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Introduction

These are the TEXed and polished notes of the course Math 516 (Linear Analysis1) as I
taught it in the fall terms 2000 and 2001. The most distinctive feature of these notes is
their complete lack of originality: Everything can be found in one textbook or another.
The book that is probably closest in spirit is

1. J. B. Conway, A Course in Functional Analysis. Springer Verlag, 1985.

Other recommended books are:

2. B. Bollobás, Linear Analysis. An Introductory Course, Second Edition. Cam-
bridge University Press, 1999.

3. N. Dunford and J. T. Schwartz, Linear Operators, I. Wiley-Interscience, 1988.

4. G. K. Pedersen, Analysis Now . Springer Verlag, 1989.

5. W. Rudin, Functional Analysis, Second Edition. McGraw-Hill, 1991.

The notes, which are generally kept in a rather brutal theorem-proof style, are not intended
to replace any of these books, but rather to supplement them by relieving the students
from the necessity of taking notes and thus allowing them to devote their full attention
to the lecture.

Volker Runde, Edmonton August 22, 2003

1called “baby functional analysis” by some
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Chapter 1

Basic concepts

In this chapter, we introduce the main objects of study in this course:

• normed linear spaces, in particular Banach spaces, and

• the bounded linear maps between them.

1.1 Normed spaces and Banach spaces

All linear spaces considered in these notes are supposed to be over a field F, which can be
R or C.

Definition 1.1.1 Let E be a linear space. A norm on E is a map ‖ · ‖ : E → [0,∞) such
that

(a) ‖x‖ = 0 ⇐⇒ x = 0 (x ∈ E);

(b) ‖λx‖ = |λ|‖x‖ (λ ∈ F, x ∈ E);

(c) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (x, y ∈ E).

A linear space equipped with a norm is called a normed space.

Examples 1. There are several canonical norms on the linear space E := F
N . For

x = (λ1, . . . , λN ), let:

‖x‖1 :=
N∑
j=1

|λj |;

‖x‖2 :=

 N∑
j=1

|λj |2
 1

2

;

‖x‖∞ := max{|λ1|, . . . , |λN |}.
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Then ‖ · ‖1, ‖ · ‖2, and ‖ · ‖∞ are norms on E which satisfy the inequality

‖x‖∞ ≤ ‖x‖1 ≤
√
N‖x‖2 ≤ N‖x‖∞ (x ∈ E). (1.1)

2. Let S 6= ∅ be a set and define

`∞(S,F) :=
{
f : S → F : sup

s∈S
|f(s)| <∞

}
.

For f ∈ `∞(S,F), define

‖f‖∞ := sup
s∈S
|f(s)|.

This turns `∞(S,F) into a normed space.

3. In fact, there is a norm on any linear space E. Let S be a Hamel basis (see Exercise
1.2 below) for E. Let x ∈ E. Then there are (necessarily unique) λ1, . . . , λn ∈ F
along with s1, . . . , sn ∈ S such that x =

∑n
j=1 λjsj . Define

‖x‖ :=
n∑
j=1

|λj |.

This defines a norm on E.

The last example emphasizes that a normed space is not just a linear space that can
be equipped with a norm, but a linear space equipped with a particular norm.

Exercise 1.1 Justify (1.1).

Exercise 1.2 Let E 6= {0} be a (possibly infinite-dimensional) linear space. A Hamel basis for E
is a set S of elements of E with the following properties:

• S is linearly independent.

• Each element of E is a linear combination of elements of S.

Show that E has a Hamel basis by proceeding as follows:

(i) Let S := {T ⊂ E : T is linearly independent}. Show that S 6= ∅.

(ii) Let T be a non-empty subset of S which is totally ordered by set inclusion. Show that⋃
{T : T ∈ T } belongs again to S.

(iii) Use Zorn’s lemma to conclude that S has maximal elements.

(iv) Show that any such maximal element is a Hamel basis for E.

Exercise 1.3 Let p, q ∈ (1,∞) be such that 1
p + 1

q = 1.
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(i) Show that

x
1
p y

1
q ≤ x

p
+
y

q
(x, y > 0). (1.2)

(Hint : Apply the logarithm to (1.2) and prove that inequality first.)

For x = (λ1, . . . , λN ) ∈ FN , let

‖x‖p :=

 N∑
j=1

|λj |p
 1

p

.

(ii) Hölder’s inequality . Show that, for x = (λ1, . . . , λN ), y = (µ1, . . . , µN ) ∈ FN , we have

N∑
j=1

|λjµj | ≤ ‖x‖p‖y‖q.

Which known inequality do you obtain for p = q = 2?

(iii) Minkowski’s inequality . Show that

‖x+ y‖p ≤ ‖x‖p + ‖y‖p (x, y ∈ FN ).

(iv) Conclude that ‖ · ‖p is a norm on FN .

Exercise 1.4 Let F be a linear subspace of a normed space E. Show that the closure of F in E

is also a linear subspace of E.

Exercise 1.5 A seminorm on a linear space E is a map p : E → [0,∞) with the following
properties:

• p(λx) = |λ|p(x) (λ ∈ F, x ∈ E);

• p(x+ y) ≤ p(x) + p(y) (x, y ∈ E).

What is missing from the definition of a norm?

(i) Show that F := {x ∈ E : p(x) = 0} is a linear subspace of E.

(ii) For x ∈ E, define ‖x+ F‖ := p(x). Show that ‖| · ‖| is a norm on E/F .

If (E, ‖ · ‖) is a normed space, then

d : E × E → [0,∞), (x, y) 7→ ‖x− y‖

is a metric. We may thus speak of convergence, etc., in normed spaces.

Definition 1.1.2 A normed space E is called a Banach space if the corresponding metric
space is complete, i.e. every Cauchy sequence in E converges in E.

Exercise 1.6 Let E be a normed space, and let F be a linear subspace of E. Show that, if F is
a Banach space, then it is closed in F . Conversely, show that, if E is a Banach space and if F is
closed in F , then F is a Banach space.
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Examples 1. (FN , ‖ · ‖j) is a Banach space for j = 1, 2,∞.

2. Let (fn)∞n=1 be a Cauchy sequence in (`∞(S,F), ‖ · ‖∞). For each s ∈ S, we have

|fn(s)− fm(s)| ≤ ‖fn − fm‖∞ (n,m ∈ N).

Hence, (fn(s))∞n=1 is a Cauchy sequence in F. Define f : S → F by letting

f(s) := lim
n→∞

fn(s).

We claim that f ∈ `∞(S,F) and that ‖fn − f‖∞ → 0. We prove both claims
simultaneously. Let ε > 0, and choose N ∈ N such that

‖fn − fm‖ < ε (n,m ≥ N).

It follows that

|fn(s)− fm(s)| ≤ ‖fn − fm‖ < ε (n,m ≥ N, s ∈ S).

We thus obtain for n ≥ N and s ∈ S:

|fn(s)− f(s)| = lim
m→∞

|fn(s)− fm(s)|

≤ lim sup
m→∞

‖fn − fm‖

≤ ε. (1.3)

In particular, we obtain

|f(s)| ≤ |fN (s)|+ ε ≤ ‖fN‖∞ + ε,

so that f ∈ `∞(S,F). Taking the supremum over s ∈ S in (1.3) yields

‖fn − f‖∞ ≤ ε

3. Let X be a topological space, and define

Cb(X,F) := {f ∈ `∞(X,F) : f is continuous}.

By Theorem A.2.4, Cb(X,F) is a closed subspace of `∞(X,F) and thus a Banach
space by Exercise 1.4.

4. Let X be a locally compact Hausdorff space, and let C0(X,F) be defined as in
Definition A.3.13. Let (fn)∞n=1 be a sequence in C0(X,F) converging to f ∈ Cb(X,F)
(with respect to ‖ · ‖∞). Let ε > 0, and choose N ∈ N such that

‖fn − f‖∞ <
ε

2
(n ≥ N).
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It follows that

|fN (x)− f(x)| ≤ ‖fN − f‖∞ <
ε

2

and consequently

|f(x)| ≤ |fN (x)|+ ε

2
.

Since fN ∈ C0(X,F), there is a compact set K ⊂ X such that supx∈X\K |f(x)| < ε
2 .

This implies

sup
x∈X\K

|f(x)| < ε.

Hence, C0(X,F) is a closed subspace of the Banach space Cb(X,F) and thus a Banach
space itself.

5. For N ∈ N, define

CN ([0, 1],F) := {f : [0, 1]→ F : f is N -times continuously differentiable}.

Define

f : [0, 1]→ F, x 7→

{
1
2 − x, x ∈

[
0, 1

2

]
,

x− 1
2 , x ∈

[
1
2 , 1
]
.

Then f belongs to C([0, 1])1, but not to CN ([0, 1]). Since f is piecewise continuously
differentiable, it can be uniformly approximated by the sequence (sn)∞n=1 of the
partial sums of its Fourier series. Since sn ∈ CN ([0, 1]) for each n ∈ N, we obtain
that CN ([0, 1]) is not closed in (C([0, 1]), ‖ · ‖∞). Hence, (CN ([0, 1]), ‖ · ‖∞) is not a
Banach space.

Define another norm on CN ([0, 1]):

‖f‖N :=
N∑
j=1

‖f (j)‖∞ (f ∈ CN ([0, 1]).

Let (fn)∞n=1 be a Cauchy sequence in (CN ([0, 1]), ‖ · ‖N ). Then (f (j))∞n=1 is a Cauchy
sequence in (C([0, 1]), ‖ · ‖∞) for j = 0, 1, . . . , N . Since C([0, 1]) is a Banach space,
there are g0, g1, . . . , gN ∈ C([0, 1]) such that

‖f (j)
n − gj‖∞ → 0 (j = 0, 1, . . . , N).

We claim that

gj+1 = g′j (j = 0, . . . , N − 1).
1If the field F is obvious or irrelevant, we often write C0(x), CN ([0, 1]), etc., without the symbol F.

8



This, however, follows immediately from

gj(x) = lim
n→∞

f (j)
n (x)

= lim
n→∞

[∫ x

0
f (j+1)(t) dt+ f (j)

n (0)
]

=
∫ x

0
gj+1(t) dt+ gj(0) (x ∈ [0, 1], j = 0, . . . , N − 1).

Let f := g0. Then we obtain inductively that f (j) = gj for j = 0, 1, . . . , N . This
yields

‖fn − f‖N =
N∑
j=0

‖f (j)
n − f (j)‖∞ =

N∑
j=0

‖f (j)
n − gj‖∞ → 0.

Hence, (CN ([0, 1]), ‖ · ‖N ) is a Banach space.

The last example shows that a linear space equipped with one norm may fail to be a
Banach space, but can be a Banach space with respect to another norm.

Exercise 1.7 We write shorthand `∞(F) for `∞(N,F). Let c(F) denote the subspace of `∞(F)
consisting of all convergent sequences in F, let c0(F) be the subspace of all sequences in F that
converge to zero, and let c00(F) consist of all sequences (λn)∞n=1 in F such that λn = 0 for all but
finitely many n ∈ N.

(i) Show that (c(F), ‖ · ‖∞) and (c0(F), ‖ · ‖∞) are Banach spaces.

(ii) Show that (c00(F), ‖ · ‖∞) is not a Banach space.

Our first theorem is an often useful characterization of completeness in normed spaces
in terms of convergent series:

Definition 1.1.3 Let (xn)∞n=1 be a sequence in the normed space E. We say that the
series

∑∞
n=1 xn converges in E if the sequence

(∑N
n=1 xn

)∞
N=1

of its partial sums converges.
We say that

∑∞
n=1 xn converges absolutely if

∑∞
n=1 ‖xn‖ <∞.

Exercise 1.8 For n ∈ N, let

xn : N→ F, m 7→


1
n
, m = n,

0, else.

(i) Show that, for every permutation π : N → N, the series
∑∞
n=1 xπ(n) converges in c0 to the

same limit. Which is it?

(ii) Show that the series
∑∞
n=1 xn is not absolutely convergent.

Theorem 1.1.4 (Riesz–Fischer theorem) Let E be a normed space. Then the follow-
ing are equivalent:
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(i) E is a Banach space.

(ii) Every absolutely converging series in E converges.

Proof (i) =⇒ (ii): This is proven in the same fashion as for series in R.
(ii) =⇒ (i): Let (xn)∞n=1 be a Cauchy sequence. Choose a subsequence (xnk)∞k=1 of

(xn)∞n=1 such that

‖xnk − xnk+1
‖ < 1

2k
(k ∈ N).

Let

yk := xnk − xnk+1
(k ∈ N).

Then the series
∑∞

k=1 yk converges absolutely and thus converges in E. Since

K∑
k=1

yk = (xn1 − xn2) + (xn2 − xn3) + · · ·+ (xnK − xnK+1) = xn1 − xnK+1 (K ∈ N),

it follows that (xnk)∞k=1 is also convergent, with limit x, say. Let ε > 0, and choose
K,N ∈ N with nK ≥ N

‖xn − xm‖ <
ε

2
(n,m ≥ N) and ‖xnk − x‖ <

ε

2
(k ≥ K).

For n ≥ max{N,K}, this means

‖xn − x‖ ≤ ‖xn − xnk‖+ ‖xnk − x‖ < ε,

so that x = limn→∞ xn. ut

Example Let (Ω,S, µ) be a measure space, let p ∈ [1,∞), and let

‖f‖p :=
(∫

Ω
|f(ω)|p dµ(ω)

) 1
p

for each measurable function f : Ω→ F. Define

Lp(Ω,S, µ) := {f : Ω→ F : f is measurable with ‖f‖p <∞}.

Using Hölder’s and Minkowski’s inequalities (compare Exercise 1.3), it can be shown that
Lp(Ω,S, µ) is a linear space, and ‖ · ‖p is a seminorm on it. Let

Np := {f ∈ Lp(Ω,S, µ) : ‖f‖p = 0},

and define

Lp(Ω,S, µ) := Lp(Ω,S, µ)/Np.
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By Exercise 1.5, ‖ · ‖p induces a norm on Lp(Ω,S, µ), which we denote by ‖ · ‖p as well.
We claim that (Lp(Ω,S, µ), ‖ · ‖p) is a Banach space.

We will use Theorem 1.1.4. Let (fn)∞n=1 be a sequence in Lp(Ω,S, µ) such that∑∞
n=1 ‖fn‖p <∞. Define

g : Ω→ [0,∞], ω 7→

( ∞∑
n=1

|fn(ω)|

)p
.

We claim that g is integrable. To see this, note that(∫
Ω

(
N∑
n=1

|fn(ω)|

)p
dµ(ω)

) 1
p

=

∥∥∥∥∥
N∑
n=1

|fn|

∥∥∥∥∥
p

≤
N∑
n=1

‖fn‖p (N ∈ N).

By the monotone convergence theorem (Theorem B.3.1), this means∫
Ω
g(ω) dµ(ω) = lim

N→∞

∫
Ω

(
N∑
n=1

|fn(ω)|

)p
dµ(ω) ≤

( ∞∑
n=1

‖fn‖p

)p
<∞,

so that g is indeed integrable. Hence, for almost all ω ∈ Ω, the series
∑∞

n=1 f(ω) converges
absolutely. Define

f : Ω→ F, ω 7→

{ ∑∞
n=1 fn(ω), if g(ω) <∞,

0, otherwise.

Then f is measurable with |f |p ≤ g. For almost all ω ∈ Ω, we have

lim
N→∞

∣∣∣∣∣
N∑
n=1

fn(ω)− f(ω)

∣∣∣∣∣ = 0 and

∣∣∣∣∣
N∑
n=1

fn(ω)− f(ω)

∣∣∣∣∣
p

≤ g(ω).

For the dominated convergence theorem (Theorem B.3.2) it is then easily inferred that
limN→∞

∥∥∥∑N
n=1 fn − f

∥∥∥
p

= 0, i.e. f =
∑∞

n=1 fn.

The following exercise is the measure theory free version of the preceding example:

Exercise 1.9 Let p ∈ [1,∞). Let `p be the set of all sequences (xn)∞n=1 in F with
∑∞
n=1 |xn|p <∞.

(i) For x = (xn)∞n=1 ∈ `p define

‖x‖p :=

( ∞∑
n=1

|xn|p
) 1
p

.

Show that ‖ · ‖p is a norm on `p.

(ii) Show that (`p, ‖ · ‖p) is a Banach space.
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Example Let (Ω,S, µ) be a σ-finite measure space. A measurable function f : Ω → F is
called essentially bounded if there is C ≥ 0 such

{ω ∈ Ω : |f(ω)| ≥ C} (1.4)

is a µ-zero set. Let L∞(Ω,S, µ) denote the set of all essentially bounded functions on Ω.
For f ∈ L∞(Ω,S, µ) define

‖f‖∞ := inf{C ≥ 0 : (1.4) is a µ-zero set}.

It is easy to see that ‖ · ‖∞ is a seminorm on L∞(Ω,S, µ). Let N∞ := {f ∈ L∞(Ω,S, µ) :
‖f‖∞ = 0}, and define

L∞(Ω,S, µ) := L∞(Ω,S, µ)/N∞.

Then L∞(Ω,S, µ) equipped with the norm induced by ‖ ·‖∞ — likewise denoted by ‖ ·‖∞
— is a Banach space.

1.2 Finite-dimensional spaces

We have seen in the previous section, that there may be different norms on one linear
space: (CN ([0, 1]), ‖ · ‖∞) is not a Banach space whereas (CN ([0, 1]), ‖ · ‖1) isn’t. On the
other hand, the norms ‖ · ‖1, ‖ · ‖2, and ‖ · ‖∞ on FN are related by (1.1), so that the
resulting topologies are identical. The following definition captures this phenomenon:

Definition 1.2.1 Let E be a linear space. Two norms ‖·‖1 and ‖·‖2 are called equivalent
(in symbols: ‖ · ‖1 ∼ ‖ · ‖2) if there is C ≥ 0 such that

‖x‖1 ≤ C‖x‖2 and ‖x‖2 ≤ C‖x‖1 (x ∈ E).

Exercise 1.10 Verify that the equivalence of norms is indeed an equivalence relation, i.e. it is
reflexive, symmetric, and transitive.

Exercise 1.11 Let E be a linear space, and let ‖ · ‖1 and ‖ · ‖2 be two equivalent norms on E.
Verify in detail that (E, ‖ · ‖1) is a Banach space if and only if (E, ‖ · ‖2) is a Banach space.

Examples 1. ‖ · ‖1, ‖ · ‖2, and ‖ · ‖∞ on FN are equivalent by (1.1).

2. for x = (λn)∞n=1 ∈ c00(F) we have

‖x‖∞ ≤
∞∑
n=1

|λn| =: ‖x‖1.

On the other hand, let

xn := (1, . . . , 1︸ ︷︷ ︸
n-times

, 0, . . . ).
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Then

‖xn‖∞ = 1, but ‖xn‖1 = n (n ∈ N),

so that ‖ · ‖∞ 6∼ ‖ · ‖1.

3. ‖ · ‖∞ and ‖ · ‖N are not equivalent on CN ([0, 1]). (Why?)

The next theorem shows that there is only one equivalence class of norms on a finite-
dimensional vector space.

Theorem 1.2.2 Let E be a finite-dimensional linear space. Then all norms on E are
equivalent.

Proof Let x1, . . . , xN ∈ E be a basis for E. For x = λ1x1 + · · ·+ λNxN , let

‖|x‖| := max{|λ1|, . . . , |λN |}.

It is sufficient to show that ‖| · ‖| ∼ ‖ · ‖ for every other norm on E.
Let x ∈ E. Then we have:

‖x‖ ≤ |λ1|‖x1‖+ · · ·+ |λN |‖xN‖

≤ ‖|x‖|(‖x1‖+ · · ·+ ‖xN‖)︸ ︷︷ ︸
=:C1

.

It remains to be shown that there is C2 ≥ 0 with ‖|x‖| ≤ C2‖x‖ for all x ∈ E.
Assume otherwise. Then there is a sequence (x(n))∞n=1 in E with ‖|x(n)‖| > n‖x(n)‖.

Let

y(n) :=
x(n)

‖|x(n)‖|
(n ∈ N).

For each n ∈ N, there are unique λ(n)
1 , . . . , λ

(n)
N ∈ F with y(n) =

∑N
j=1 λ

(n)
j xj . It follows

that ∥∥∥(λ(n)
1 , . . . , λ

(n)
N

)∥∥∥
∞

= ‖|y(n)‖| = 1 (n ∈ N).

By the Heine–Borel theorem, the sequence
((
λ

(n)
1 , . . . , λ

(n)
N

))∞
n=1

has a convergent sub-

sequence
((
λ

(nk)
1 , . . . , λ

(nk)
N

))∞
k=1

. Let µj := limk→∞ λ
(nk)
j for j = 1, . . . , n, and define

y :=
∑N

j=1 µjxj . It follows that

‖|y‖| = ‖(µ1, . . . , µN )‖∞ = 1,

so that, in particular, y 6= 0, and

‖y(nk) − y‖ ≤ C1‖|y(nk) − y‖| = C1

∥∥∥(λ(nk)
1 − µ1, . . . , λ

(nk)
N − µN

)∥∥∥
∞
→ 0.

On the other hand, the choice of (x(n))∞n=1 implies n‖y(n)‖ < 1 so that limn→∞ ‖y(n)‖ = 0.
But this means that y = 0, which is impossible. ut

13



Theorem 1.2.2 does not mean that finite-dimensional normed spaces are uninteresting:
It says nothing about the constant C showing up in Definition 1.2.1. To find optimal values
for C for concrete norms can be quite challenging. We won’t pursue this, however.

