable function f: Q — [0, 00] such that

v4) = [ fxade (ace),
Any two such functions must be equal ji-a.e..

Remark Tt is necessary that u be o-finite in the Radon—Nikodym theorem: A straight-
forward counterexample for non-o-finite p is (R,B(R)) with counting measure as p and

Lebesgue measure as v.

Definition B.3.5 Let (2, &) be a measurable space. A complex measure on (2, &) is a
function p: & — C such that:

(b)

p (Ul An) = 3000 u(Ay) for each sequence (Ay,)02 of pairwise disjoint sets in
S.

Remark Every complex measure p has a so called Jordan decomposition, i.e. there are
(with some strings attached) uniquely determined finite measures p1, p2, 13, and pg such
that p = p1 — po +i(pus — pa). A function is said to be p-integrable if it is p;-integrable
for 7 =1,...,4. The integral of a u-integrable function f is then defined as

/fdu :Zg/gdug‘-

Definition B.3.6 Let (2, &) be a measurable space, and let x4 be a complex measure on
(©2,6). The total variation of p is defined as

||| := sup ZW(Aj)]:nGN, AjﬂAkZQforj;ék,Q:UAj
j=1 j=1

Definition B.3.7 Let 2 be a locally compact space. A (positive) measure p on (€2, 8(Q))

is called regular if
(a) p(K) < oo for all compact K C €,
(b) p(A) =inf{u(U): A C U C Q with U open} for all A € B(2), and

(¢) p(U) =sup{u(K): K C U is compact} for all open U C Q.
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A complex measure is called regular if all the measures occurring in its Jordan decomposi-
tion are regular. The collection of all regular, complex measures on (2,B(2)) is denoted
by M ().

Ezample N-dimensional Lebesgue measure is regular.

Theorem B.3.8 (Riesz representation theorem) Let Q be a locally compact space.
Then T': M(2) — Co(2)* with

(Tp)(f) = / fdu (e M(Q), f € o)

s a linear bijection such that

ITpll=pl (e M(Q)),

Remark The Riesz representation theorem is also valid over R.
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