Corollary 1.2.3 Every finite-dimensional normed space is a Banach space.

Exercise 1.12 Prove Corollary 1.2.3.

Corollary 1.2.4 Every finite-dimensional subspace of a normed space is closed.

As an immediate consequence, each finite-dimensional normed space can be identi-
fied with FN , so that theorems for FN carry over to arbitrary finite-dimensional normed
spaces. In particular, a finite-dimensional space has the Bolzano–Weierstraß property:
Each bounded sequence has a convergent subsequence. As we shall now see, this property
even characterizes the finite-dimensional normed spaces.

Lemma 1.2.5 (Riesz’ lemma) Let E be a normed space, and let F be a closed, proper,
i.e. F 6= E, subspace of E. Then, for each θ ∈ (0, 1), there is xθ ∈ E with ‖xθ‖ = 1, and
‖x− xθ‖ ≥ θ for all x ∈ F .

Proof Let x ∈ E \F , and let δ := inf{‖x−y‖ : y ∈ F}. Then there is a sequence (xn)∞n=1

in F with limn→∞ ‖x − xn‖ = δ. If δ = 0, the closedness of F implies x ∈ F , which is a
contradiction. Hence, δ > 0 must hold. Since θ ∈ (0, 1), we have δ < δ

θ . Choose y ∈ F
with 0 < ‖x− y‖ < δ

θ . Let

xθ :=
y − x
‖y − x‖

,

so that trivially ‖xθ‖ = 1. For any z ∈ F , we then have:

‖z − xθ‖ =
∥∥∥∥z − y − x

‖y − x‖

∥∥∥∥
=

∥∥∥∥z − y

‖y − x‖
+

x

‖y − x‖

∥∥∥∥
=

1
‖x− y‖

‖(‖x− y‖z + y︸ ︷︷ ︸
∈F

)− x‖

︸ ︷︷ ︸
≥δ

≥ θ

δ
δ

= θ.

This completes the proof. ut

Theorem 1.2.6 For a normed space E, the following are equivalent:

14



(i) Every bounded sequence in E has a convergent subsequence.

(ii) dimE <∞.

Proof (ii) =⇒ (i) is elementary.
(i) =⇒ (ii): Suppose that dimE = ∞. Choose x1 ∈ E with ‖x1‖ = 1. Suppose that

x1, . . . , xn have already been chosen such that

‖xj‖ = 1 (j = 1, . . . , n)

and

‖xj − xk‖ ≥
1
2

(j, k = 1, . . . , n j 6= k).

Let F := lin{x1, . . . , xn}. Since dimF < ∞, F is a proper and automatically closed
subspace of E. By Riesz’ lemma, there is xn+1 ∈ E with

‖xn+1‖ = 1 and ‖x− xn+1‖ ≥
1
2

(x ∈ F ).

Inductively, we thus obtain a sequence (xn)∞n=1 of unit vectors such that

‖xn − xm‖ ≥
1
2

(n 6= m). (1.5)

By (1.5), (xn)∞n=1 has no Cauchy subsequence. ut

Theorem 1.2.6 is the first example for the many subtle and often surprising links
between algebra and analysis that surface in this course: A purely algebraic property —
a linear space has finite dimension — turns out to be equivalent to the purely analytic
Bolzano–Weierstraß property.

1.3 Linear operators

One of the major topics in linear algebra is the study of linear maps between finite-
dimensional linear spaces. A considerable part of this course will be devoted to the study
of linear maps between (possibly, but not necessarily) infinite-dimensional spaces.

Definition 1.3.1 Let E and F be linear spaces. A map T : E → F is called linear if

T (λx+ µy) = λTx+ µTy (x, y ∈ E, λ, µ ∈ F).

Linear maps are also called linear operators. A linear operator from E to F is called a
linear functional .

15



Examples 1. Let E := F
N , let F := F

M , and let A be an M ×N -matrix. Then

TA : E → F, x 7→ Ax

is a linear operator.

2. Let ∅ 6= Ω ⊂ RN be open, and let CM (Ω) denote the linear space of all functions f :
Ω→ F for which all partial derivatives of order at most M exist and are continuous.
For each multiindex α ∈ NN0 with |α| := α1 + · · ·+ αN ≤M , let fα ∈ C(Ω). Then

D : CM (Ω)→ C(Ω), f 7→
∑
|α|≤M

fα
∂αf

∂xα

is linear. Operators of this type are called linear (partial) differential operators.

3. Let k : [0, 1] × [0, 1] → F be continuous. For f ∈ C([0, 1]), define Tf : [0, 1] → F

through

(Tf)(x) :=
∫ 1

0
f(y)k(x, y) dy (x ∈ [0, 1]).

We claim that Tf ∈ C([0, 1]). Fix x0 ∈ [0, 1], and let ε > 0. Since [0, 1] × [0, 1] is
compact, k is uniformly continuous. Hence, there is δ > 0 such that

|k(x, y)− k(x′, y′)| < ε

‖f‖∞ + 1

for all (x, y), (x′, y′) ∈ [0, 1] × [0, 1] with ‖(x, y) − (x′, y′)‖2 < δ. Let x ∈ [0, 1] such
that |x− x0| < δ. It follows that

‖(x, y)− (x0, y)‖2 = |x− x0| < δ (y ∈ [0, 1]).

We thus obtain:

|(Tf)(x)− (Tf)(x0)| =
∣∣∣∣∫ 1

0
f(y)[k(x, y)− k(x0, y)] dy

∣∣∣∣
≤

∫ 1

0
|f(y)|︸ ︷︷ ︸
≤‖f‖∞

[k(x, y)− k(x0, y)]︸ ︷︷ ︸
< ε
‖f‖∞+1

dy

≤ ε.

Hence, Tf is continuous.

It is immediately checked that

T : C([0, 1])→ C([0, 1]), f 7→ Tf

is a linear operator, the Fredholm operator with kernel k. Fredholm operators are
part of the larger class of linear integral operators.
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The first examples suggests that we may view linear operators as generalizations of
matrices.

Exercise 1.13 Let E be a linear space with Hamel basis s, let F be another linear space, and
let (yα)s∈S be an arbitrary family of elements of F . Show that there is a unique linear operator
T : E → F such that Ts = ys for all s ∈ S.

There is virtually nothing of substance that can be said on linear operators between
arbitrary linear spaces. We have to confine ourselves to the setting of normed spaces —
preferably Banach spaces — and continuous linear operators.

Theorem 1.3.2 Let E and F be normed spaces. Then the following are equivalent for a
linear operator T : E → F :

(i) T is continuous at 0.

(ii) T is continuous.

(iii) There is C ≥ 0 such that ‖Tx‖ ≤ C‖x‖ for all x ∈ E.

(iv) sup{‖Tx‖ : x ∈ E, ‖x‖ ≤ 1} <∞.

Operators satisfying these equivalent conditions are called bounded.

Proof (i) =⇒ (ii): Let x ∈ E, and let (xn)∞n=1 be a sequence in E such that xn → x.
Then

‖Txn − Tx‖ = ‖T (xn − x︸ ︷︷ ︸
→0

)‖ → 0

holds, which proves (ii).
(ii) =⇒ (iii): Assume that (ii) holds, but that (iii) is false. Then there is a sequence

(xn)∞n=1 in E such that ‖Txn‖ > n‖xn‖ for all n ∈ N. Let

yn :=
xn
‖Txn‖

(n ∈ N).

Since 1 > n‖yn‖ for all n ∈ N, it follows that yn → 0. On the other hand, we have
‖Txn‖ = 1, which is impossible if T is continuous at 0.

(iii) =⇒ (iv): Clearly, (iii) implies

sup{‖Tx‖ : x ∈ E, ‖x‖ ≤ 1} ≤ C.

(iv) =⇒ (i): Assume that T is not continuous at 0. Then there is a sequence (xn)∞n=1

in E such that xn → 0, but δ := inf ‖Txn‖ > 0. Let

yn :=
xn
‖xn‖

(n ∈ N),

17



so that ‖yn‖ = 1 for all n ∈ N. On the other hand, we have

‖Tyn‖ =
1
‖xn‖

‖Txn‖ >
δ

‖xn‖
→ ∞,

which contradicts (iv). ut

Exercise 1.14 Show that the following are equivalent for a normed space E:

(a) dimE =∞.

(b) For each normed space F 6= {0}, there is an unbounded linear operator T : E → F .

(c) There is an unbounded linear functional on E.

Exercise 1.15 Let E be a normed space. Show that the following are equivalent for a linear
functional φ : E → F:

(a) φ /∈ E∗.

(b) φ({x ∈ E : ‖x‖ ≤ 1}) = F.

(c) kerφ = φ−1({0}) is dense in E.

Exercise 1.16 Let E and F be Banach spaces, and let T ∈ B(E,F ) be such that there is C ≥ 0
with

‖x‖ ≤ C‖Tx‖ (x ∈ E).

Show that T is injective and has closed range.

Examples 1. Let E and F be normed spaces, and let T : E → F be linear. Suppose
that dimE <∞. Define

‖|x‖| := max{‖x‖, ‖Tx‖} (x ∈ E).

Then ‖| · ‖| is a norm on E. By Theorem 1.2.2, ‖| · ‖| and ‖ · ‖ are equivalent, so
that there is C ≥ 0 with

‖Tx‖ ≤ ‖|x‖| ≤ C‖x‖ (x ∈ E).

Hence, T is bounded.

2. Let

T : C1([0, 1])→ C([0, 1]), f 7→ f ′,

and let both C1([0, 1]) and C([0, 1]) be equipped with ‖ · ‖∞. For n ∈ N, define

fn(x) := xn (x ∈ [0, 1]),
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so that ‖fn‖∞ = 1 for n ∈ N. However, since

f ′n(x) =
nxn−1

n
(n ∈ N, x ∈ [0, 1]),

we have ‖Tfn‖∞ = n, so that T is not bounded. If, however, C1([0, 1]) is equipped
with the C1-norm ‖ · ‖1, T becomes bounded:

‖Tf‖∞ = ‖f ′‖∞ ≤ ‖f‖∞ + ‖f ′‖∞ = ‖f‖1 (f ∈ C1([0, 1])).

3. Let k : [0, 1]× [0, 1]→ F be continuous, and let T : C([0, 1])→ C([0, 1]) be given by

(Tf)(x) =
∫ 1

0
f(y)k(x, y) dy (f ∈ C([0, 1]), x ∈ [0, 1]).

For each f ∈ C([0, 1]), we have:

‖Tf‖∞ ≤ sup
x∈[0,1]

∫ 1

0
|f(y)||k(x, y)| dy‖f‖∞‖k‖∞.

Hence, T is bounded.

4. Let (Ω,S, µ) be a σ-finite measure space, let p ∈ [1,∞], and let φ ∈ L∞(Ω,S, µ).
Define Mφ : Lp(Ω,S, µ)→ Lp(Ω,S, µ) through

Mφf := φf (f ∈ Lp(Ω,S, µ)).

It is easy to see that

‖Mφf‖∞ ≤ ‖φ‖∞‖f‖p (f ∈ Lp(Ω,S, µ)).

The first of these examples shows that the requirement of boundedness is vacuous for
any operator between finite-dimensional spaces.

Given two normed spaces, we shall now see that the collection of all bounded linear
operators between them is again a normed space in a natural manner:

Definition 1.3.3 Let E and F be normed spaces.

(a) The set of all bounded linear operators from E to F is denoted by B(E,F ). If
E = F , let B(E,F ) =: B(E); if F = F, let B(E,F ) =: E∗.

(b) For T ∈ B(E,F ), the operator norm of T is defined as

‖T‖ := sup{‖Tx‖ : x ∈ E, ‖x‖ ≤ 1}.

Proposition 1.3.4 Let E and F be normed space. Then:
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(i) B(E,F ) equipped with the operator norm is a normed space.

(ii) For T ∈ B(E,F ), ‖T‖ is the smallest number C ≥ 0 such that

‖Tx‖ ≤ C‖x‖ (x ∈ E). (1.6)

(iii) If G is another normed space, then for T ∈ B(E,F ) and S ∈ B(F,G), we have
ST ∈ B(E,G) such that

‖ST‖ ≤ ‖S‖‖T‖.

Proof (i): It is straightforward to see that B(E,F ) is a linear space. We have to check
the norm axioms:

(a) Let T ∈ B(E,F ) be such that ‖T‖ = 0. Let x ∈ E \ {0}. Then we have

1
‖x‖
‖Tx‖ =

∥∥∥∥T ( x

‖x‖

)∥∥∥∥ ≤ ‖T‖ = 0,

so that Tx = 0. Since x was arbitrary, this means T = 0.

(b) It is routine to see that

‖λT‖ = |λ|‖T‖ (λ ∈ F, T ∈ B(E,F )).

(c) Let x ∈ E be with ‖x‖ ≤ 1. Then we have

‖Sx+ Tx‖ ≤ ‖Sx‖+ ‖Tx‖ ≤ ‖S‖+ ‖T‖ (S, T ∈ B(E,F ))

and thus

‖S + T‖ ≤ ‖S‖+ ‖T‖ (S, T ∈ B(E,F )).

(ii): Let x ∈ E \ {0}. Since

1
‖x‖
‖Tx‖ =

∥∥∥∥T ( x

‖x‖

)∥∥∥∥ ≤ ‖T‖,
it follows that ‖Tx‖ ≤ ‖T‖‖x‖. Let C ≥ 0 be any other number such that (1.6) holds.
Then

sup{‖Tx‖ : x ∈ E, ‖x‖ ≤ 1} ≤ C.

(iii): Let x ∈ E. Then we have

‖STx‖ ≤ ‖S‖‖Tx‖ ≤ ‖S‖‖T‖‖x‖.

From (ii), it follows that ‖ST‖ ≤ ‖S‖‖T‖. ut
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Exercise 1.17 Let p ∈ [1,∞), and let L,R : `p → `p be defined through

L(x1, x2, x3, . . . ) = (0, x1, x2, . . . )

and R(x1, x2, x3, . . . ) = (x2, x3, x4, . . . ) ((x1, x2, x3, . . . ) ∈ `p).

Show that L,R ∈ B(`p) and calculate ‖L‖ and ‖R‖.

Exercise 1.18 Let FN and FM be equipped with ‖ · ‖∞, and let A = [aj,k] j=1,... ,M
k=1,... ,N

be an M ×N -
matrix over F. Show that

‖TA‖ = max
j=1,... ,M

N∑
k=1

|aj,k|

Theorem 1.3.5 Let E be a normed space, and let F be a Banach space. Then B(E,F )
is a Banach space.

Proof Let (Tn)∞n=1 be a Cauchy sequence in B(E,F ). Let x ∈ E. Then

‖Tnx− Tmx‖ ≤ ‖Tn − Tm‖‖x‖ (n,m ∈ N),

so that (Tnx)∞n=1 is a Cauchy sequence — and thus convergent — in F . Define

T : E → F, x 7→ lim
n→∞

Tnx.

Clearly, T is linear.
We claim that T ∈ B(E,F ) and that ‖Tn − T‖ → 0. Let x ∈ E with ‖x‖ ≤ 1, and let

ε > 0. There is N ∈ N — independent of x — such that

‖Tnx− Tmx‖ ≤ ‖Tn − Tm‖ < ε (n,m ≥ N).

For n ≥ N , this entails that

‖Tnx− Tx‖ = lim
m→∞

‖Tnx− Tmx‖ ≤ lim sup
m→∞

‖Tn − Tm‖ ≤ ε. (1.7)

In particular, we have ‖Tx‖ ≤ ‖TN‖+ ε, so that T ∈ B(E,F ). Taking the supremum over
x ∈ E with ‖x‖ ≤ 1 in (1.7), we see that ‖Tn − T‖ ≤ ε for n ≥ N . ut

Corollary 1.3.6 For every normed space E, its dual space E∗ is a Banach space.

As turns out, arbitrary bounded linear operators between Banach spaces are still very
general objects. To obtain stronger results, we have to look at a smaller class of operators:

Definition 1.3.7 Let E and F be normed space. A linear operator T : E → F is called
compact if T ({x ∈ E : ‖x‖ ≤ 1}) is relatively compact in F . The set of all compact
operators from E to F is denoted by K(E,F ).
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Proposition 1.3.8 Let E and F be normed spaces. Then:

(i) K(E,F ) is a subspace of B(E,F ).

(ii) T ∈ B(E,F ) is compact if and only if, for each bounded sequence (xn)∞n=1 in E, the
sequence (Txn)∞n=1 has a convergent subsequence.

Proof (i): The set T ({x ∈ E : ‖x‖ ≤ 1}) is relatively compact and thus bounded in F .
This proves K(E,F ) ⊂ B(E,F ). From (ii), it follows easily, that K(E,F ) is a subspace of
B(E,F ).

(ii): We have:

T is compact ⇐⇒ T ({x ∈ E : ‖x‖ ≤ 1}) is relatively compact

⇐⇒ rT ({x ∈ E : ‖x‖ ≤ 1}) is relatively compact for each r > 0

⇐⇒ T ({x ∈ E : ‖x‖ ≤ r}) is relatively compact for each r > 0.

This implies (ii). ut

Exercise 1.19 Let E, F , and G, be normed linear spaces, and let T ∈ B(E,F ) and S ∈ B(F,G).
Show that ST ∈ K(E,G) if T or S is compact.

Exercise 1.20 Let E be a linear space. A linear operator P : E → E is called a projection if
P 2 = P .

(i) Show that a linear map P : E → E is a projection if and only if its restriction to PE is the
identity.

(ii) Let E be normed, and let P ∈ B(E) be a projection. Show that P has closed range.

(iii) Let E be normed. Show that a projection P ∈ B(E) is compact if and only if it has finite
rank.

Exercise 1.21 Is one of the operators L and R from Exercise 1.17 compact?

Examples 1. Let dimE =∞. Then idE : E → E is not compact.

2. Let T ∈ B(E,F ) have finite rank, i.e. dimTE <∞. Then T is compact. To see this,
let (xn)∞n=1 be a bounded sequence in E. Then (Txn)∞n=1 is a bounded sequence in
TE and thus has a convergent subsequence by Theorem 1.2.2.

3. Let k : [0, 1]× [0, 1]→ F be continuous, and let T ∈ B(C([0, 1])) be the corresponding
Fredholm operator. Let (fn)∞n=1 be a bounded sequence, and let C := supn∈N ‖fn‖∞.
Let ε > 0, and choose δ > 0 such that

|k(x, y)− k(x′, y′)| < ε

C + 1
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whenever ‖(x, y)− (x′, y′)‖2 < δ. Let x, x′ ∈ [0, 1] with |x− x′| < δ. It follows that

|(Tfn)(x)− (Tfn)(x′)| ≤
∫ 1

0
|fn(y)|︸ ︷︷ ︸
≤C

|k(x, y)− k(x′, y′)|︸ ︷︷ ︸
< ε
C+1

dy < ε.

Hence, (Tfn)∞n=1 is bounded an equicontinuous. By the Arzelà–Ascoli theorem,
(Tfn)∞n=1 thus has a uniformly convergent subsequence.

Theorem 1.3.9 Let E be a normed space, and let F be a Banach space. Then K(E,F )
is a closed, linear subspace of F .

Proof Let (Tn)∞n=1 be a sequence inK(E,F ), and let T ∈ B(E,F ) be such that ‖Tn−T‖ →
0. Assume that T /∈ K(E,F ). Then there is a bounded sequence (xn)∞n=1 in E such that
(Txn)∞n=1 has no convergent, i.e. Cauchy, subsequence. Passing to a subsequence, we may
thus suppose that

δ := inf
n6=m
‖Txn − Txm‖ > 0. (1.8)

Let C := supn∈N ‖xn‖, and choose N ∈ N so large that ‖T − TN‖ < δ
3C+1 . For n,m ∈ N,

we then have:

‖Txn − Txm‖ ≤ ‖Txn − TNxn‖︸ ︷︷ ︸
≤‖T−TN‖‖xn‖

+‖TNxn − TNxm‖+ ‖TNxm − Txm‖︸ ︷︷ ︸
≤‖TN−T‖‖xm‖

<
2
3
δ + ‖TNxn − TNxm‖.

Since TN ∈ K(E,F ), the sequence (TNxn)∞n=1 has a Cauchy subsequence. In particular,
there are n,m ∈ N, n 6= m, such that ‖TNxn−TNxm‖ < δ

3 . It follows that ‖Txn−Txm‖ <
δ contradicting (1.8). ut

1.4 The dual space of a normed space

We now focus on a particular space of bounded linear operators:

Definition 1.4.1 For a normed space E, the Banach space E∗(= B(E,F)) is called the
dual space or dual of E.

We want to give concrete descriptions of some dual spaces.

Definition 1.4.2 Let E and F be normed spaces.

(a) An isomorphism of E and F is a linear map T ∈ B(E,F ) such that S ∈ B(F,E)
exists with ST = idE and TS = idF . If there is an isomorphism between E and F ,
we call E and F isomorphic (in symbols: E ∼= F ).
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(b) A isometry from E to F is a linear map T : E → F such that

‖Tx‖ = ‖x‖ (x ∈ E).

If there is an isomorphism of E and F which is also an isometry, then E and F are
called isometrically isomorphic (in symbols: E = F ).

Exercise 1.22 Let E and F be normed spaces, and let T : E → F be an isometry.

(i) Show that T is injective.

(ii) Suppose that T is surjective. Show that there is an isometry S ∈ B(F,E) exists with
ST = idE and TS = idF .

Exercise 1.23 Let c00 := c00(F) be equipped with the following norms:

‖x‖∞ := sup
n∈N
|x(n)| and ‖x‖1 :=

∞∑
n=1

|x(n)| (x ∈ c00).

Show that the identity map id : (c00, ‖ · ‖1) → (c00, ‖ · ‖∞) is a continuous bijection, but not an
isomorphism.

Examples 1. Let E and F be normed spaces with dimE = dimF <∞. Then E ∼= F .

2. Let p ∈ (1,∞), and let q ∈ (1,∞) be such that 1
p + 1

q = 1. Define T : `q → (`p)∗ by
letting for x = (xn)∞n=1 ∈ `q and Y = (yn)∞n=1 ∈ `p:

(Tx)(y) :=
∞∑
n=1

xnyn.

Since

|(Tx)(y)| ≤ lim
N→∞

N∑
n=1

|xnyn| ≤ lim
N→∞

(
N∑
n=1

|xn|q
) 1

q
(

N∑
n=1

|yn|p
) 1

p

= ‖x‖q‖y‖p,

the map T is well defined and satisfies ‖T‖ ≤ 1. Let x ∈ `q with ‖x‖q = 1, and
define (yn)∞n=1 as follows:

yn :=

{
|xn|q
xn

, if xn 6= 0,
0, otherwise.

We have
∞∑
n=1

|yn|p =
∞∑
n=1
xn 6=0

|xn|pq

|xn|p
=
∞∑
n=1

|xn|pq−p = ‖x‖qq = 1,

so that ‖y‖p = 1. It follows that

‖Tx‖ ≥ |(Tx)(y)| =
∞∑
n=1

|xn|q = ‖x‖qq = 1.
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For arbitrary x ∈ `q \ {0}, we thus have:

‖Tx‖ = ‖x‖
∥∥∥∥T ( x

‖x‖

)∥∥∥∥ ≥ ‖x‖.
Hence, T is an isometry.

We claim that T is surjective. Let φ ∈ (`p)∗. For each n ∈ N, define e(n) ∈ `p

through

e(n)
m :=

{
1, n = m,

0, n 6= m

Define x = (xn)∞n=1 by letting xn := φ(e(n)) for n ∈ N. If x ∈ `q, then Tx = φ

(Why?). For N ∈ N, define x(N) ∈ `q through

x(N)
n :=

{
xn, n ≤ N,
0, n > N.

For any y = (yn)∞n=1 ∈ `p define z = (zn)∞n=1 through

zn :=

{
|ynxn|
xn

, if n ≤ N and xn 6= 0,
0, otherwise.

If is clear that z ∈ `p with ‖z‖p ≤ ‖y‖p. We now have:

|(Tx(N))(y)| ≤
N∑
n=1

|xnyn|

=
∞∑
n=1

znxn

=
∞∑
n=1

znφ(e(n))

= φ(z)

= |φ(z)|

≤ ‖φ‖‖z‖p
≤ ‖φ‖‖y‖p.

It follows that

‖x‖qq = lim
N→∞

N∑
n=1

|xn|q = lim
N→∞

‖x(N)‖qq = lim
N→∞

‖Tx(N)‖qq ≤ ‖φ‖q,

so that x ∈ `q with ‖x‖q ≤ ‖φ‖.

All in all, we have (`p)∗ = `q.
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3. Similarly (Exercise 1.24 below), we have (`1)∗ = `∞ and (c0)∗ = `1.

4. If (Ω,S, µ) is any measure space, and if p, q ∈ (1,∞) are such that 1
p + 1

q = 1, we
have an isometric isomorphism T : Lq(Ω,S, µ)→ Lp(Ω,S, µ)∗ given by

(Tf)(g) :=
∫

Ω
f(ω)g(ω) dµ(ω),

so that Lp(Ω,S, µ)∗ = Lq(Ω,S, µ).

5. For σ-finite (Ω,S, µ), we also have L1(Ω,S, µ)∗ = L∞(Ω,S, µ).

Exercise 1.24 Show that (`1)∗ = `∞ and (c0)∗ = `1.

We now have concrete descriptions of E∗ for a few normed spaces E. But what can
we say about E∗ for a general normed space E? So far, the only linear function on E

of which we positively know that it’s in E∗ is the zero-functional. Are there any others?
The answer to this question is “yes”, as we shall see in the next chapter.
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Chapter 2

The fundamental principles of

functional analysis

In this chapter, we prove four fundamental theorems of functional analysis:

• the Hahn–Banach theorem;

• Baire’s theorem;

• the open mapping theorem;

• the closed graph theorem.

We illustrate the power of each theorem with application, e.g. to complex variables
and initial value problems.

2.1 The Hahn–Banach theorem

Given an arbitrary normed space E with dual E∗, we cannot tell right now if E∗ contains
any non-zero elements. This will change in this section: We will prove the Hahn–Banach
theorem, which implies that there are enough functionals in E∗ to separate the points of
E.

Roughly speaking, the Hahn–Banach theorem asserts that, if we have a linear func-
tional on a subspace of a linear space whose growth can somehow be controlled, then
this functional can be extended to the whole space such that the growth remains under
control.

Definition 2.1.1 Let E be a linear space. A map p : E → R is called a sublinear
functional if

p(x+ y) ≤ p(x) + p(y) (x, y ∈ E)
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and

p(λx) = λp(x) (x ∈ E, λ ∈ R, λ ≥ 0).

Lemma 2.1.2 Let E be a linear space over R, let F be a subspace of E, let x0 ∈ E \ F ,
and let p : E → R be a sublinear functional. Suppose that φ : F → R is a linear functional
such that

φ(x) ≤ p(x) (x ∈ F ).

Then there is a linear functional φ̃ : F + Rx0 → R which extends φ and satisfies

φ̃(x) ≤ p(x) (x ∈ F + Rx0).

Proof We need to show that there is α ∈ R such that

φ(x) + tα ≤ p(x+ tx0) (x ∈ F, t ∈ R).

If this is done, we can define φ̃ by letting φ̃(x+ tx0) := φ(x) + tα for all x ∈ F and t ∈ R.
For any x, y ∈ F , we have

φ(x) + φ(y) = φ(x+ y) ≤ p(x− x0 + x0 + y) ≤ p(x− x0) + p(x0 + y)

and thus

φ(x)− p(x− x0) ≤ p(y + x0)− φ(y) (x, y ∈ F ). (2.1)

Let α := sup{φ(x)− p(x− x0) : x ∈ F}. It follows from (2.1) that

φ(x)− p(x− x0) ≤ α ≤ p(y + x0)− φ(y) (x, y ∈ F )

and thus

φ(x)− α ≤ p(x− x0) (x ∈ F ) (2.2)

and

φ(x) + α ≤ p(x+ x0) (x ∈ F ). (2.3)

Let t ∈ R, and let x ∈ F . If t > 0, we obtain from (2.3):

φ(x) + tα = t

(
φ

(
1
t
x

)
+ α

)
≤ t p

(
1
t
x+ x0

)
= p(x+ tx0).

For t < 0, inequality (2.2) yields:

φ(x) + tα = −t
(
φ

(
1
−t
x

)
− α

)
≤ −t p

(
1
−t
x− x0

)
= p(x+ tx0).

This completes the proof. ut
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Theorem 2.1.3 (Hahn–Banach theorem) Let E be a linear space over R, let F be a
subspace of E, and let p : E → R be a sublinear functional. Suppose that φ : F → R is a
linear functional such that

φ(x) ≤ p(x) (x ∈ F ).

Then there is a linear functional φ̃ : E → R which extends φ and satisfies

φ̃(x) ≤ p(x) (x ∈ E).

Proof Let S be the collection of all pairs (X,ψ) with the following properties:

• X is a subspace of E with F ⊂ X;

• ψ : X → R is linear with ψ|F = φ;

• ψ(x) ≤ p(x) (x ∈ X).

Clearly, (F, φ) ∈ S.
Define an order ≺ on S:

(X1, ψ1) ≺ (X2, φ2) :⇐⇒ X1 ⊂ X2 and ψ2|X1 = ψ1.

Let T ⊂ S be totally ordered. Define

X̃ :=
⋃
{X : (X,ψ) ∈ T }.

Then X̃ is a subspace of E with F ⊂ X̃. Define ψ̃ : X̃ → R by letting ψ̃(x) := ψ(x) if
x ∈ X for (X,ψ) ∈ T . Then ψ̃ : X̃ → R is well-defined, linear, extends φ, and satisfies

ψ̃(x) ≤ p(x) (x ∈ X̃).

It follows that (X̃, ψ̃) ∈ S is an upper bound for T . Hence, by Zorn’s lemma, S has
a maximal element (Xmax, ψmax). We claim that Xmax = E. Otherwise, there is x0 ∈
E \Xmax. By Lemma 2.1.2, there is a linear extension ψ̃max : Xmax + Rx0 → R of ψmax

such that

ψ̃max(x) ≤ p(x) (x ∈ Xmax + Rx0).

This contradicts the maximality of (Xmax, ψmax). ut

Exercise 2.1 A Banach limit on `∞(R) is a linear functional Lim: `∞(R)→ R such that for any
sequence (xn)∞n=1(we write Limn→∞ xn instead of Lim((xn)∞n=1)):

(a) lim infn→∞ xn ≤ Limn→∞ xn ≤ lim supn→∞ xn;

(b) Limn→∞ xn+k = Limn→∞ xn for all k ∈ N.
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What is Limn→∞ xn if (xn)∞n=1 converges?

(i) Show that ‖Lim ‖ = 1.

(ii) Show that Banach limits do exist. (Hint : Let F be the subspace of `∞(R) consisting of
those sequences (xn)∞n=1 for which limn→∞

1
n

∑n
k=1 xn exists; define Lim on F to be that

limit, and apply the Hahn–Banach theorem.)

Exercise 2.2 Let E be a C-linear space.

(i) Let φ : E → C be C-linear. Show that

φ(x) = Reφ(x)− iReφ(ix) (x ∈ E).

(ii) Let ψ : E → R be R-linear. Show that φ : E → C defined through

φ(x) := ψ(x)− iψ(ix) (x ∈ E)

is C-linear.

We will rarely apply the Hahn–Banach theorem directly, but rather one of the following
corollaries:

Corollary 2.1.4 Let E be a linear space, let F be subspace of E, and let p : E → [0,∞)
be a seminorm. Suppose that φ : F → F is linear such that

|φ(x)| ≤ p(x) (x ∈ F ).

Then φ has a linear extension φ̃ : E → F such that

|φ̃(x)| ≤ p(x) (x ∈ E).

Proof Suppose first that F = R. By Theorem 2.1.3, we have a linear extension φ̃ : E → R

such that

φ̃(x) ≤ p(x) (x ∈ E).

If φ̃(x) ≤ 0, then

−φ̃(x) = φ̃(−x) ≤ p(−x) = p(x),

so that

−p(x) ≤ φ̃(x) ≤ p(x) (x ∈ E).

Now consider the case where F = C. Define ψ : F → R through

ψ(x) := Reφ(x) (x ∈ F ).
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By Exercise 2.2(i), we then have

φ(x) = ψ(x)− iφ(ix) (x ∈ F ).

By the first case, ψ has an R-linear extension ψ̃ : E → R with

|ψ̃(x)| ≤ p(x) (x ∈ E).

Define φ̃ : E → R by letting

φ̃(x) := ψ̃(x)− iφ̃(ix) (x ∈ E).

By Exercise 2.2(ii), φ̃ is C-linear and clearly extends φ. Let x ∈ E, and choose λ ∈ C
with |λ| = 1 such that φ̃(x) = λ|φ̃(x)|. We obtain:

|φ̃(x)| = λ̄φ̃(x) = φ̃(λ̄x) = ψ̃(λ̄x) ≤ p(λ̄x) = p(x).

This proves the claim in the complex case. ut

Corollary 2.1.5 Let E be a normed space, let F be subspace, and let φ ∈ F ∗. Then φ

has an extension φ̃ ∈ E∗ with ‖φ̃‖ = ‖φ‖.

Proof Apply Corollary 2.1.4 with p(x) := ‖φ‖‖x‖ for x ∈ E. ut

Exercise 2.3 Let S 6= ∅ be a set, let E be a normed space, and let F be a subspace of E. Show
that any operator T ∈ B(F, `∞(S)) has an extension T̃ ∈ B(E, `∞(S)) with ‖T̃‖ = ‖T‖.

Corollary 2.1.6 Let E be a normed space, let F be a closed subspace of E, and let
x0 ∈ E \ F . Then there is φ ∈ E∗ with ‖φ‖ = 1, φ|F = 0, and φ(x0) = dist(x0, F ).

Proof Define

p : E → [0,∞), x 7→ dist(x, F )(:= inf{x− y‖ : y ∈ F})

and

φ : F + Fx0, x+ λx0 7→ λ dist(x0, F ).

It follows that

|φ(x)| ≤ dist(x, F ) (x ∈ F + Fx0).

By Corollary 2.1.4, φ has a linear extension φ̃ to all of E with

|φ̃(x)| ≤ dist(x, F ) ≤ ‖x‖ (x ∈ E),

so that, in particular, ‖φ̃‖ ≤ 1. Let ε > 0. Then there is y ∈ F with ‖x0 − y‖ ≤
dist(x0, F ) + ε. Let z := x0−y

‖x0−y‖ , so that ‖z‖ = 1. It follows that

|φ̃(z)| = φ(x0 − y)
‖x0 − y‖

=
φ(x0)
‖x0 − y‖

≥ dist(x0, F )
dist(x0, F ) + ε

.

Since ε > 0 was arbitrary, this means ‖φ̃‖ ≥ 1. ut
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Corollary 2.1.6 can be used to prove approximation theorems: Let x0 be an element
of a normed space E and assume that it is not in the closure of a subspace F . Then
Corollary 2.1.6 yields φ ∈ E∗ which vanishes on F but not in x0. Since for many spaces E
we have a concrete description of E∗, this may then be used to arrive at a contradiction,
so that x0 must lie in the closure of F .

Exercise 2.4 A metric space is called separable if it has a countable dense subset (any subset of
a separable metric space is again separable).

(i) Show that c0 as well as `p for p ∈ [1,∞) are separable.

(ii) Show that `∞ is not separable (Hint : Show that the subset of `∞ consisting of those f ∈ `∞

such that f(N) ⊂ {0, 1} is uncountable and conclude that, for this reason, it cannot be
separable.)

Exercise 2.5 Let E be a normed space such that E∗ is separable. Show that E must be separable
as well. Proceed as follows:

• Let {φn : n ∈ N} be a dense subset of {φ ∈ E∗ : ‖φ‖ = 1}. For each n ∈ N pick xn ∈ E
with ‖xn‖ ≤ 1 and |φn(xn)| ≥ 1

2 .

• Use the Hahn–Banach theorem to show that the linear span of {xn : n ∈ N} is dense in E.

Does, conversely, the separability of E imply that E∗ is separable? Can (`∞)∗ = `1 hold?

Corollary 2.1.7 Let E be a normed space, and let x ∈ E. Then there is φ ∈ E∗ with
‖φ‖ = 1 and φ(x) = ‖x‖.

Proof Apply Corollary 2.1.6 with F = {0}. ut

2.2 Applications of the Hahn–Banach theorem

We now present several application of the Hahn–Banach theorem.

2.2.1 The bidual of a normed space

Definition 2.2.1 The bidual E∗∗ of a normed space E is defined as (E∗)∗.

There is a canonical map J : E → E∗∗ defined by

(Jx)(φ) := φ(x) (x ∈ E, φ ∈ E∗).

By Corollary 2.1.7 we have:

‖Jx‖ = sup{|φ(x)| : φ ∈ E∗, ‖φ‖ ≤ 1} = ‖x‖ (x ∈ E).

Hence, J is an isometry and we may identify JE with E. In particular, every normed
space “is” the subspace of a Banach space.
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2.2.2 Transpose operators

Definition 2.2.2 Let E and F be normed spaces, and let T ∈ B(E,F ). The transpose
T ∗ : F ∗ → E∗ of T is defined through

(T ∗φ)(x) := φ(Tx) (x ∈ E, φ ∈ F ∗)

Exercise 2.6 Let E, F and G be normed spaces, let S, T ∈ B(E,F ), R ∈ B(F,G), and λ, µ ∈ F.
Show that:

(i) (λT + µS)∗ = λS∗ + µT ∗;

(ii) (RT )∗ = T ∗R∗.

Theorem 2.2.3 Let E and F be normed spaces, and let T ∈ B(E,F ). Then T ∗ ∈
B(F ∗, E∗) with ‖T ∗‖ = ‖T‖.

Proof For x ∈ E and φ ∈ F ∗, we have

|(T ∗φ)(x)| = |φ(Tx)| ≤ ‖φ‖‖T‖‖x‖,

therefore

‖T ∗φ‖ ≤ ‖T‖‖φ‖,

and eventually ‖T ∗‖ ≤ ‖T‖
Consider T ∗∗ : E∗∗ → F ∗∗. We have ‖T ∗∗‖ ≤ ‖T ∗‖. On the other hand, we have for

x ∈ E and φ ∈ F ∗:

(T ∗∗Jx)(φ) = (Jx)(T ∗φ) = (T ∗φ)(x) = φ(Tx) = (JTx)(φ).

Hence, T ∗∗ extends T , so that, in particular, ‖T ∗∗‖ ≥ ‖T‖. ut

The following theorem has nothing to do with the Hahn–Banach theorem, but we will
need it later and it fits into the discussion of transpose operators.

Theorem 2.2.4 (Schauder’s theorem) Let E and F be normed spaces, and let T ∈
K(E,F ). Then T ∗ ∈ K(F ∗, E∗).

Proof Let (φn)∞n=1 be a sequence in F ∗ bounded by C ≥ 0. Let

K := T ({x ∈ E : ‖x‖ ≤ 1}).

Then K is a compact metric space. For y, z ∈ K and n ∈ N, we have

|φn(y)− φn(z)| ≤ ‖y − z‖.

33



Consequently, the sequence (φn|K)∞n=1 in C(K) is bounded and equicontinuous. By the
Arzelà–Ascoli theorem, there is a subsequence (φnk |K)∞k=1 converging uniformly to some
function in C(K). In particular, (φnk |K)∞k=1 is a Cauchy sequence with respect to the
uniform norm. For k, l ∈ N, however, we have:

‖φnk |K − φnl |K‖∞ = sup
y∈K
|φnk(y)− φnl(y)|

≥ sup{|φnk(Tx)− φnl(Tx)| : x ∈ E, ‖x‖ ≤ 1}

= ‖T ∗φnk − T
∗φnl‖.

Hence, (T ∗φnk)∞k=1 is a Cauchy sequence in E∗ and thus convergent. ut

2.2.3 Quotient spaces and duals

Definition 2.2.5 Let E be a normed space, and let F be a closed subspace of F . The
quotient norm on E/F is defined as

‖x+ F‖ := inf{‖x− y‖ : y ∈ F} (x ∈ E).

Theorem 2.2.6 Let E be a normed space, and let F be a closed subspace. Then E/F

equipped with the quotient norm is normed space. If E is a Banach space, then so is E/F .

Proof It is routine to verify that the quotient norm is indeed a norm.
Let (xn)∞n=1 be a sequence in E such that

∑∞
n=1 ‖xn+F‖ <∞. For each n ∈ N, choose

yn ∈ F such that ‖xn−yn‖ < 1
2n . It follows that

∑∞
n=1 ‖xn−yn‖ <∞. Since E is a Banach

space,
∑∞

n=1(xn − yn) converges in E to x E. It is clear that x + F =
∑∞

n=1(xn + F ).
ut

Exercise 2.7 Let E be a normed space, and let F be a closed subspace. Let G be another normed
space, and let T ∈ B(E,G) vanish on F . Show that

T̃ (x+ F ) := Tx (x ∈ E)

defines T̃ ∈ B(E/F,G) with ‖T̃‖ = ‖T‖.

Definition 2.2.7 Let E be a normed space. For any subset S of E, we define

S⊥ := {φ ∈ E∗ : φ|S = 0}.

Theorem 2.2.8 Let E be a normed space, and let F be a closed subspace of E. Then

T : E∗ → F ∗, φ 7→ φ|F

induces an isometric isomorphism of E∗/F⊥ and F ∗.
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Proof Clearly, ‖T‖ ≤ 1 and kerT = F⊥, so that T , by Exercise 2.7, T induces an injective
map T̃ : E∗/F⊥ → F ∗ with ‖T̃‖ ≤ 1. We claim that this map is surjective and an isometry.

Let ψ ∈ F ∗. By Corollary 2.1.5, there is φ ∈ E∗ with ‖φ‖ = ‖ψ‖ extending ψ. We
thus have Tφ = ψ and

‖φ+ F⊥‖ ≥ ‖T̃ (φ+ F⊥)‖ = ‖ψ‖ = ‖φ‖ ≥ ‖φ+ F⊥‖,

which completes the proof. ut

Theorem 2.2.9 Let E be a normed space, and let F be a normed subspace. Then T :
F⊥ 7→ (E/F )∗ defined by

(Tφ)(x+ F ) := φ(x) (φ ∈ F⊥, x ∈ E)

is an isometric isomorphism of F⊥ and (E/F )∗.

Proof It is routinely checked that T is well-defined and linear.
Let π : E → E/F be the quotient map. For any ψ ∈ (E/F )∗, the functional ψ ◦ π

belongs to F⊥ such that T (π ◦ ψ) = ψ. Hence, T is surjective. From Exercise 2.7, it
follows that T is an isometry. ut

2.2.4 The dual space of C([0, 1])

Definition 2.2.10 A function α : [0, 1]→ F is said to be of bounded variation if

‖α‖BV := sup


n∑
j=1

|α(xj)− α(xj−1)| : n ∈ N, 0 = x0 < x1 < · · · < xn = 1

 <∞.

We define:

BV ([0, 1]) := {α : [0, 1]→ F : α is of bounded variation}

The following are easily checked:

• BV ([0, 1]) is a linear space;

• ‖ · ‖BV is a seminorm on BV ([0, 1]);

• ‖α‖BV = 0 ⇐⇒ α is constant.

We let

BV0([0, 1]) := {α ∈ BV ([0, 1]) : α(0) = 0}.

Then ‖ · ‖BV is a normed space.
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Theorem 2.2.11 The linear map T : BV0([0, 1])→ C([0, 1])∗ defined by

(Tα)(f) :=
∫ 1

0
f(x) dα(x)

is an isometric isomorphism.

Proof It is obvious that ‖Tα‖ ≤ ‖α‖BV for all α ∈ BV0([0, 1]).
Conversely, let φ ∈ C([0, 1])∗. Let u0 :≡ 0, and for any x ∈ (0, 1], define ux : [0, 1]→ R

by letting

ux(t) :=

{
1, 0 ≤ t ≤ x,
0, x < t ≤ 1.

By Corollary 2.1.5, there is an extension φ̃ ∈ `∞([0, 1])∗ of φ with ‖φ̃‖ = ‖φ‖. Define

α : [0, 1]→ F, x 7→ φ̃(ux).

We claim that α ∈ BV0([0, 1]). Let 0 = x0 < x1 < · · · < xn = 1, and define, for
j = 1, . . . , n:

σj :=

{ |α(xj)−α(xj−1)|
α(xj)−α(xj−1) , if α(xj) 6= α(xj−1),

0, otherwise.

We then have:
n∑
j=1

|α(xj)− α(xj−1)| =
n∑
j=1

σj(α(xj)− α(xj−1))

=
n∑
j=1

σj(φ̃(uxj )− φ̃(uxj−1))

= φ̃

 n∑
j=1

σj(uxj − uxj−1)


︸ ︷︷ ︸

‖·‖∞≤1

≤ ‖φ̃‖

= ‖φ‖.

Hence, α is a bounded variation such that ‖α‖BV ≤ ‖φ‖.
Next, we claim that Tα = φ (this establishes at once that T is a surjective isometry

and thus an isometric isomorphism). For any f ∈ C([0, 1]) and any partition P = {0 =
x0 < x1 < · · · < xn = 1} of [0, 1], let

δ(P) = sup
j=1,... ,n

|xj − xj−1|
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and

S(f,P) :=
n∑
j=1

f(xj)(α(xj)− α(xj−1)).

From the properties of the Riemann–Stieltjes integral, we know that

lim
δ(P)→0

S(f,P) =
∫ 1

0
f(x) dα(x).

Define

fP :=
n∑
j=1

f(xj)(uxj − uxj−1)

From the uniform continuity of f , we infer that limδ(P)→0 ‖fP − f‖∞ = 0. We thus have:

φ(f) = lim
δ(P)→0

φ̃(fP)

= lim
δ(P)→0

n∑
j=1

f(xj)(φ̃(uxj )− φ̃(uxj−1))

= lim
δ(P)→0

n∑
j=1

f(xj)(α(xj)− α(xj−1))

= lim
δ(P)→0

S(f,P)

=
∫ 1

0
f(x) dα(x).

This establishes the claim and thus completes the proof. ut

This result is only a rather special case of Riesz’ representation theorem (Theorem
B.3.8).

Exercise 2.8 Let C ≥ 0, c1, c2, . . . ∈ F, and f1, f2, . . . ∈ C([0, 1]) be given. Show that the following
are equivalent:

(a) There is α ∈ BV [0, 1] with ‖α‖BV ≤ C such that

cn =
∫ 1

0

fn(t) dα(t) (n ∈ N).

(b) For all n ∈ N, and for all λ1, . . . , λn ∈ F, we have∣∣∣∣∣
n∑
k=1

λkck

∣∣∣∣∣ ≤ C
∥∥∥∥∥
n∑
k=1

λkfk

∥∥∥∥∥
∞

.
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2.2.5 Runge’s approximation theorem

We now use Corollary 2.1.6 to prove an approximation theorem from complex analysis:

Theorem 2.2.12 (Runge’s approximation theorem) Let K ⊂ C be compact, and let
E ⊂ C∞ \ K be such that E has at least one point in common with each component of
C∞ \ K. Let U ⊂ C be an open set containing K, and let f : U → C be holomorphic.
Then, for each ε > 0, there is a rational function with poles in E such that

sup
z∈K
|f(z)− r(z)| < ε.

Proof Note that f |K ∈ C(K). Let

RE(K) := {r|K : r is a rational function with poles in E}.

We need to show that f |K ∈ RE(K).
Assume that this is not true. By Corollary 2.1.6, there is φ ∈ C(K)∗ with

φ|RE(K) = 0 and φ(f |K) 6= 0.

By the Riesz’ representation theorem (Theorem B.3.8), there is µ ∈M(K) such that

φ(g) =
∫
K
g(z) dµ(z) (g ∈ C(K)).

Define

µ̂ : C \K → C, w 7→
∫
K

dµ(z)
z − w

.

We claim that µ̂ ≡ 0. Let V be a component of C∞ \K, and let p ∈ E ∩ V .
Case 1: p 6= ∞. Then choose r > 0 such that Br(p) ⊂ V . For fixed w ∈ Br(p), we

then have uniformly in z ∈ K:

1
z − w

=
1

(z − p)− (w − p)

=
1

z − p
1

1− w−p
z−p

=
1

z − p

∞∑
n=0

(
w − p
z − p

)n
=

∞∑
n=0

(w − p)n

(z − p)n+1
.

Hence, the function 1
z−w of z belongs toRE(K). It follows that µ̂(w) = 0. Since w ∈ Br(p)

was arbitrary, the identity theorem yields µ̂|V ≡ 0.
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Case 2: p =∞. Choose r > 0 so large that |z| < r for all z ∈ K, and let w ∈ C with
|w| > r. Then we have uniformly in z ∈ K:

1
z − w

=
1
w

1
z
w − 1

= −
∞∑
n=0

zn

wn+1
.

It follows again that µ̂(w) = 0 for |w| > r and thus µ̂|V ≡ 0.
Let Γ by a cycle in U whose winding number around each point in K is 1 and around

each point in C \ U is zero. By the Cauchy integral formula, we have

f(z) =
1

2πi

∫
Γ

f(w)
z − w

dw (z ∈ K).

But this yields ∫
K
f(z) dµ(z) =

1
2πi

∫
K

[∫
Γ

f(w)
z − w

dw

]
dµ(z)

=
1

2πi

∫
Γ

[∫
K

f(w)
z − w

dµ(z)
]
dw

=
1

2πi

∫
Γ
f(w)

[∫
K

1
z − w

dµ(z)
]
dw

=
1

2πi

∫
Γ
f(w)µ̂(w)dw

= 0,

which contradicts the choice of φ. ut

The advantage of this functional analytic proof is its brevity and its elegance. The
drawback is that it is not constructive: It depends on the Hahn–Banach theorem and
therefore on Zorn’s lemma.

2.3 Baire’s theorem

Theorem 2.3.1 (Baire’s theorem) Let X be a complete metric space, and let (Un)∞n=1

be a sequence of dense open subsets of X. Then
⋂∞
n=1 Un is dense in X.

Proof Assume that the theorem is wrong. Then there are x0 ∈ X and ε > 0 such that

Bε(x0) ⊂ X \
∞⋂
n=1

Un.

Let V0 := Bε(x0). Since U1 is dense in X, there is x1 ∈ U1 ∩ V0. Choose r1 ∈ (0, 1) so
small that

Br1(x1) ⊂ U1 ∩ V0.

Let V1 := Ur1(x1). Suppose that open subsets V0, V1, . . . , Vn of X have already been
constructed such that
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• Vj+1 ⊂ Uj+1 ∩ Vj for j = 0, . . . , n− 1, and

• diam Vj ≤ 2
j for j = 1, . . . , n.

Since Un+1 is dense in X, there is xn+1 ∈ Un+1 ∩ Vn. Choose rn+1 ∈
(

0, 1
n+1

)
so small

that

Brn+1(xn+1) ⊂ Un+1 ∩ Vn,

and let Vn+1 := Brn+1(xn+1). Continue inductively.
Since diam Vn ≤ 2

n for all n ∈ N, and since X is complete, there is x ∈
⋂n
n=1 Vn. By

construction, however,

x ∈
n⋂
n=1

Vn ⊂
∞⋂
n=1

Un and x ∈
n⋃
n=1

Vn ⊂ V0 ⊂ X \
∞⋂
n=1

Un,

which is impossible. ut

Corollary 2.3.2 Let X be a complete metric space, and let (Fn)∞n=1 be a sequence of
closed subsets of X such that

⋃∞
n=1 Fn has an interior point. Then at least one Fn has an

interior point.

Proof Let Un := X \ Fn. ut

Example Let E be a Banach space with a countable Hamel basis. We claim that dimE <

∞.
Assume that E has a Hamel basis {xn : n ∈ N}. For n ∈ N, let

En := lin{x1, . . . , xn}.

Then En is a closed subspace of E. Since E =
⋃∞
n=1En, Corollary 2.3.2 yields that there

is N ∈ N such that EN has interior points, i.e. there is x0 ∈ EN and ε > 0 such that
Bε(x0) ⊂ EN . Let x := x0 + ε

2
xN+1

‖xN+1‖ . Then x ∈ Bε(x0), but x /∈ EN .
In particular, there is no norm on c00 turning it into a Banach space.

For our next application of Baire’s theorem, we need the following approximation
theorem:

Theorem 2.3.3 (Weierstraß’ approximation theorem) Let a, b ∈ R, a < b, let f ∈
C([a, b]), and let ε > 0. Then there is a polynomial p such that ‖f − p‖∞ < ε.

Proof Without loss of generality, let a = 0, b = 1, and F = R.
For each g ∈ C([0, 1]), let

Bn(g; t) :=
n∑
k=0

(
n

k

)
tk(1− t)n−kg

(
k

n

)
(t ∈ [0, 1]).
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be its n-th Bernstein polynomial . It is routinely checked that

Bn(1, t) =
n∑
k=0

(
n

k

)
tk(1− t)n−k

= (t+ (1− t))n

= 1,

Bn(x, t) =
n∑
k=0

(
n

k

)
tk(1− t)n−k k

n

=
n∑
k=1

(
n− 1
k − 1

)
tk(1− t)n−k

=
n−1∑
k=0

(
n− 1
k

)
tk+1(1− t)n−(k+1)

= t

n−1∑
k=0

(
n− 1
k

)
tk(1− t)(n−1)−k

= t(t+ (1− t))n−1

= t,

and

Bn(x2, t) =
n∑
k=0

(
n

k

)
tk(1− t)n−k

(
k

n

)2

=
n−1∑
k=0

(
n− 1
k

)
tk+1(1− t)n−(k+1)k + 1

n

=
t

n
+
n−1∑
k=0

(
n− 1
k

)
tk(1− t)(n−1)−k k

n
t

=
t

n
+
n− 1
n

t2

=
t(1− t)

n
+ t2.

Since f is uniformly continuous, there is δ > 0 such that |f(s) − f(t)| < ε for all
s, t ∈ [0, 1] with |s− t| <

√
δ. Let C := 2‖f‖∞

δ . We claim that

|f(s)− f(t)| ≤ ε+ C(t− s)2 (s, t ∈ [0, 1]). (2.4)

This is clear if |s− t| <
√
δ; if |s− t| ≥

√
δ, it follows from

ε+ C(t− s)2 > ε+ 2‖f‖∞ > |f(s)|+ |f(t)| ≥ |f(s)− f(t)|.

Fix t ∈ [0, 1], and let ft(s) := (t− s)2. Then (2.4) implies

−ε− Cft ≤ f − f(t) ≤ ε+ Cft
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and thus

−Bn(ε+ Cft, ·) = Bn(−ε− Cft, ·) ≤ Bn(f − f(t), ·) ≤ B(ε+ Cft, ·).

Since Bn(f − f(t), ·) = Bn(f, ·)− f(t), we obtain for pn := Bn(f, ·):

|pn(s)− f(t)| ≤ Bn(ε+ Cft, s) = ε+ Ct2 − 2Cts+ C

(
s(1− s)

n
+ s2

)
(s ∈ [0, 1]).

Letting s = t, this yields

|pn(t)− f(t)| ≤ ε+ C
t(1− t)

n
≤ ε+

C

n
.

Since ε > 0 and t ∈ [0, 1] are arbitrary, this yields ‖pn − f‖∞ → 0. ut

There are proofs of Theorem 2.3.3 that use the Hahn–Banach theorem, but they are
in no way easier than the one given here.

Example We will now use Baire’s theorem to prove that there is a continuous function
on [0, 1] which is nowhere differentiable.

For n ∈ N, let

Fn :=

{
f ∈ C([0, 2]) : there is t ∈ [0, 1] such that sup

h∈(0,1)

|f(t+ h)− f(t)|
h

≤ n

}
.

Obviously, if f ∈ C([0, 2]) is differentiable at some t ∈ [0, 1], then suph∈(0,1)
|f(t+h)−f(t)|

h <

∞, so that f ∈
⋃∞
n=1 Fn.

Let (fk)∞k=1 be a sequence in Fn such that ‖fk − f‖∞ → 0 for some f ∈ C([0, 2]). For
each k ∈ N, there is tk ∈ [0, 1] such that

sup
h∈(0,1)

|fk(tk + h)− fk(tk)|
h

≤ n.

Suppose without loss of generality that (tk)∞k=1 converges to some t ∈ [0, 1]. Fix h ∈ (0, 1)
and ε > 0, and choose K ∈ N so large that

|f(t+ h)− f(tk + h)|
‖f − fk‖∞
|f(tk)− f(t)|

 <
ε

4
h (k ≥ K).

For k ≥ K, this implies

|f(t+ h)− f(t)|

≤ |f(t+ h)− f(tk + h)|︸ ︷︷ ︸
< ε

4
h

+ |f(tk + h)− fk(tk + h)|︸ ︷︷ ︸
< ε

4
h

+ |fk(tk + h)− fk(tk)|︸ ︷︷ ︸
≤nh

+ |f(tk)− fk(tk)|︸ ︷︷ ︸
< ε

4
h

+ |f(t)− f(tk)|︸ ︷︷ ︸
< ε

4
h

≤ nh+ εh,
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so that |f(t+h)−f(t)|
h ≤ n+ ε. Since h and ε were arbitrary, this means that f ∈ Fn. Hence,

Fn is closed.
Assume that every f ∈ C([0, 2]) is differentiable at some point in [0, 1]. Then C([0, 2]) =⋃∞

n=1 Fn, so that, by Corollary 2.3.2, there are N ∈ N, f ∈ C([0, 2]), and ε > 0 such that
Bε(f) ⊂ FN . By Theorem 2.3.3, Bε(f) contains at least one polynomial. Without loss of
generality, we may thus suppose that f ∈ C1([0, 2]).

For m ∈ N and j = 0, . . . ,m, let tj := 2j
m . Define gm : [0, 2]→ F by letting

gm(t) :=

{
ε
2m(t− tj−1), t ∈

[
tj−1, tj−1 + 1

m

]
,

ε
2m(tj−1 − t), t ∈

[
tj − 1

m , tj
]
.

Then gm ∈ C([0, 2]) with ‖gm‖ = ε
2 , but

sup
h∈(0,1)

|gm(t+ h)− gm(t)|
h

≥ ε

2
m (2.5)

holds for any t ∈ [0, 1]. Since f + gm ∈ Bε(f) ⊂ FN , there is t ∈ [0, 1] such that

sup
h∈(0,1)

|(f + gm)(t+ h)− (f + gm)(t)|
h

≤ N.

This, however, yields

sup
h∈(0,1)

|gm(t+ h)− gm(t)|
h

≤ sup
h∈(0,1)

|(f + gm)(t+ h)− (f + gm)(t)|
h

+ sup
h∈(0,1)

|f(t+ h)− f(t)|
h

= N + ‖f ′‖∞,

which contradicts (2.5) if we choose m ∈ N so large that ε
2m > N + ‖f ′‖∞.

Exercise 2.9 Let (fk)∞k=1 be a sequence in C([0, 1]) which converges pointwise to a function
f : [0, 1]→ F.

(i) For θ > 0 and n ∈ N let

Fn := {t ∈ [0, 1] : |fn(t)− fk(t)| ≤ θ for all k ≥ n}.

Show that Fn is closed, and that [0, 1] =
⋃∞
n=1 Fn.

(ii) Let ε > 0, and let I be a non-degenerate, closed subinterval of [0, 1]. Show that there is a
non-degenerate, closed subinterval J of I such that

|f(t)− f(s)| ≤ ε (t, s ∈ J).

(Hint : Apply (a) with θ := ε
3 and Baire’s theorem.)
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(iii) Let I be a non-degenerate, closed subinterval of [0, 1]. Show that there is a decreasing
sequence of non-degenerate, closed subintervals of I such that

• the length of In is at most 1
n , and

• |f(t)− f(s)| ≤ 1
n for all s, t ∈ In.

What can be said about f at all points in
⋂∞
n=1 In?

(iv) Conclude that the set of points in [0, 1] at which f is continuous is dense in [0, 1].

2.4 The uniform boundedness principle

Theorem 2.4.1 (uniform boundedness principle) Let E be a Banach space, let
(Fα)α be a family of normed spaces, and let Tα ∈ B(E,Fα) be such that

sup
α
‖Tαx‖ <∞ (x ∈ E). (2.6)

Then supα ‖Tα‖ <∞ holds.

Proof For n ∈ N, let

En :=
{
x ∈ E : sup

α
‖Tαx‖ ≤ n

}
.

Then (2.6) implies that E =
⋃∞
n=1. Let (xk)∞k=1 be a sequence in En such that xk → x ∈ E.

For any index α, we have

‖Tαx‖ = lim
k→∞

‖Tαxk‖ ≤ n.

It follows that x ∈ E, so that En is closed.
By Corollary 2.3.2 there are thus N ∈ N, x0 ∈ E, and ε > 0 such that Uε(x0) ⊂ EN .

Let x ∈ E be such that ‖x‖ ≤ 1. It follows that εx+ x0 ∈ EN . Hence, we have for all α:

ε‖Tαx‖ = ‖Tα(εx)‖ ≤ ‖Tα(εx+ x0)‖+ ‖Tαx0‖ ≤ 2N,

and consequently

‖Tαx‖ ≤
2N
ε
.

It follows that supα ‖Tα‖ ≤ 2N
ε . ut

Examples 1. Let E be a Banach space, let F be a normed space, and let (Tn)∞n=1 be
a sequence in B(E,F ) such that limn→∞ Tnx exists in F for each x ∈ E. We claim
that T : E → F defined through

Tx := lim
n→∞

Tnx (x ∈ E).
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Since (Tnx)∞n=1 is convergent and thus bounded for each x ∈ E, Theorem 2.4.1
implies that C := supn∈N ‖Tn‖ < ∞. Let x ∈ E. Then there is N ∈ N such that
‖TNx− Tx‖ ≤ ‖x‖. This yields

‖Tx‖ ≤ ‖TNx‖+ ‖TNx− Tx‖ ≤ C‖x‖+ ‖x‖ = (C + 1)‖x‖.

2. For each continuous function f : [−π, π]→ R, its Fourier series is

a0

2
+
∞∑
k=1

(ak cos(kx) + bk sin(kx)), (2.7)

where

ak =
1
π

∫ π

−π
f(x) cos(kx) dx (k ∈ N0)

and

bk =
1
π

∫ π

−π
f(x) sin(kx) dx (k ∈ N).

We will show that there are f ∈ C([−π, π]) for which (2.7) does not converge in
every point x ∈ [−π, π].

For n ∈ N, let

Dn(x) :=
sin
((
n+ 1

2

)
x
)

2 sin x
2

(x ∈ [−π, π]),

and define

sn : C([−π, π])→ R, f 7→ 1
π

∫ π

−π
f(x)Dn(x) dx.

It can be shown that, for any f ∈ C([−π, π]) with Fourier series (2.7), we have

sn(f) =
a0

2
+

n∑
k=1

ak,

i.e. sn(f) is the n-th partial sum of (2.7) at x = 0. It is easy to see that (sn)∞n=1 is
a sequence in C([−π, π],R)∗ such that

‖sn‖ ≤
1
π

∫ π

−π
|Dn(x)| dx (n ∈ N).

Let ε > 0, and let x1, . . . , xm ∈ [−π, π] be the zeros of Dn in [−π, π]. Choose δ > 0
such that

2δm‖Dn‖∞
π

≤ ε

2
.
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Define f ∈ C([−π, π]) through

f(x) :=

{ |Dn(x)|
Dn(x) , x /∈

⋃m
j=1(xj − δ, xj + δ) =: Iδ,

linear in between.

It is clear that ‖f‖∞ ≤ 1. It follows that

‖sn‖ ≥ |sn(f)|

=
1
π

∣∣∣∣∣
∫

[−π,π]\Iδ
|Dn(x)| dx+

∫
Iδ

f(x)Dn(x) dx

∣∣∣∣∣
≥ 1

π

∫
[−π,π]\Iδ

|Dn(x)| dx− 1
π

∫
Iδ

|Dn(x)| dx︸ ︷︷ ︸
≤ ε

2

≥ 1
π

∫
[−π,π]\Iδ

|Dn(x)| dx− ε

2
,

consequently

ε

2
+ ‖sn‖ ≥

1
π

∫
[−π,π]\Iδ

|Dn(x)| dx

=
1
π

∫
[−π,π]

|Dn(x)| dx− 1
π

∫
Iδ

|Dn(x)| dx︸ ︷︷ ︸
≤ ε

2

≥ 1
π

∫
[−π,π]

|Dn(x)| dx− ε

2
,

and finally

ε+ ‖sn‖ ≥
1
π

∫
[−π,π]

|Dn(x)| dx.

Since ε > 0, this yields

‖sn‖ =
1
π

∫ π

−π
|Dn(x)| dx =

2
π

∫ π

0
|Dn(x)| dx.

Since ∫ π

0

∣∣sin ((n+ 1
2

)
x
)∣∣

sin x
2

dx ≥
∫ π

0

∣∣sin ((n+ 1
2

)
x
)∣∣

x
2

dx

= 2
∫ (n+ 1

2)π

0

| sin y|
y

dy

→ ∞,

it follows that ‖sn‖ → ∞. Hence, Theorem 2.4.1 implies that there is f ∈ C([−π, π])
such that supn∈N |sn(f)| = ∞. In particular, the Fourier series of f diverges at
x = 0.
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Exercise 2.10 Prove the Banach–Steinhaus theorem: Let E and F be Banach spaces, let T ∈
B(E,F ), and let (Tn)∞n=1 be a sequence in B(E,F ). Then the following are equivalent:

(a) Tx = limn→∞ Tnx for each x ∈ E;

(b) supn∈N ‖Tn‖ <∞ and Tx = limn→∞ Tnx for all x in some dense subspace of E.

Exercise 2.11 A family (xα)α of elements in a normed space E is called weakly bounded if

sup
α
|φ(xα)| <∞

for all φ ∈ E∗. Show that a family (xα)α in a normed space is bounded if and only if it is weakly
bounded.

Exercise 2.12 Let E, F , and G be Banach spaces, and let T : E × F → G be a bilinear map
which is continuous in each variable. Show that there is C ≥ 0 such that

‖T (x, y)‖ ≤ C‖x‖‖y‖ (x ∈ E, y ∈ F ).

2.5 The open mapping theorem

Definition 2.5.1 Let E and F be normed spaces. A linear map T : E → F is called open
if TU is open in F for every open subset U of E.

Theorem 2.5.2 (open mapping theorem) Let E and F be Banach spaces, and let
T ∈ B(E,F ) be surjective. Then T is open.

Proof We claim that, for each r > 0, the zero vector 0 is an interior point of TBr(0).
Since T is surjective, we have

F =
∞⋃
n=1

TBnr
2

(0).

By Corollary 2.3.2, there is N ∈ N such that

TBNr
2

(0) = N TB r
2
(0)

has an interior point, say x0. Hence, there is ε > 0 such that Bε(x0) ⊂ TB r
2
(0). For any

x ∈ Bε(0), we then have

x = x+ x0 − x0 ∈ TB r
2
(0) + TB r

2
(0) ⊂ TBr(0).

This proves the first claim.
Secondly, we claim that TB r

2
(0) ⊂ TBr(0) for all r > 0.

Fix y1 ∈ TB r
2
(0). Since 0 is an interior point of TB r

4
(0), it follows that

(y1 − TB r
4
(0)) ∩ TB r

2
(0) 6= ∅.
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Choose x1 ∈ B r
2
(0) such that Tx1 ∈ y1 − TB r

4
(0). Then choose y2 ∈ TB r

4
(0) such that

Tx1 = y1− y2. Continuing in this fashion, we obtain sequences (xn)∞n=1 in E and (yn)∞n=1

in F such that 
xn ∈ B r

2n
(0),

yn ∈ TB r
2n

(0),
yn+1 = yn − Txn.

 (n ∈ N).

Since
∑∞

n=1 ‖xn‖ < ∞, the series
∑∞

n=1 xn converges to some x ∈ E with ‖x‖ < r.
Moreover, we have

Tx =
∞∑
n=1

Txn

=
∞∑
n=1

(yn − yn+1)

= lim
N→∞

N∑
n=1

(yn − yn+1)

= lim
N→∞

(y1 − yN+1)

= y1,

so that y1 ∈ TBr(0).
Finally, we deduce that T is indeed open.
Let U ⊂ E be open, and let x ∈ U . Choose r > 0 such that Br(x) ⊂ U . Since 0 is

an interior point of TBr(0), it follows that Tx is an interior point of TBr(x) and thus of
TU . Since x ∈ U was arbitrary, this means that TU is open. ut

Exercise 2.13 Let E and F be Banach spaces, and let T ∈ B(E,F ) be such that dimF/TE <

∞. Show that T has closed range. (Hint : Choose a finite-dimensional subspace G of F with
F = TE +G and TE ∩G = {0}, and consider

S : E ⊕G→ F, (x, y) 7→ Tx+ y.

Apply the open mapping theorem.)

Exercise 2.14 Let E and F be normed spaces, and let T : E → F be an open linear map. Show
that T is surjective. (Warning Trick question.)

Corollary 2.5.3 Let E and F be Banach spaces, and let T ∈ B(E,F ) be bijective. Then
T is an isomorphism, i.e. T−1 ∈ B(F,E).

Exercise 2.15 Let E and F be Banach spaces, and let T ∈ B(E, T ) be surjective. Show that
there is C ≥ 0 such that, for each y ∈ F , there is x ∈ E with ‖x‖ ≤ C‖y‖ such that Tx = y.
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Exercise 2.16 Let E be a Banach space. An operator T ∈ B(E) is called quasi-nilpotent if

lim
n→∞

n
√
‖Tn‖ = 0.

Show that a quasi-nilpotent operator can never be surjective unless E = {0}. (Hint : Previous
problem.)

Exercise 2.17 Let E and F be Banach spaces. Show that the following are equivalent for T ∈
B(E,F ):

(a) T is injective and has closed range.

(b) There is C ≥ 0 such that

‖x‖ ≤ C‖Tx‖ (x ∈ E).

Examples 1. Let E be a Banach space. A closed subspace F is called complemented
in E if there is another closed subspace G of E with E = F +G and F ∩G = {0}.
We claim that, if F is complemented, then the canonical projection P : E → F with
kerP = G is continuous.

Clearly,

Ẽ = F ⊕G

with

‖(x, y)‖ = max{‖x‖, ‖y‖‖ (x ∈ F, y ∈ G)

is a Banach space. Let π : Ẽ → F be the projection onto the first coordinate, and
let

T : Ẽ → E, (x, y) 7→ x+ y.

Then T is continuous and bijective and thus has a continuous inverse. Since P =
π ◦ T−1 this shows that P is continuous.

2. Given f0, f1 ∈ C([0, 1]), the initial value problem

y′′ + f1y
′ + f0y = g, y(0) = y1, y′(0) = y2 (2.8)

has a unique solution in C2([0, 1]) for all g ∈ C([0, 1]) and y1, y2 ∈ R. Let E =
C2([0, 1]) (equipped with ‖ · ‖2, and let

F := C([0, 1])⊕ R⊕ R

be equipped with

‖(f, x1, x2)‖ := max{‖f‖∞, |x1|, |x2|} (f ∈ C([0, 1]), x1, x2 ∈ R).
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Define T : E → F through

Tφ := (φ′′ + f1φ
′ + f0φ, φ(0), φ′(0)) (φ ∈ C2([0, 1])).

Then T is linear such that, for any φ ∈ C2([0, 1]):

‖Tφ‖ = max{‖φ′′ + f1φ
′ + f0φ‖∞, |φ(0)|, |φ′(0)|}

≤ max{1, ‖f1‖∞, ‖f0‖∞}
2∑
j=0

‖φ(j)‖∞︸ ︷︷ ︸
=‖φ‖2

.

Hence, T is bounded. The existence and uniqueness of the solutions of (2.8) imply
that T is a bijection. By Corollary 2.5.3, T−1 is also continuous. Hence, the solutions
of (2.8) depend continuously on the data g, y1. and y2.

Exercise 2.18 Show that c0 is not complemented in `∞:

(i) Show that there is an uncountable family (Sα)α of infinite subsets of N such that Sα ∩ Sβ
is finite for all α 6= β. (Hint : Replace N by Q (you can do that because they have the same
cardinality), use R as your index set, and utilize the fact that every real number is the limit
of a sequence in Q.)

(ii) There is no countable subset Φ of (`∞/c0)∗ such that for each non-zero f ∈ `∞/c0 there is
φ ∈ Φ with φ(f) 6= 0. (Hint : Choose (Sα)α as in (i) and consider the family (fα)α of the
cosets in `∞/c0 of the indicator functions of the sets Sα; show that, for fixed φ ∈ (`∞/c0)∗,
the set {fα : φ(fα) 6= 0} is at most countable.)

(iii) Conclude from (i) and (ii) that c0 is not complemented in `∞.

2.6 The closed graph theorem

Definition 2.6.1 Let E and F be normed spaces.

(a) A partially defined operator from E to F is a linear map T : DT → F , where DT is
a subspace of F .

(b) A partially defined operator is called closed if its graph

Gr T := {(x, Tx) : x ∈ DT }

is closed in E ⊕ F .

Example Let E = F := C([0, 1]), let DT := C1([0, 1]), and let

T : DT → F, f 7→ f ′.
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Let ((fn, T fn))∞n=1 be a sequence in Gr T with (fn, T fn)→ (g, h) ∈ E ⊕ F , i.e.

‖fn − g‖∞ → 0 and ‖f ′n − h‖∞ → 0.

It follows that (fn)∞n=1 is a Cauchy sequence in C1([0, 1]) with respect to ‖ · ‖1. Let
f ∈ C1([0, 1]) be the limit of (fn)∞n=1, i.e.

‖fn − f‖∞ → 0 and ‖f ′n − f ′‖∞ → 0.

It follows that g = f and h = f ′, so that (g, h) ∈ Gr T . Consequently, T is closed
(although not continuous).

Theorem 2.6.2 (closed graph theorem) Let E and F be Banach spaces, and let T :
E → F be closed. Then T is continuous.

Proof Define

π1 : Gr T → E, (x, Tx) 7→ x.

Then T is a continuous bijection and thus its inverse

ι : E → Gr T, x 7→ (x, Tx)

is continuous as well. Let

π1 : Gr T → F, (x, Tx) 7→ Tx.

Then π2 is continuous, and so is T = π2 ◦ ι. ut

Corollary 2.6.3 Let E and F be Banach spaces, and let T : E → F be linear with the
following property:

If (xn)∞n=1 is a sequence in E and y is a vector in F such that xn → 0 and
Txn → y ∈ F , then y = 0.

Then T is continuous.

Proof Let (xn)∞n=1 be a sequence in E, and let x ∈ E and y ∈ F be such that

‖xn − x‖ → 0 and ‖Txn − y‖∞ → 0.

It follows that

xn − x→ 0 and T (xn − x) = Txn − Tx→ y − Tx.

The hypothesis on T implies that y − Tx = 0, so that (x, y) ∈ Gr, T . Hence, Gr T is
closed, and T is continuous by Theorem 2.6.2. ut
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Exercise 2.19 Let E and F be Banach spaces, and let T : E → F be linear. The separating space
of T is defined as

S(T ) := {y ∈ F : there is a sequence (xn)∞n=1 in E with xn → 0 and Txn → y}

(i) Show that S(T ) is a closed, linear subspace of F .

(ii) Show that S(T ) = {0} if and only if T ∈ B(E,F ).

Example Let X be a locally compact Hausdorff space, and let φ : X → F be such that
φf ∈ C0(X) for all f ∈ C0(X). Define

Mφ : C0(X)→ C0(X), f 7→ φf.

Let (fn)∞n=1 be a sequence in C0(X), and let g ∈ C0(X) be such that

fn → 0 and Tfn → g.

For all x ∈ X, we have that

g(x) = lim
n→∞

φ(x)fn(x) = 0,

so that g = 0. With Corollary 2.6.3, it follows that Mφ is bounded. (It can then be shown
that φ ∈ Cb(X).)

Exercise 2.20 Let X be a locally compact Hausdorff space. A multiplier of C0(X) is a linear
map T : C0(X)→ C0(X) such that

T (fg) = fTg (f, g ∈ C0(X))

Show that T is continuous.
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Chapter 3

Spectral theory of bounded linear

operators

In this chapter, we develop the basics of the spectral theory of bounded, linear operators
on Banach spaces.

3.1 The spectrum of a bounded linear operator

The spectrum can be thought of as the appropriate infinite-dimensional analogue of the
set of eigenvalues of a matrix.

Definition 3.1.1 Let E be a Banach space. We let

InvB(E) := {T ∈ B(E) : T is invertible}.

Definition 3.1.2 Let E be a Banach space, and let T ∈ B(E). Then

σ(T ) := {λ ∈ F : λ− T /∈ InvB(E)}

is called the spectrum of T . The complement ρ(T ) := C \ σ(T ) is the resolvent set of T .

Examples 1. Let dimE <∞. Then:

λ ∈ σ(T ) ⇐⇒ λ− T is not bijective

⇐⇒ λ− T is not injective

⇐⇒ there is x ∈ E \ {0} such that Tx = λx

⇐⇒ λ is an eigenvalue of T .

2. Let E = R
2, and let T = TA for A =

[
0 1
−1 0

]
. Then σ(T ) = ∅.
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3. Let φ ∈ C([0, 1]) and let

Mφ : C([0, 1])→ C([0, 1]), f 7→ φf.

Let λ ∈ F \ φ([0, 1]). Then

ψ(x) :=
1

λ− φ(x)
(x ∈ [0, 1])

defines an element of C([0, 1]). We have

Mψ(λ−Mφ)f = (λMφ)−Mψf =
λ− φ
λ− φ

f = f (f ∈ C([0, 1])),

so that Mψ = (λ−Mφ)−1 and λ /∈ σ(Mφ). It follows that σ(T ) ⊂ φ([0, 1]).

Conversely, let λ ∈ φ([0, 1]) and assume that λ /∈ σ(T ). Let ψ := (λ −Mφ)−11.
Then we obtain

(λ− φ)ψ = (λ−Mφ)ψ = 1,

which is impossible.

Exercise 3.1 Let E be a Banach space, and let P ∈ B(E) be a projection. Show that σ(P ) ⊂
{0, 1}.

Exercise 3.2 Let T ∈ B(C([0, 1])) be defined through

(Tf)(x) := xf(x) (f ∈ C([0, 1]), x ∈ [0, 1]).

(i) Show that T has no eigenvalues.

(ii) What is σ(T )?

Exercise 3.3 Let E be a Banach space, and let T ∈ B(T ). Show that σ(T ) = σ(T ∗).

Exercise 3.4 Let p ∈ [1,∞], and let L,R : `p → `p be defined through

L(x1, x2, x3, . . . ) = (0, x1, x2, . . . )

and R(x1, x2, x3, . . . ) = (x2, x3, x4, . . . ) ((x1, x2, x3, . . . ) ∈ `p).

(i) Show that every λ ∈ C with |λ| < 1 is an eigenvalue of R.

(ii) Conclude that σ(R) = {λ ∈ C : |λ| ≤ 1}.

(iii) Show that L has no eigenvalues, but σ(L) = {λ ∈ C : |λ| ≤ 1}. (Hint : Take adjoints.)

As Exercise 3.2 shows, a bounded linear operator on an infinite-dimensional Banach
space may have an empty set of eigenvalues. As we shall see in the remainder of this
section, the spectrum of a bounded, linear operator is a compact set, which is non-empty
if F = C.
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Lemma 3.1.3 Let E be a Banach space, and let T ∈ B(E) be such that ‖idE − T‖ < 1.
Then T ∈ InvB(E).

Proof Let

S :=
∞∑
n=0

(idE − T )n.

It follows that

S − TS = (idE − T )S

=
∞∑
n=0

(idE − T )n+1

=
∞∑
n=1

(idE − T )n

= S − idE ,

so that TS = idE . In a similar way, ST = idE is proven. ut

Corollary 3.1.4 Let E be a Banach space, and let T ∈ B(E). Then σ(T ) is bounded by
‖T‖.

Proof Let λ ∈ F be such that |λ| > ‖T‖. Then∥∥∥∥1−
(

1− T

λ

)∥∥∥∥ =
∥∥∥∥Tλ
∥∥∥∥ < 1,

so that

λ− T = λ

(
1− T

λ

)
∈ InvB(E)

by Lemma 3.1.3. This means that λ ∈ ρ(T ). ut

Corollary 3.1.5 Let E be a Banach space. Then InvB(E) is open in B(E).

Proof Let T ∈ InvB(E), and let S ∈ B(E) be such that ‖S−T‖ < 1
‖T−1‖ . It follows that

‖1− T−1S‖ = ‖T−1(T − S)‖ < 1,

so that T−1S ∈ InvB(E) by Lemma 3.1.3. ut

Corollary 3.1.6 Let E be a Banach space, and let T ∈ B(E). Then σ(T ) is closed in F.
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Proof Let λ ∈ ρ(T ), i.e. λ − T ∈ InvB(E). By Corollary 3.1.5, there is ε > 0 such that
S ∈ InvB(E) whenever ‖λ− T − S‖ < ε. For µ ∈ F with |λ− µ| < ε, we then have

‖(λ− T )− (µ− T )‖ = |λ− µ| < ε,

so that µ− T ∈ InvB(E). ut

Lemma 3.1.7 Let E be a Banach space, and let (Tn)∞n=1 be a sequence in InvB(E) which
converges to T ∈ InvB(E). Then T−1

n → T−1.

Proof We first show that supn∈N ‖T−1
n ‖ < ∞. Since TnT−1 → idE , there is N ∈ N such

that

‖idE − TnT−1‖ < 1
2

(n ≥ N).

In the proof of Lemma 3.1.7, we saw that

(TnT−1)−1 =
∞∑
k=0

(idE − TnT−1)k (n ≥ N),

so that

‖TT−1
n ‖ = ‖(TnT−1)−1‖ ≤

∞∑
k=0

‖idE − TnT−1‖k ≤ 2 (n ≥ N).

Consequently,

‖T−1
n ‖ ≤ ‖T−1‖‖TT−1

n ‖ ≤ 2‖T−1‖ (n ≥ N).

Since

‖T−1
n − T−1‖ = ‖T−1

n (T − Tn)T−1‖ ≤ ‖T−1
n ‖‖T − Tn‖‖T−1‖ (n ∈ N),

it follows that limn→∞ T
−1
n = T−1. ut

Theorem 3.1.8 Let E 6= {0} be a Banach space over C, and let T ∈ B(E). Then σ(T )
is a non-empty, compact subset of C.

Proof In view of Corollaries 3.1.4 and 3.1.6, it is clear that σ(T ) is compact (this does
not require that the Banach space be over C).

All we have to show is therefore that σ(T ) 6= ∅. Assume towards a contradiction that
σ(T ) = ∅, i.e. λ− T ∈ InvB(E) for all λ ∈ C. Let φ ∈ B(E)∗, and define

f : C→ C, λ 7→ φ((λ− T )−1).
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Let h ∈ C \ {0}. Then we have:

f(λ+ h)− f(λ)
h

=
1
h
φ((λ+ h− T )−1 − (λ− T )−1)

=
1
h
φ((λ+ h− T )−1[(λ− T )− (λ+ h− T )](λ− T )−1)

= −1
h
φ((λ+ h− T )−1[(λ− T )− (λ+ h− T )](λ− T )−1)

h→0→ −φ((λ− T )−2).

Hence, f is holomorphic. Moreover, since

f(λ) =
1
λ
φ((1− λ−1T )−1)

|λ|→∞→ 0, (3.1)

the function f is also bounded. By Liouville’s theorem, this means that f is constant.
In conjunction with (3.1), this means f ≡ 0. In particular, 0 = f(0) = φ(T−1). Since
φ ∈ B(E)∗ was arbitrary, Corollary 2.1.7 yields T−1 = 0, which is impossible. ut

Exercise 3.5 Let ∅ 6= K ⊂ C be compact. Show that there are a Banach space E over C and
T ∈ B(E) such that σ(T ) = K.

Exercise 3.6 Let p ∈ [1,∞], and let L,R : `p → `p be defined through

L(x1, x2, x3, . . . ) = (0, x1, x2, . . . )

and R(x1, x2, x3, . . . ) = (x2, x3, x4, . . . ) ((x1, x2, x3, . . . ) ∈ `p).

(i) Show that every λ ∈ C with |λ| < 1 is an eigenvalue of R.

(ii) Conclude that σ(R) = {λ ∈ C : |λ| ≤ 1}.

(iii) Show that L has no eigenvalues, but σ(L) = {λ ∈ C : |λ| ≤ 1}. (Hint : Take adjoints.)

Exercise 3.7 Let E be a Banach space over C, and let T ∈ InvB(E).

(i) Show that λ ∈ σ(T ) if and only if λ−1 ∈ σ(T−1).

(ii) Suppose further that T is an isometry. Show that σ(T ) ⊂ {λ ∈ C : |λ| = 1}.

Exercise 3.8 Let E be a Banach space over C. Let T ∈ B(E) \ InvB(E) be such that there is a
sequence (Tn)∞n=1 in InvB(E) such that T = limn→∞ Tn. Show that limn=1 ‖T−1

n ‖ =∞.

Exercise 3.9 Let E be a Banach space over C. An element λ ∈ C is called an approximate
eigenvalue for T if

inf{‖(λ− T )x‖ : x ∈ E, ‖x‖ = 1} = 0.

Show that

∂σ(T ) ⊂ {approximate eigenvalues of T} ⊂ σ(T ).

As Exercise 3.5, there is nothing more that can be said about the spectra of bounded,
linear operators on Banach spaces over C except that they are non-empty subsets of C.
To get more detailed information, we need to look at a smaller class of operators.
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3.2 Spectral theory for compact operators

In this section, all spaces are over C.

Lemma 3.2.1 Let E be a Banach space, let F be a closed subspace of E, let T ∈ K(E),
and let λ ∈ C \ {0} be such that

inf{‖(λ− T )x‖ : x ∈ F, ‖x‖ = 1} = 0.

Then F ∩ ker(λ− E) 6= {0}.

Proof Let (xn)∞n=1 be a sequence in F with ‖xn‖ = 1 for all n ∈ N and (λ − T )xn → 0.
Since T is compact, (Txn)∞n=1 has a convergent subsequence (Txnk)∞k=1. Hence (λxnk)∞k=1

converges and since λ 6= 0, so does (xnk)∞k=1. Let x := limk→∞ xnk . Then x ∈ F with
‖x‖ = 1 belongs to ker(λ− T ). ut

Proposition 3.2.2 Let E be a Banach space, let T ∈ K(E), and let λ ∈ σ(T )\{0}. Then
the following hold:

(i) dim ker(λ− T ) <∞.

(ii) (λ− T )E is closed and has finite codimension.

(iii) There is n ∈ N such that ker(λ−T )n = ker(λ−T )n+1 and (λ−T )nE = (λ−T )n+1.

Proof For (i), observe that

id|ker(λ−T ) =
1
λ
T |ker(λ−T )

is compact. This implies dim ker(λ− T ) <∞.
For (ii) choose that a closed subspace F of E such that E = ker(λ−T )⊕F . It follows

that (λ− T )F = (λ− T )E. Since F ∩ ker(λ− T ) = {0}, Lemma 3.2.1 implies that

C := inf{‖(λ− T )x‖ : x ∈ F, ‖x‖ = 1} > 0.

Hence,

‖(λ− T )x‖ ≥ C‖x‖ (x ∈ F ),

so that (λ− T )F = (λ− T )E is closed.
To see that (λ− T )E has finite codimension, note that

(λ− T )E⊥ = {φ ∈ E∗ : φ((λ− T )x) = 0 for all x ∈ E}

= {φ ∈ E∗ : ((λ− T )φ)(x) = 0 for all x ∈ E}

= ker(λ− T ∗).
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Since T ∗ is also compact by Theorem 2.2.4, (i) yields dim(λ−T )E⊥ <∞, so that (λ−T )E
has finite codimension (since it is closed).

We only prove the first statement of (iii) in detail (the second one is established
analogously). Assume towards a contradiction that

En+1 := ker(λ− T )n+1
) ker(λ− T )n =: En (n ∈ N).

For each n ∈ N choose xn ∈ En+1 such that ‖xn‖ = 1 and dist(xn, En) ≥ 1
2 . Let

n > m ≥ 2. Since

Txn − Txm = λxn − (λ− T )xn︸ ︷︷ ︸
∈En

+ (λ− T )xm − λxm︸ ︷︷ ︸
∈Em⊂En

,

we have

‖Txn − Txm‖ ≥
|λ|
2
.

Hence, (Txn)∞n=1 has no convergent subsequence. To prove the second statement, proceed
similarly, first noting that

(λ− T )n =
n∑
k=0

(
n

k

)
λk(−T )n−k = λn −

n−1∑
k=0

(−1)λk(−T )n−k︸ ︷︷ ︸
∈K(E)

(n ∈ N),

so that (λ− T )nE is closed for each n ∈ N. ut

Lemma 3.2.3 Let E be a Banach space, let T ∈ K(E), and let λ ∈ σ(T ) \ {0}. Then λ

is an eigenvalue of T or of T ∗.

Proof Suppose that λ is not an eigenvalue of T . By Lemma 3.2.1, this means that

inf{‖(λ− T )x‖ = 0 : x ∈ E, ‖x‖ = 1} > 0.

As in the proof of Proposition 3.2.2, we conclude that λ − T is injective and has closed
range. Since λ ∈ σ(T ), we have (λ − T )E ( E. Choose φ ∈ E∗ \ {0} such that φ ∈
(λ−T )E⊥. Again as in the proof of Proposition 3.2.2, we see that φ ∈ ker(λ−T )∗. ut

Lemma 3.2.4 Let E be a Banach space, let T ∈ K(E), and let (λn)∞n=1 be a sequence of
pairwise distinct eigenvalues of T . Then limn→∞ λn = 0.

Proof Without loss of generality suppose that λn 6= 0 for all n ∈ N. For each n ∈ N,
choose xn ∈ ker(λn − T ) \ {0}. Let

En := lin {x1, . . . , xn},
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so that E1 ( · · · ( En ( En+1 ( · · · . For each n ≥ 2, choose yn ∈ En such that

‖yn‖ = 1 and dist(yn, En−1) ≥ 1
2
.

Let α1, . . . , αn ∈ C be such that yn = α1x1 + · · ·+ αnxn. It follows that

(λn − T )yn = α1(λn − λ1)x1 + · · ·+ αn−1(λn − λn−1)xn−1.

For n > m ≥ 2, this yields:

T (λ−1
n yn)− T (λ−1

m ym) = λ−1
n (λn − T )yn − λ−1

m (λm − T )ym + ym︸ ︷︷ ︸
∈En−1

−yn.

Consequently,

‖T (λ−1
n yn)− T (λ−1

m ym)‖ ≥ 1
2

(n 6= m, n,m ≥ 2),

so that (T (λ−1
n yn))∞n=1 has no convergent subsequence. Since T is compact, this means

that (λ−1
n yn)∞n=1 has no bounded subsequence, i.e. ‖λ−1

n yn‖ = |λ−1
n | → ∞ and thus λn → 0.

ut

Lemma 3.2.5 Let E be a Banach space, and let λ ∈ σ(T ) \ {0}. Then λ is an isolated
point of σ(T ).

Proof Assume that there is a sequence (λn)∞n=1 in σ(T )\{λ} such that λn → λ. Without
loss of generality, we may suppose that the λns are pairwise distinct. By Lemma 3.2.3,
there is a subsequence (λnk)∞k=1 of (λn)∞n=1 such that

(a) each λnk is an eigenvalue of T , or

(b) each λnk is an eigenvalue of T ∗.

However, (a) contradicts Lemma 3.2.4, and (b) leads equally to a contradiction with
Lemma 3.2.4 if we apply that lemma with T ∗ instead of T . ut

Theorem 3.2.6 Let E be a Banach space with dimE =∞, and let T ∈ K(E). Then one
of the following holds:

(i) σ(T ) = {0};

(ii) σ(T ) = {0, λ1, . . . , λn}, where λ1, . . . , λn are eigenvalues of T such that dim ker(λj−
T ) <∞ for j = 1, . . . , n.

(iii) σ(T ) = {0, λ1, λ2, . . . }, where λ1, λ2, . . . are eigenvalues of T such that dim ker(λn−
T ) <∞ for n ∈ N and limn→∞ λn = 0.
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Proof Since dimE =∞ and T ∈ K(E), certainly 0 ∈ σ(T ). By Lemma 3.2.5, σ(T ) is at
most countably finite, by Lemma 3.2.4, λn → 0 whenever (λn)∞n=1 is a sequence of pairwise
distinct eigenvalues of T , and Proposition 3.2.2(i) ensures that dim ker(λ−T ) <∞ for each
non-zero eigenvalue λ. We are thus done once we have shown that every λ ∈ σ(T ) \ {0}
is an eigenvalue.

Let λ ∈ σ(T ) \ {0}. By Proposition 3.2.2(iii), there is n ∈ N such that (λ − E)nE =
(λ− E)n+1E. Since

Proposition 3.2.2(ii) yields that (λ−T )nE is closed and has finite codimension. Assume
that λ is not an eigenvalue of T , so that λ−T is injective. Consequently, (λ−T )|(λ−T )nE

is bijective. Let S ∈ B((λ− T )nE) be the inverse of (λ− T )|(λ−T )nE , and define

P : E → E, x 7→ Sn(λ− T )nx.

It follows that

P 2 = Sn(λ− T )nSn(λ− T )n = Sn(λ− T )n = P.

We also have:

(λ− T )P = (λ− T )Sn(λ− T )n

= Sn−1(λ− T )n

= Sn−1S(λ− T )(λ− T )n

= Sn(λ− T )n+1

= P (λ− T ).

Since λ−T is not bijective, but λ−T is assumed to be injective, there is x ∈ E \(λ−T )E,
so that y := x− Px 6= 0. On the other hand, we have

(λ− T )ny = P (λ− T )ny = (λ− T )nPy = (λ− T )n(Px− P 2x) = 0,

so that ker(λ− T )n 6= {0} and thus ker(λ− T ) 6= {0}. ut

Exercise 3.10 Let φ ∈ `∞. Show that Mφ ∈ B(`∞) is compact if and only if φ ∈ c0.

Corollary 3.2.7 (Fredholm alternative) Let E be a Banach space, let T ∈ K(E), and
let λ ∈ C \ {0}. Then the following are equivalent:

(i) λ− T is bijective.

(ii) λ− T is injective.

(iii) λ− T is surjective.
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Proof (i) =⇒ (ii), (iii) is trivial.
(ii) =⇒ (i): clear by Theorem 3.2.6.
(iii) =⇒ (i): Assume that λ − T is not bijective, i.e. λ ∈ σ(T ) = σ(T ∗). Hence, λ is

an eigenvalue of T ∗. Hence, there are non-zero elements in ker(λ − T ∗) = (λ − T )E⊥.
Consequently, (λ− T )E 6= E must hold, contradicting the surjectivity of λ− T . ut

Example Let λ ∈ C \ {0}, and let k ∈ C([0, 1] × [0, 1]), and consider, for f, g ∈ C([01, ])
the integral equations

λf(x)−
∫ 1

0
f(y)k(x, y) dy = g(x) (x ∈ [0, 1]) (3.2)

and

λf(x)−
∫ 1

0
f(y)k(x, y) dy = 0 (x ∈ [0, 1]). (3.3)

Then there are the following alternatives:

(i) (3.2) has a unique solution f ∈ C([0, 1]) for each g ∈ C([0, 1]); in particular, (3.3)
only has the trivial solution f ≡ 0.

(ii) There is g ∈ C([0, 1]) such that (3.2) has no solution f ∈ C([0, 1]). In this case, (3.3)
has non-trivial solutions f ∈ C([0, 1]), which form a finite-dimensional subspace of
C([0, 1]).

Since the Fredholm operator on C([0, 1]) with kernel k is compact, this is an immediate
consequence of Corollary 3.2.7.

To make stronger assertions on the spectral theory of compact operators, we need to
leave the general Banach space framework.

3.3 Hilbert spaces

Hilbert spaces are, in a certain sense, the infinite-dimensional spaces which behave most
like finite-dimensional Euclidean space.

3.3.1 Inner products

Definition 3.3.1 A semi-inner product on a vector space E is map [·, ·] : E×E → F such
that

(a) [λx+ µy, z] = λ[x, z] + µ[y, z] (λ, µ ∈ F, x, y, z ∈ E);

(b) [z, λx+ µy] = λ[z, x] + µ[z, y] (λ, µ ∈ F, x, y, z ∈ E);
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(c) [x, x] ≥ 0 (x ∈ E);

(d) [x, y] = [y, x] (x, y ∈ E).

A semi-inner product is called an inner product if

[x, x] = 0 ⇐⇒ x = 0 (x ∈ E).

Example Let (Ω,S, µ) be a measure space. For f, g ∈ L2(Ω,S, µ), define

[f, g] :=
∫

Ω
f(ω)g(ω) dµ(ω). (3.4)

Then [·, ·] is a semi-inner product.

Proposition 3.3.2 (Cauchy–Schwarz inequality) Let E be a vector space with a se-
mi-inner product [·, ·] on it. Then

|[x, y]|2 ≤ [x, x][y, y] (x, y ∈ E)

holds.

Proof Let x, y ∈ E. For all λ ∈ F, we have:

0 ≤ [x− λy, x− λy] = [x, x]− λ[y, x]− λ[x, y] + |λ|2[y, y]. (3.5)

Choose µ ∈ F with |µ| = 1 such that [y, x] = µ|[y, x]|. For t ∈ R and λ = tµ we obtain
from (3.5):

0 ≤ [x, x]− tµ[y, x]− tµ[x, y] + t2[y, y]

= [x, x]− tµµ|[y, x]| − tµµ|[x, y]|+ t2[y, y]

= [x, x]− 2t|[y, x]|+ t2[y, y]

=: q(t).

Then q is a quadratic polynomial in t with at most one zero in R. Hence, the discriminant
of q must be less than or equal to zero:

0 ≥ 4|[y, x]|2 − 4[x, x][y, y].

This yields the claim. ut

Corollary 3.3.3 Let E be a vector space with a semi-inner product [·, ·]. Then

‖x‖ := [x, x]
1
2 (x ∈ E)

defines a seminorm on E, which is a norm if and only if [·, ·] is a inner product.
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Proof Only the triangle inequality needs proof. For x, y ∈ E, we have:

‖x+ y‖2 = [x+ y, x+ y]

= [x, x] + [x, y] + [y, x]︸ ︷︷ ︸
=[x,y]

+[y, y]

= [x, x] + 2Re [x, y] + [y, y]

≤ [x, x] + 2|[x, y]|+ [y, y]

≤ [x, x] + 2[x, x]
1
2 [y, y]

1
2 + [y, y], by Proposition 3.3.2,

= ‖x‖2 + 2‖x‖‖y‖+ ‖y‖2

= (‖x‖+ ‖y‖)2.

Taking roots yields the triangle inequality. ut

Exercise 3.11 Let E be a linear space, and let [·, ·] be a semi-inner product on E.

(i) Show that F := {x ∈ E : [x, x] = 0} is a linear subspace of E.

(ii) Show that

〈x+ F, y + F 〉 := [x, y] (x, y ∈ E)

defines an inner product on E/F .

Definition 3.3.4 A vector space H equipped with an inner product 〈·, ·〉 is called a Hilbert
space if H equipped with the norm

‖ξ‖ := 〈ξ, ξ〉
1
2 (ξ ∈ H)

is a Banach space.

Example Let (Ω,S, µ) be a measure space. Then (3.4) induces a inner product on
L2(Ω,S, µ) turning it into a Hilbert space. In particular, for each index set I 6= ∅,
the space

`2(I) :=

{
f : I → F :

∑
i∈I
|f(i)|2 <∞

}

equipped with

〈f, g〉 :=
∑
i∈I

f(i)g(i) (f, g ∈ `2(I))

is a Hilbert space.
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3.3.2 Orthogonality and self-duality

Definition 3.3.5 Let H be a Hilbert space. We say that ξ, η ∈ H are orthogonal — in
symbols: ξ ⊥ η — if 〈ξ, η〉 = 0.

Exercise 3.12 Let H be a Hilbert space, and let ξ1, . . . , ξn ∈ H be pairwise orthogonal. Show
that

‖ξ1 + · · ·+ ξn‖2 = ‖ξ1‖2 + · · ·+ ‖ξn‖2.

How do you interpret this geometrically?

Lemma 3.3.6 (parallelogram law) Let H be a Hilbert space. Then we have:

‖ξ + η‖2 + ‖ξ − η‖2 = 2(‖ξ‖2 + ‖η‖2) (ξ, η ∈ H).

Proof We have

‖ξ + η‖2 = 〈ξ + η, ξ + η〉 = ‖ξ‖2 + ‖η‖2 + 2Re 〈ξ, η〉

and

‖ξ − η‖2 = 〈ξ + η, ξ + η〉 = ‖ξ‖2 + ‖η‖2 − 2Re 〈ξ, η〉.

Adding both equations yields the claim. ut

Theorem 3.3.7 Let K be a closed, convex, non-empty subset of a Hilbert space H. Then,
for each ξ ∈ H, there is a unique η ∈ K such that ‖ξ − η‖ = dist(ξ,K).

Proof Let ξ ∈ H, and let δ := dist(ξ,K), so that there is a sequence (ηn)∞n=1 in K such
that ‖ξ − ηn‖ → δ. Note that, for n,m ∈ N, we have∥∥∥∥1

2
(ηn − ηm)

∥∥∥∥2

=
∥∥∥∥1

2
[(ηn − ξ)− (ηm − ξ)]

∥∥∥∥2

=
1
2
(
‖ηn − ξ‖2 + ‖ηm − ξ‖2

)
−
∥∥∥∥ 1

2
(ηn + ηm)︸ ︷︷ ︸
∈K

−η
∥∥∥∥2

︸ ︷︷ ︸
≥δ2

, by Lemma 3.3.6. (3.6)

Let ε > 0. Choose N ∈ N such that

‖ηn − ξ‖2 < δ2 +
1
4
ε2 (n ≥ N).
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Then (3.6) yields∥∥∥∥1
2

(ηn − ηm)
∥∥∥∥2

<
1
2

(
2δ2 +

1
2
ε2
)
− δ2 =

1
4
ε2 (n,m ≥ N)

and thus

‖ηn − ηm‖ < ε (n,m ≥ N).

Thus, (ηn)∞n=1 is a Cauchy sequence which therefore converges to some η ∈ K. It is
obvious that ‖ξ − η‖ = δ.

To prove the uniqueness of η, let η1, η2 ∈ K be such that ‖ξ − ηj‖ = δ for j = 1, 2.
Since 1

2(η1 + η2) ∈ K, we have

δ ≤
∥∥∥∥ξ − 1

2
(η1 + η2)

∥∥∥∥ =
∥∥∥∥1

2
(ξ − η1) +

1
2

(ξ − η2)
∥∥∥∥ ≤ 1

2
(‖ξ − η1‖+ ‖ξ − η2‖) = δ,

so that
∥∥ξ − 1

2(η1 + η2)
∥∥ = δ as well. This, in turn, implies that

δ2 =
∥∥∥∥1

2
(ξ − η1) +

1
2

(ξ − η2)
∥∥∥∥2

= 2
∥∥∥∥1

2
(ξ − η1)

∥∥∥∥2

︸ ︷︷ ︸
= 1

4
δ2

+2
∥∥∥∥1

2
(ξ − η2)

∥∥∥∥2

︸ ︷︷ ︸
= 1

4
δ2

−
∥∥∥∥1

2
(η1 − η2)

∥∥∥∥2

and thus

δ2 = δ2 −
∥∥∥∥1

2
(η1 − η2)

∥∥∥∥2

.

This means that η1 = η2. ut

Lemma 3.3.8 Let H be a Hilbert space, let K be a closed subspace, and let ξ ∈ H. Then
the following are equivalent for η ∈ K:

(i) ‖ξ − η‖ = dist(ξ,K);

(ii) ξ − η ⊥ K, i.e. ξ − η ⊥ η̃ for each η̃ ∈ K.

Proof (i) =⇒ (ii): Let η̃ ∈ K. Then

‖ξ − η‖2 ≤ ‖ξ − (η + η̃)‖2 = ‖ξ − η‖2 − 2Re 〈ξ − η, η̃〉+ ‖η̃‖2 (3.7)

holds, so that 2Re 〈ξ − η, η̃〉 ≤ ‖η̃‖2. Choose λ ∈ F such that |λ| = 1 and 〈ξ − η, η̃〉 =
λ|〈ξ − η, η̃〉|. Replacing η̃ in (3.7) with tλη̃ for t ∈ R thus yields

2Re 〈ξ − η, tλη̃〉︸ ︷︷ ︸
=2t|〈ξ−η,η̃〉|

≤ t2‖η̃‖ (t ∈ R),
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i.e.

2|〈ξ − η, η̃〉| ≤ t‖η̃‖2 (t > 0).

Letting t→ 0 yields 〈ξ − η, η̃〉 = 0, i.e. ξ − η ⊥ η̃.
(ii) =⇒ (i): Let η̃ ∈ K, so that ξ − η ⊥ η − η̃. It follows that

‖ξ − η̃‖2 = ‖(ξ − η) + (η − η̃)‖2 = ‖ξ − η‖2 + ‖η − η̃‖2 ≥ ‖ξ − η‖2,

which proves the claim. ut

As you saw in Exercise 2.18, a closed subspace of a Banach space need not be com-
plemented. This situation is different for Hilbert spaces:

Theorem 3.3.9 Let H be a Hilbert space, and let K be a closed subspace of H. Then there
is a unique P ∈ B(H) with the following properties:

(i) PH = K;

(ii) P 2 = P ;

(iii) kerP = K⊥ := {ξ ∈ H : ξ ⊥ K};

(iv) ‖P‖ ≤ 1.

This map P is called the orthogonal projection onto K.

Proof For ξ ∈ H, define

Pξ := the unique η ∈ K such that ‖ξ − η‖ = dist(ξ,K).

It is then clear that P : H→ H satisfies (i). By Lemma 3.3.8, this means that

Pξ := the unique η ∈ K such that ξ − η ⊥ K.

This yields immediately that P is linear, is the identity on K, i.e. satisfies (ii), and also
satisfies (iii).

Since ξ − Pξ ⊥ K for all ξ ∈ H, we have

‖ξ‖2 = ‖(ξ − Pξ) + Pξ‖2 = ‖ξ − Pξ‖2 + ‖Pξ‖2 ≥ ‖Pξ‖2 (ξ ∈ H),

which yields (iv). ut

Exercise 3.13 Let H be a Hilbert space, and let K be a closed subspace of H. Show that H ∼=
K⊕ K⊥.
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Corollary 3.3.10 Let H be a Hilbert space, and let K be a closed subspace of H. Then K

is complemented in H.

Theorem 3.3.11 Let H be a Hilbert space, and let φ ∈ H∗. Then there is a unique η ∈ H

such that

φ(ξ) = 〈ξ, η〉 (ξ ∈ H). (3.8)

Moreover, η satisfies ‖φ‖ = ‖η‖.

Proof The uniqueness of η is clear.
For the proof of existence, we may suppose without loss of generality that ‖φ‖ = 1. Let

K := kerφ, and let P ∈ B(H) denote the orthogonal projection onto K. Choose η0 ∈ H\K.
Then η0 − Pη0 ⊥ K and η0 − Pη0 6= 0, so that

η̃ :=
η0 − Pη0

‖η0 − Pη0‖

is well-defined. Define ψ ∈ H∗ as

ψ : H→ F, ξ 7→ 〈ξ, η̃〉,

so that kerφ = K ⊂ kerψ. This means that there is λ ∈ F such that φ = λψ. Since

|ψ(ξ)| = |〈ξ, η̃〉| ≤ ‖η̃‖‖ξ‖ = ‖ξ‖ (ξ ∈ H)

by the Cauchy–Schwarz inequality, we have

1 ≥ ‖ψ‖ ≥ |ψ(η̃)| = ‖η̃‖2 = 1,

which implies |λ| = 1. Letting η := λη̃, we obtain (3.8). ut

Corollary 3.3.12 Let H be a Hilbert space, and define, for each η ∈ H, a functional
φη ∈ H∗ by letting

φη(ξ) := 〈ξ, η〉 (ξ ∈ H).

Then the map

H→ H∗, η 7→ φη

is a conjugate linear isometry.

As an application of this so-called self-duality of Hilbert spaces, we will now give a
Hilbert space theoretic proof of the Radon–Nikodým theorem from measure theory.
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Definition 3.3.13 Let (Ω,S) be a measurable space, and let µ and ν be measures on
(Ω,S). We say that ν is absolutely continuous with respect to µ — in symbols: ν � µ —
if ν(N) = 0 for every N ∈ S such that µ(N) = 0.

Example Let (Ω,S, µ) be any measure space, and let f : Ω→ [0,∞] be measurable. Then
ν : S→ [0,∞] defined by

ν(S) :=
∫
S
f(ω) dµ(ω) (S ∈ S)

is absolutely continuous with respect to µ.

Theorem 3.3.14 (Radon–Nikodým theorem) Let (Ω,S) be a measurable space, and
let µ and ν be finite measures on (Ω,S) such that ν � µ. Then there is a non-negative
h ∈ L1(Ω,S, µ) such that

ν(S) =
∫
S
h(ω) dµ(ω) (S ∈ S)

Proof Let λ := µ+ ν, and define φ ∈ L2(Ω,S, λ;R)∗ by letting

φ(f) :=
∫

Ω
f(ω) dν(ω) (f ∈ L2(Ω,S, λ)).

By Theorem 3.3.11, there is a unique g ∈ L2(Ω,S, λ) such that

φ(f) :=
∫

Ω
f(ω)g(ω) dλ(ω) (f ∈ L2(Ω,S, λ)),

so that ∫
Ω

(1− g(ω))f(ω) dν(ω) =
∫

Ω
g(ω)f(ω) dµ(ω) (f ∈ L2(Ω,S, λ)).

Let A := {ω ∈ Ω : g(ω) < 0}. It follows that

0 ≥
∫
A
g(ω) dµ(ω) =

∫
Ω
g(ω)χA(ω) dµ(ω) =

∫
Ω

(1− g(ω))χA(ω) dν(ω) ≥ 0,

so that µ(A) = 0 and hence ν(A) = 0. Let B := {ω ∈ Ω : g(ω) ≥ 1}. Similarly, we have

0 ≥
∫
B

(1− g(ω)) dν(ω) =
∫
B
g(ω) dν(ω) ≥ 0,

so that µ(B) = ν(B) = 0 as well. We may therefore suppose without loss of generality
that g(ω) ∈ [0, 1) for all ω ∈ Ω.

For S ∈ S and n ∈ N, define fn := (1 + g + · · ·+ gn)χS . It follows that∫
S

(1− g(ω)n+1) dν(ω) =
∫

Ω
(1− g(ω))fn(ω) dν(ω)

=
∫

Ω
g(ω)fn(ω) dµ(ω)

=
∫
S

(g(ω) + g(ω)2 + · · ·+ g(ω)n+1) dµ(ω).
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Let h :=
∑∞

n=1 g
n. Since g(Ω) ⊂ [0, 1), this series converges; for the same reason, we have

1− gn+1 → 1 pointwise. All in all, we have:

ν(S) =
∫
S
dν(ω)

= lim
n→∞

∫
S

(1− g(ω)n+1) dν(ω), by dominated convergence,

= lim
n→∞

∫
S

(g(ω) + g(ω)2 + · · ·+ g(ω)n+1) dµ(ω)

=
∫
S
h(ω) dµ(ω), by monotone convergence.

This completes the proof. ut

3.3.3 Orthonormal bases

Definition 3.3.15 Let H be a Hilbert space. A family (eα)α of vectors in H is called
orthonormal if ‖eα‖ = 1 and eα ⊥ eβ for α 6= β.

Examples 1. Let H = F
N , and let ej := (0, . . . , 0, 1, 0, . . . , 0) for j = 1, . . . , N , where

the non-zero entry is in the j-th position. Then (ej)Nj=1 is orthonormal.

2. More generally, let H = `2(I) for I 6= ∅, and define, for i ∈ I, a vector ei : I → F by
letting ei(j) := δi,j for j ∈ I. Then (ej)j∈I is orthonormal.

3. Let H = L2([0, 2π];C). For n ∈ N, define en ∈ L2([0, 2π]) by letting

en(x) :=
1√
2π
einx (x ∈ [0, 2π]).

Then, clearly, ‖en‖ = 1. For n 6= m, we have

〈en, em〉 =
1

2π

∫ 2π

0
ei(n−m)x dx =

1
2iπ(n−m)

ei(n−m)x

∣∣∣∣2π
0

= 0.

Hence, (en)∞n=1 is orthonormal.

Lemma 3.3.16 (Bessel’s inequality) Let H be a Hilbert space, and let (eα)α be an
orthonormal family in H. Then∑

α

|〈ξ, eα〉|2 ≤ ‖ξ‖2 (ξ ∈ H)

holds.

70



Proof For any finite number of indices α1, . . . , αn, let η := ξ−
∑n

j=1〈ξ, eαj 〉eαj . It follows
that η ⊥ eαj for j = 1, . . . , n. Consequently, we have

‖ξ‖2 = ‖η‖2 +

∥∥∥∥∥∥
n∑
j=1

〈ξ, eαj 〉eαj

∥∥∥∥∥∥
2

= ‖η‖2 +
n∑
j=1

|〈ξ, eαj 〉|2

≥
n∑
j=1

|〈ξ, eαj 〉|2.

Since α1, . . . , αn were arbitrary, this yields the claim. ut

Lemma 3.3.17 Let H be a Hilbert space, and let (eα)α be an orthonormal family in H.
Then

∑
α〈ξ, eα〉eα converges for every ξ ∈ H.

Proof By Lemma 3.3.16, the set
{
α : |〈ξ, eα〉| ≥ 1

n

}
is finite for each n ∈ N. Hence, there

are only countably many α such that 〈ξ, eα〉 6= 0. Without loss of generality, we can
therefore suppose that we are dealing with a sequence (en)∞n=1.

For n > m, we have:∥∥∥∥∥
n∑
k=1

〈ξ, ek〉ek −
m∑
k=1

〈ξ, ek〉ek

∥∥∥∥∥
2

=

∥∥∥∥∥
n∑

k=m+1

〈ξ, ek〉ek

∥∥∥∥∥
2

=
n∑

k=m+1

|〈ξ, ek〉|2.

Let ε > 0. Since
∑∞

k=1 |〈ξ, ek〉|2 ≤ ‖ξ‖2 <∞ by Lemma 3.3.16, there is N ∈ N such that

n∑
k=m+1

|〈ξ, ek〉|2 < ε2 (n,m ≥ N),

so that ∥∥∥∥∥
n∑
k=1

〈ξ, ek〉ek −
m∑
k=1

〈ξ, ek〉ek

∥∥∥∥∥ < ε (n,m ≥ N).

Hence, (
∑n

k=1〈ξ, ek〉ek)
∞
n=1 is Cauchy and thus converges. ut

Theorem 3.3.18 Let H be a Hilbert space, and let (eα)α be an orthonormal family in H.
Then the following are equivalent:

(i) (eα)α is maximal.

(ii) If ξ ⊥ eα for all α, then ξ = 0.

(iii) H = lin {eα : α}.
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(iv) If ξ ∈ H, then

ξ =
∑
α

〈ξ, eα〉eα

holds.

(v) If ξ, η ∈ H, then

〈ξ, η〉 =
∑
α

〈ξ, eα〉〈eα, η〉

holds.

(vi) Parseval’s identity holds for each ξ ∈ H:

‖ξ‖2 =
∑
α

|〈ξ, eα〉|2.

If (eα)α satisfies these conditions, it is called an orthonormal basis of H.

Proof (i) =⇒ (ii): Assume that there is ξ ∈ H \ {0} such that ξ ⊥ eα for all α. Then
we may add the vector ξ

‖ξ‖ to the family (eα)α and thus obtain an orthonormal family
strictly larger than (eα)α.

(ii) =⇒ (iii): Assume that K := lin {eα : α} ( H. By Corollary 2.1.6, there is φ ∈
H∗ \ {0} such that φ|K = 0. By Theorem 3.3.11, there is η ∈ H such that

φ(ξ) = 〈ξ, η〉 (ξ ∈ H).

It follows that 0 = φ(eα) = 〈eα, η〉, so that η ⊥ eα for all α and hence η = 0. This,
however, contradicts φ 6= 0.

(iii) =⇒ (iv): Let ξ ∈ H, and define η := ξ −
∑

α〈ξ, eα〉eα, which is well defined by
Lemma 3.3.17. It follows that

〈η, eβ〉 = 〈ξ, eβ〉 −
∑
α

〈ξ, eα〉〈eα, eβ〉 = 〈ξ, eβ〉 − 〈ξ, eβ〉 = 0

for any index β. Since H = lin {eα : α}, this implies 〈η, η〉 = 0 and thus η = 0.
(iv) =⇒ (v): Let ξ, η ∈ H. By (iv), we have

ξ =
∑
α

〈ξ, eα〉eα and η =
∑
α

〈η, eα〉eα.

This implies

〈ξ, η〉 =

〈∑
α

〈ξ, eα〉eα,
∑
β

〈η, eβ〉eβ

〉
=

∑
α

∑
β

〈ξ, eα〉〈η, eβ〉〈eα, eβ〉

=
∑
α

〈ξ, eα〉〈eα, η〉.
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(v) =⇒ (vi): Let η = ξ.
(vi) =⇒ (i): Let (fβ)β be an orthonormal family such that (eα)α is a proper subfamily.

Then there is one fβ0 such that fβ0 ⊥ eα for all α. It follows that∑
α

|〈fβ0 , eα〉|2 = 0 6= 1 = ‖fβ0‖2,

which contradicts (vi). ut

Corollary 3.3.19 Let H 6= {0} be a Hilbert space. Then H has an orthonormal basis.

Proof Use Zorn’s lemma to obtain a maximal orthonormal family in H. ut

Exercise 3.14 Let H be a Hilbert space, let K be a closed subspace, and let (eα)α be an orthonor-
mal basis for K. Show that the orthogonal projection P onto K is given by

Pξ =
∑
α

〈ξ, eα〉eα (ξ ∈ H).

Exercise 3.15 Show that every orthonormal basis for a separable, infinite-dimensional Hilbert
space is countably infinite.

Lemma 3.3.20 Let (eα)α and (fβ)β be orthonormal bases for a Hilbert space H. Then
(eα)α and (fβ)β have the same cardinality.

Proof Let κ be the cardinality of (eα)α, and let λ be the cardinality of (fβ)β.
Case 1: κ is finite.
In this case, dim H <∞, and (eα)α is a Hamel basis. It is easy to see that orthonormal

families are always linearly independent. Hence, λ must be finite, too. Since (fβ)β spans
H, we have that (fβ)β is also a Hamel basis for H. It follows that λ = dim H = κ.

Case 2: κ is infinite.
By the first case, this means that λ is also infinite. For any index α, define Bα := {β :

〈eα, fβ〉 6= 0}; by Bessel’s inequality, Bα is countable. It follows that

λ =

∣∣∣∣∣⋃
α

Bα

∣∣∣∣∣ ≤ ℵ0 · κ = κ.

Similarly, one sees that κ ≤ λ. ut

Theorem 3.3.21 The following are equivalent for two Hilbert spaces H and K:

(i) Every orthonormal basis of H has the same cardinality as every orthonormal basis
of K.

(ii) There are an orthonormal basis of H and an orthonormal basis of K having the same
cardinality.
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(iii) There is a surjective operator U : H→ K such that

〈Uξ, Uη〉 = 〈ξ, η〉 (ξ, η ∈ H).

If these conditions are satisfied, H and K are called unitarily equivalent.

Proof (i) =⇒ (ii) is obvious, and (ii) =⇒ (i) follows with Lemma 3.3.20.
(ii) =⇒ (iii): Let (eα)α and (fα)α be orthonormal bases of H and K, respectively, with

the same cardinality, i.e. we may use the same index set. Define

U : H→ K, ξ 7→
∑
α

〈ξ, eα〉fα.

The same argument as in the proof of Lemma 3.3.17 shows that this is well-defined. We
then have for ξ, η ∈ H:

〈Uξ, Uη〉 =

〈∑
α

〈ξ, eα〉fα,
∑
β

〈η, eβ〉fβ

〉
=

∑
α

∑
β

〈ξ, eα〉〈eβ , η〉〈fα, fβ〉

=
∑
α

〈ξ, eα〉〈eα, η〉

= 〈ξ, η〉.

In particular, ‖Uξ‖ = ‖ξ‖ holds for each ξ ∈ H, so that U is an isometry and thus has
closed range.

Assume that U is not surjective. By Corollary 2.1.6 and Theorem 3.3.11, we can then
find η ∈ K \ {0} such that η ⊥ UH. This means in particular that η ⊥ Ueα = fα for all α,
which is impossible.

(iii) =⇒ (ii): Let (eα)α be an orthonormal basis for H. It follows that (Ueα)α is
orthonormal in K such that K = {Ueα : α}. Hence, (Ueα)α is an orthonormal basis for K.
Clearly, (eα)α and (Ueα)α have the same cardinality. ut

Corollary 3.3.22 Let H 6= {0} be a Hilbert space. Then H is unitarily equivalent to `2(I)
for an appropriate index set I 6= ∅.

Corollary 3.3.23 Up to unitary equivalence, there is only one separable, infinite-di-
mensional Hilbert space.

Exercise 3.16 Show that the Hilbert spaces `2, L2(R), are L2([0, 1]) all separable and thus uni-
tarily equivalent.

Exercise 3.17 Let H be a Hilbert space, let T ∈ K(H), and let (en)∞n=1 be an orthonormal
sequence in H. Show that ‖Ten‖ → 0.
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3.3.4 Operators on Hilbert spaces

As we say in the previous subsection, Hilbert spaces are essentially “dull” objects. This
dullness, however, forces their bounded linear operators to be much more tractable than
in a general Banach space setting.

Theorem 3.3.24 Let H and K be Hilbert spaces, and let T ∈ B(H,K). Then there is a
unique operator T ∗ ∈ B(K,H) such that

〈Tξ, η〉 = 〈ξ, T ∗η〉 (ξ ∈ H, η ∈ K).

The operator T ∗ is called the adjoint of T .

Exercise 3.18 Let H be a Hilbert space, and let T ∈ B(H). Show that kerT = (T ∗H)⊥.

Proof For fixed η ∈ K, define φ ∈ H∗ by letting

φ(ξ) := 〈Tξ, η〉 (ξ ∈ H).

By Theorem 3.3.11, there is a unique T ∗ ∈ H such that

〈Tξ, η〉 = φ(ξ) = 〈ξ, T ∗η〉 (ξ ∈ H).

It is easy to see that K 3 η 7→ T ∗η is a bounded, linear operator from K to H. ut

Remark Despite the use of the same symbol, the adjoint of T is not to be confused with
the transpose defined earlier for operators between Banach spaces. Nevertheless, in many
ways, taking the adjoint operator behaves very much like taking the transpose.

Examples 1. Let H = F
N , let K = F

M , and let T = TA for

A =


a1,1, . . . , a1,N

...
...

aM,1, · · · , aM,N

 .
Then T ∗ = TA∗ , where

A∗ =


a1,1, . . . , aM,1

...
...

a1,N , · · · , aM,N

 .
2. Let (Ω,S, µ) be a σ-finite measure space, and let φ ∈ L∞(Ω,S, µ). Then M∗φ = Mφ.

Proposition 3.3.25 Let H be a Hilbert space, let T, S ∈ B(H), and let λ, µ ∈ F. Then
we have:
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(i) (λT + µS)∗ = λT ∗ + µS∗;

(ii) (ST )∗ = T ∗S∗;

(iii) T ∗∗ = T ;

(iv) ‖T‖2 = ‖T ∗‖2 = ‖T ∗T‖.

Proof (i), (ii), and (iii), are straightforward.
For (iv), let ξ ∈ H be such that ‖ξ‖ ≤ 1. It follows that

‖Tξ‖2 = 〈Tξ, T ξ〉

= 〈T ∗Tξ, ξ〉

= ‖T ∗Tξ‖‖ξ‖

≤ ‖T ∗T‖

≤ ‖T ∗‖‖T‖

and hence

‖T‖2 ≤ ‖T ∗T‖ ≤ ‖T ∗‖‖T‖.

It follows, in particular, that ‖T‖ ≤ ‖T ∗‖. On the other hand, (iii) yields that ‖T ∗‖ ≤
‖T ∗∗‖ = ‖T‖. Hence, ‖T‖ = ‖T ∗‖ holds and also ‖T‖2 = ‖T ∗T‖. ut

Definition 3.3.26 Let H be a Hilbert space, and let T ∈ B(H). Then:

(a) T is self-adjoint if T = T ∗.

(b) T is normal if T ∗T = TT ∗.

Exercise 3.19 Let H be a Hilbert space. Show that a projection P ∈ B(H) is self-adjoint if and
only if it is an orthogonal projection.

Exercise 3.20 Let H be a Hilbert space, and let T : H→ H be linear such that

〈Tξ, η〉 = 〈ξ, Tη〉 (ξ, η ∈ H).

Show that T is bounded and self-adjoint.

Exercise 3.21 Let H be a Hilbert space over C. Show that N ∈ B(H) is normal if and only if
‖Nξ‖ = ‖N∗ξ‖ for all ξ ∈ H.

Exercise 3.22 Let H be a Hilbert space over C, let N ∈ B(H) be normal, and let ξ ∈ H and
λ ∈ C be such that Nξ = λξ. Show that N∗ξ = λ̄ξ.
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Exercise 3.23 Let H be a Hilbert space over C. For T ∈ B(H) define

ReT :=
1
2

(T + T ∗) and ImT =
1
2i

(T − T ∗).

Show that N ∈ B(H) is normal if and only if ReN and ImN commute.

Proposition 3.3.27 Let H be a C-Hilbert space. Then the following are equivalent for
T ∈ B(H):

(i) T is self-adjoint.

(ii) 〈Tξ, ξ〉 ∈ R for ξ ∈ H.

Proof (i) =⇒ (ii) is clear because

〈Tξ, ξ〉 = 〈ξ, T ξ〉 = 〈Tξ, ξ〉 (ξ ∈ H).

(ii) =⇒ (i): Let ξ, η ∈ H, and let λ ∈ C. Then

〈T (ξ + λη), ξ + λη〉 = 〈Tξ, ξ〉+ λ〈Tξ, η〉+ λ〈Tη, ξ〉+ |λ|2〈Tη, η〉

is real and thus equal to its complex conjugate. This, in turn, implies that

λ〈Tη, ξ〉+ λ〈Tξ, η〉 = λ〈ξ, Tη〉+ λ〈η, T ξ〉

= λ〈T ∗ξ, η〉+ λ〈T ∗η, ξ〉.

Letting λ = 1 and λ = i, respectively, we obtain:{
〈Tη, ξ〉+ 〈Tξ, η〉 = 〈T ∗ξ, η〉+ 〈T ∗η, ξ〉,

i〈Tη, ξ〉 − i〈Tξ, η〉 = −i〈T ∗ξ, η〉+ i〈T ∗η, ξ〉.

Dividing the second of those equations by i, we get{
〈Tη, ξ〉+ 〈Tξ, η〉 = 〈T ∗ξ, η〉+ 〈T ∗η, ξ〉,
〈Tη, ξ〉 − 〈Tξ, η〉 = −〈T ∗ξ, η〉+ 〈T ∗η, ξ〉,

and adding them yields 2〈Tη, ξ〉 = 2〈T ∗η, ξ〉, i.e. T = T ∗. ut

Proposition 3.3.28 Let H be a Hilbert space, and let T ∈ B(H) be self-adjoint. Then

‖T‖ = sup{|〈Tξ, ξ〉| : ξ ∈ H, ‖ξ‖ ≤ 1}. (3.9)

Proof Let M denote the supremum in (3.9). It is clear that M ≤ ‖T‖.
Let ξ, η ∈ H with ‖ξ‖, ‖η‖ ≤ 1. It follows that

〈T (ξ ± η), ξ ± η〉 = 〈Tξ, ξ〉 ± 〈Tξ, η〉 ± 〈Tη, ξ〉+ 〈Tη, η〉

= 〈Tξ, ξ〉 ± 〈Tξ, η〉 ± 〈η, T ∗ξ〉+ 〈Tη, η〉

= 〈Tξ, ξ〉 ± 2Re 〈Tξ, η〉+ 〈Tη, η〉.
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Subtraction yields

4Re 〈Tξ, η〉 = 〈T (ξ + η), ξ + η〉 − 〈T (ξ − η), ξ − η〉.

It follows that

4Re 〈Tξ, η〉 ≤ M(‖ξ + η‖2 + ‖ξ − η‖2)

= 2M(‖ξ‖2 + ‖η‖2)

≤ 4M.

Choose λ ∈ F with |λ| = 1 such that 〈Tξ, η〉 = λ|〈Tξ, η〉|. Replacing ξ in the previous
argument by λξ yields

|〈Tξ, η〉| = λ〈Tξ, η〉 = 〈T (λξ), η〉 ≤M.

For any ξ ∈ H with ‖ξ‖ ≤ 1, we thus have

‖Tξ‖ = sup{|〈Tξ, η〉| : η ∈ H, ‖η‖ ≤ 1} ≤M

and therefore ‖T‖ ≤M . ut

Corollary 3.3.29 Let H be a C-Hilbert space, and let T ∈ B(H) be such that 〈Tξ, ξ〉 = 0
for all ξ ∈ H. Then T is zero.

Proof First, note that

〈T ∗ξ, ξ〉 = 〈ξ, T ξ〉 = 〈Tξ, ξ〉 (ξ ∈ H).

Let

ReT :=
1
2

(T + T ∗) and ImT :=
1
2i

(T − T ∗).

Then ReT and ImT are self-adjoint such that T = ReT + iImT and 〈Sξ, ξ〉 = 0 for all
ξ ∈ H, where S = ReT or S = ImT . By Proposition 3.3.28, this means ReT = ImT = 0
and thus T = 0. ut

Remark Proposition 3.3.28 is false for Hilbert spaces over R (take H = R and T = TA,

where A =

[
0 −1
1 0

]
).

Exercise 3.24 Let H be a Hilbert space, and let F(H) be the family of all finite-dimensional
subspaces of H. For each K ∈ F(H), let PK be the orthogonal projection onto K. Show that
(PK)K∈F(H) is a net such that

‖PKT − T‖ → 0 and ‖TPK − T‖ → 0

for all T ∈ K(H).
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3.4 The spectral theorem for compact, self-adjoint opera-

tors

Throughout this section, all spaces are again over C.
In linear algebra, it is shown that a self-adjoint matrix can be diagonalized. This means

that such a matrix can be completely described once its eigenvalues and its eigenspaces
are known. In this section, we extend this theorem on matrices to compact, self-adjoint
operators on Hilbert space.

Lemma 3.4.1 Let H be a Hilbert space, and let T ∈ K(H) be self-adjoint. Then ‖T‖ or
−‖T‖ is an eigenvalue of T .

Proof By Proposition 3.3.28, there is a sequence (ξn)∞n=1 in H such that ‖ξn‖ = 1 for
all n ∈ N and |〈Tξn, ξn〉| → ‖T‖. Passing to a subsequence, we may suppose that
(〈Tξn, ξn〉)∞n=1 converges to λ ∈ R. It follows necessarily that |λ| = ‖T‖. Note that

‖(λ− T )ξn‖2 = λ2 − 2λ〈Tξn, ξn〉+ ‖Tξn‖2

≤ 2λ2 − 2λ〈Tξn, ξn〉

→ 0.

With Lemma 3.2.1, we conclude that λ is an eigenvalue of T . ut

Corollary 3.4.2 Let H be a Hilbert space, and let T ∈ K(H) be self-adjoint such that
σ(T ) = {0}. Then T = 0.

Lemma 3.4.3 Let H be a Hilbert space, let N ∈ K(H) be normal, and let λ 6= µ be
eigenvalues of N . Then ker(λ−N) ⊥ ker(µ−N).

Proof Let ξ ∈ ker(λ−N) and η ∈ ker(µ−N), and note that

λ〈ξ, η〉 = 〈λξ, η〉 = 〈Nξ, η〉 = 〈ξ,N∗η〉 = 〈ξ, µη〉 = µ〈ξ, η〉.

It follows that 〈ξ, η〉 = 0. ut

Lemma 3.4.4 Let H be a Hilbert space, and let T ∈ K(H) be self-adjoint. Then σ(T ) ⊂ R.

Proof Let λ ∈ σ(T ) \ {0}, so that λ is an eigenvalue of T . Hence, there is ξ ∈ H \ {0}
such that Tξ = λξ. It follows that Tξ = T ∗ξ = λξ and thus ξ ∈ ker(λ− T ) ∩ ker(λ− T ).
By Lemma 3.4.3, this is possible only if λ = λ, i.e. λ ∈ R. ut

Theorem 3.4.5 (spectral theorem for compact, self-adjoint operators) Let H be
a Hilbert space, let T ∈ K(H) be self-adjoint, let {λ1, λ2, . . . } be the distinct, non-zero
eigenvalues of T , and let Pn denote the orthogonal projection onto ker(λn− T ). Then the
following hold true:
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(i) {λ1, λ2, . . . } ⊂ R;

(ii) PnPm = PmPn = 0 (n 6= m);

(iii) T =
∑≤∞

n=1 λnPn.

Proof (i) follows from Lemma 3.4.4.
For (ii), let ξ ∈ H, and note that, by Lemma 3.4.3, for n 6= m

Pnξ ∈ ker(λn − T ) ⊂ ker(λm − T )⊥ = kerPm

and thus PmPnξ = 0. It follows that PmPn = 0.
(iii): Choose an eigenvalue λ1 of T such that |λ1| = ‖T‖ (this is possible by Lemma

3.4.1). Let H1 := ker(λ1 − T ) and let P1 denote the orthogonal projection onto H1. Let
K2 := H⊥1 (= kerP1). Let ξ ∈ K2 and η ∈ H1 and note that

〈Tξ, η〉 = 〈ξ, Tη〉 = 〈ξ, λ1η〉 = λ1〈ξ, η〉 = 0.

It follows that TK2 ⊂ K2. If T |K2 = 0, finish. Otherwise — since T2 := T |K2 is also
compact — and self-adjoint, there is an eigenvalue λ2 of T2 such that |λ| = ‖T2‖. Let
H2 := ker(λ2 − T2). It is easy to see that H2 = ker(λ2 − T ). Since H1 ⊥ H2 by definition,
we have λ1 6= λ2. Let P2 be the orthogonal projection onto H2, and let K3 := (H1⊕H2)⊥.

Continue inductively and obtain:

(a) A (possibly finite) sequence {λ1, λ2, . . . } of distinct eigenvalues of T which satisfies
|λ1| ≥ |λ2| ≥ · · · .

(b) A sequence of pairwise orthogonal closed subspaces Hn of H such that

Hn = ker(λn − T ) and |λn+1| = ‖T |(H1⊕···⊕Hn)⊥‖.

Fix n ∈ N, and let ξ ∈ Hk with k ∈ {1, . . . , n}. It follows that

Tξ −
n∑
j=1

λjPjξ = λkξ − λkξ = 0.

Let ξ ∈ (H1 ⊕ · · · ⊕ Hn)⊥. Then Pkξ = 0 for k = 1, . . . , n and thus

Tξ −
n∑
j=1

λjPjξ = Tξ ∈ (H1 ⊕ · · · ⊕ Hn)⊥.
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It follows that∥∥∥∥∥∥T −
n∑
j=1

λjPj

∥∥∥∥∥∥ = sup


∥∥∥∥∥∥Tξ −

n∑
j=1

λjPjξ

∥∥∥∥∥∥ : ξ ∈ H, ‖ξ‖ ≤ 1


= sup


∥∥∥∥∥∥Tξ −

n∑
j=1

λjPjξ

∥∥∥∥∥∥ : ξ ∈ (H1 ⊕ · · · ⊕ Hn)⊥, ‖ξ‖ ≤ 1


= sup

{
‖Tξ‖ : ξ ∈ (H1 ⊕ · · · ⊕ Hn)⊥, ‖ξ‖ ≤ 1

}
= |λn+1|

→ 0

and thus

T =
≤∞∑
n=1

λnPn.

Assume that T has an eigenvalue λ which does not occur in the sequence {λ1, λ2, . . . }.
Since ker(λ− T ) ⊥ ker(λn − T ) for n ∈ N, this means that

Tξ =
≤∞∑
n=1

λnPnξ = 0,

i.e. λ = 0. ut

With the exception of (i), the assertions of Theorem 3.4.5 still hold for compact, normal
operators.

Exercise 3.25 Read paragraphs II.6 and II.7 in Conway’s book (where the spectral theorem for
compact, normal operators is proven).

Remark The spectral theorem generalizes to arbitrary, not necessarily compact, bounded,
normal operators on Hilbert spaces. Since such operators need no longer have eigenvalues,
the projections onto the eigenspaces have to be replaces by a more general object: Given
a Hilbert space H and a normal operator N ∈ B(H), there is a unique so-called spectral
measure E — a measure whose values are orthogonal projections on H — on σ(N) such
that

N =
∫
σ(N)

z dE(z).
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Chapter 4

Fixed point theorems and locally

convex spaces

This last chapter of the lecture notes deals with fixed point theorems, i.e. theorems that
guarantee that a certain map of a certain family of maps has a fixed point. Fixed point
theorems are important because many problems concerning the solvability of equations
can be formulated as fixed point problems. In order to present these fixed point theorems
in sufficient generality, we develop the theory of locally convex vector spaces to some
extent.

4.1 Banach’s fixed point theorem

Banach’s fixed point theorem is one of the most elegant and most widely applicable the-
orems in all of analysis:

Theorem 4.1.1 (Banach’s fixed point theorem) Let X be a complete metric space,
and let T : X → X be a map such that, for some θ ∈ (0, 1),

d(T (x), T (y)) ≤ θd(x, y) (x, y ∈ X).

Then T has a unique fixed point in X.

Proof Let x, y ∈ X be fixed points of X. Since

d(x, y) = d(T (x), T (y)) ≤ θd(x, y)

and θ ∈ (0, 1), it follows that d(x, y) = 0, i.e. x = y. This proves the uniqueness of the
fixed point.

For the proof of existence, choose x0 ∈ X arbitrary, and define inductively xn :=
T (xn−1) for n ∈ N. We claim that the sequence (xn)∞n=0 converges. An easy induction on
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n shows that

d(xn−1, xn) ≤ θn−1d(x0, x1) (n ∈ N).

For n > m, we have

d(xm, xn) ≤
n∑

k=m+1

d(xk−1, xk) ≤ d(x0, x1)
n∑

k=m+1

θk−1. (4.1)

Since θ ∈ (0, 1), the geometric series
∑∞

n=1 θ
n−1 converges. Hence, given ε > 0, there is

N ∈ N such that

n∑
k=m+1

θk−1 <
ε

d(x0, x1) + 1
(n,m ≥ N).

Together with (4.1), this shows that d(xm, xn) < ε for all n,m ≥ N . Hence, (xn)∞n=0 is a
Cauchy sequence, and x := limn→∞ xn exists. Since T is clearly (uniformly) continuous,
we have

Tx = lim
n→∞

Txn = lim
n→∞

Txn−1 = lim
n→∞

xn = x,

i.e. x is a fixed point of T . ut

Remark Banach’s fixed point theorem not only guarantees that a fixed point exsists — it
also provides an effective way of computing such a fixed point along with error estimates.

Exercise 4.1 Is the following fixed point theorem true or not?

Let X be a complete metric space, and let T : X → X be a map such that

d(T (x), T (y)) < d(x, y) (x, y ∈ X, x 6= y).

Then T has a unique fixed point in X.

Give a proof or a counterexample.

Exercise 4.2 Let (X, d) be a complete metric space, and let T : X → X be a map such that there
are θ ∈ (0, 1) and n ∈ N with

d(Tn(x), Tn(y)) ≤ θ d(x, y) (x, y ∈ X).

Show that T has a unique fixed point.

We apply Banach’s fixed point theorem to initial value problems:
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Theorem 4.1.2 (Picard–Lindelöf theorem) Let I = [a, b], and let f : I × R → R be
continuous such that there is C ≥ 0 with

|f(x, y1)− f(x, y2)| ≤ C|y1 − y2| (x ∈ I, y1, y2 ∈ R).

Then the initial value problem

y′ = f(x, y), y(a) = y0 (4.2)

has a unique solution φ ∈ C1(I) for each y0 ∈ R.

Proof If (4.2) has a solution φ, it satisfies

φ(x) =
∫ x

a
f(t, φ(t)) dt+ y0. (4.3)

Conversely, every function φ ∈ C(I) satisfying (4.3) is automatically in C1(I) and a solution
of (4.2).

Define T : C(I)→ C(I) by letting

(Tφ)(x)
∫ x

a
f(t, φ(t)) dt+ y0.

Then φ ∈ C(I) solves (4.3) and hence (4.2) if and only if it is a fixed point of T .
Let φ1, φ2 ∈ C(I). Then we have

|(Tφ1)(x)− (Tφ2)(x)| =
∣∣∣∣∫ x

a
(f(t, φ1(t))− f(t, φ2(t))) dt

∣∣∣∣
≤ C

∫ x

a
|φ1(t)− φ2(t)| dt

= C(b− a)‖φ1 − φ2‖∞ (x ∈ I),

and therefore

‖Tφ1 − Tφ2‖∞ ≤ C(b− a)‖φ1 − φ2‖∞.

The problem that arises at this point is that C(b − a) may not belong to (0, 1), so that
Theorem 4.1.1 is not directly applicable. We circumvent this problem by replacing ‖ · ‖∞
by an equivalent norm ‖ · ‖α for some parameter α > 0. Define for α > 0

‖φ‖α := sup{|φ(x)|e−αx : x ∈ I} (φ ∈ C(I)).

Then, for φ ∈ C(I),

‖φ‖α ≤ ‖φ‖∞ sup{e−αx : x ∈ I}
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and

‖φ‖∞ = sup{|φ(x)|e−αxeαx : x ∈ I} ≤ ‖φ‖α sup{eαx : x ∈ I},

so that ‖ · ‖∞ and ‖ · ‖α are equivalent. Moreover, we have for φ1, φ2 ∈ C(I) and x ∈ I:

|(Tφ1)(x)− (Tφ2)(x)|e−αx = e−αx
∣∣∣∣∫ x

a
(f(t, φ1(t))− f(t, φ2(t))) dt

∣∣∣∣
≤ Ce−αx

∫ x

a
|φ1(t)− φ2(t)| dt

= Ce−αx
∫ x

a
|φ1(t)− φ2(t)|e−αteαt dt

≤ Ce−αx‖φ1 − φ2‖α
∫ x

a
eαt dt

≤ Ce−αx‖φ1 − φ2‖α
eαx

α

=
C

α
‖φ1 − φ2‖α.

It follows that

‖Tφ1 − Tφ2‖α ≤
C

α
‖φ1 − φ2‖α (φ1, φ2 ∈ C(I)).

Choosing α > 0 so large that C
α < 1 and applying Banach’s fixed point theorem, we obtain

a unique fixed point of T and thus a unique solution of (4.2). ut

4.2 Locally convex vector spaces

The next fixed point theorem we are going to cover — Schauder’s fixed point theorem —
requires a compactness hypothesis for its domain. Since compactness in normed, infinite-
dimensional spaces is rather the exception than the rule, we have to leave the framework of
normed spaces and work in a more general context in order to obtain fixed point theorems
of sufficient generality.

Definition 4.2.1 A linear space E is called locally convex if it is equipped with a family
P of seminorms on E such that⋂

p∈P
{x ∈ E : p(x) = 0} = {0}.

Example Let X be a topological space, and let C(X) denote the vector space of all
continuous functions on X. Let K be the collection of all compact subsets of X. For
K ∈ K, define

pK(f) := sup{|f(x)| : x ∈ K} (f ∈ C(X)).

Then C(X) equipped with (pK)K∈K is a locally convex vector space.
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Definition 4.2.2 Let E be a locally convex vector space. A subset U of E is defined as
open if, for each x0 ∈ U , there are ε > 0 and p1, . . . , pn ∈ P such that{

x ∈ E : max
j=1,... ,n

pj(x− x0) < ε

}
⊂ U.

Proposition 4.2.3 Let E be a locally convex vector space. Then the collection of open
subsets of E in the sense of Definition 4.2.2 is a topology, i.e.

(i) ∅ and E are open;

(ii) if (Uα)α is a family of open sets, then
⋃
α Uα is open;

(iii) if U1, . . . , Un are open, then so is U1 ∩ · · · ∩ Un.

Proof We only prove (iii).
Let x0 ∈ U1 ∩ · · · ∩ Un. For each k = 1, . . . , n, there are εk > 0 and p

(k)
1 , . . . , p

(k)
nk ∈ P

such that

Vk :=
{
x ∈ E : max

j=1,... ,nk
p

(k)
j (x− x0) < εk

}
⊂ Uk.

Let ε := min{ε1, . . . , εk}, and note that{
x ∈ E : max

k=1,... ,n
max

j=1,... ,nk
p

(k)
j (x− x0) < ε

}
⊂ V1 ∩ · · · ∩ Vn ⊂ U1 ∩ · · · ∩ Un.

By Definition 4.2.2, this means that U1 ∩ · · · ∩ Un is open. ut

Proposition 4.2.4 Let E be a locally convex vector space. Then a net (xα)α in E con-
verges to x0 ∈ E in the topology if and only if p(xα − x0)→ 0 for each p ∈ P.

Proof Suppose that xα → x0 in the topology. Fix ε > 0 and p ∈ P. Then U := {x ∈
E : p(x− x0) < ε} is an open neighborhood of x0. Hence, there is an index α0 such that
xα ∈ U , i.e. p(xα − x0) < ε for all α � α0. Hence, p(xα − x0)→ 0.

Conversely, suppose that p(xα − x0) → 0 for all p ∈ P. Let U be a neighborhood of
x0, i.e. there is an open set V ⊂ U with x0 ∈ V . By Definition 4.2.2, there are ε > 0 and
p1, . . . , pn ∈ P such that {

x ∈ E : max
j=1,... ,n

pj(x− x0) < ε

}
⊂ V.

Since pj(xα − x0)→ 0 for j = 1, . . . , n, there is an index α0 such that

pj(xα − x0) < ε (j = 1, . . . , n, α � α0).

This means, however, that xα ∈ V ⊂ U for all α � α0. ut

Exercise 4.3 Let E be a locally convex vector space, and let F be a finite-dimensional subspace.
Show that the relative topology on F is induced by a norm.
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4.2.1 Weak and weak∗ topologies

There is a canonical locally convex topology on each normed space:

Definition 4.2.5 Let E be a normed space. Then {pφ : φ ∈ E∗} with

pφ(x) = |φ(x)| (x ∈ E, φ ∈ E∗)

is a family of seminorms on E such that
⋂
φ∈E∗{x ∈ E : pφ(x) = 0}. The corresponding

topology on E is called the weak topology on E.

Lemma 4.2.6 Let E be a linear space, and let φ, φ1, . . . , φn : E → F be linear. Then the
following are equivalent:

(i) there are λ1, . . . , λn ∈ F such that φ = λ1φ1 + · · ·+ λnφn;

(ii)
⋂n
j=1 kerφj ⊂ kerφ.

Exercise 4.4 Prove Lemma 4.2.6.

Theorem 4.2.7 Let E be a normed space. Then the following are equivalent:

(i) dimE <∞;

(ii) the weak topology and the norm topology coincide;

(iii) the weak topology is metrizable.

Proof (i) =⇒ (ii): If dimE < ∞, then dimE∗ < ∞. Let φ1, . . . , φn ∈ E∗ be a Hamel
basis for E∗. Define

|x| := max
j=1,... ,n

|φj(x)| (x ∈ E).

Then E is a norm on E, so that | · | ∼ ‖ · ‖. Let U ⊂ E be norm open. This means that,
for every x0 ∈ U , there is ε > 0 such that

{x ∈ E : |x− x0| < ε} =
{
x ∈ E : max

j=1,... ,n
|φj(x− x0)| < ε

}
⊂ U.

From the definition of the weak topology, it follows that U is also weakly open. Since the
weak topology is coarser than the norm topology, every weakly open subset of E is norm
open.

(ii) =⇒ (iii) is trivial.
(iii) =⇒ (i): Suppose that there is a metric d on E which induces the weak topology.

Hence, for all n ∈ N,

Un :=
{
x ∈ E : d(x, 0) <

1
n

}
87



is weakly open. By the definition of the weak topology, there are, for each n ∈ N, a
number εn > 0 and functionals φ(n)

1 , . . . , φ
(n)
kn
∈ E∗ such that{

x ∈ E : max
j=1,... ,kn

∣∣∣φ(n)
j (x− x0)

∣∣∣ < εn

}
⊂ Un.

Let φ ∈ E∗. Then φ is continuous with respect to the weak topology, i.e. if (xα)α is
a net in E with xα

weakly→ 0, then φ(xα) → 0. Assume that φ is unbounded on each Un.
This means that, for each n ∈ N, an element xn ∈ Un with |φ(xn)| ≥ n. It follows that
d(xn, 0) ≤ 1

n → 0 and thus xn
weakly→ 0, whereas φ(xn) 6→ 0. It follows that there is N ∈ N

such that sup{|φ(x)| : x ∈ UN} <∞. Since

kN⋂
j=1

kerφ(N)
j ⊂

{
x ∈ E : max

j=1,... ,kN

∣∣∣φ(N)
j (x)

∣∣∣ < εn

}
⊂ UN ,

the functional φ must be bounded on
⋂kN
j=1 kerφ(N)

j , which, in turn, is possible only if⋂kN
j=1 kerφ(N)

j ⊂ kerφ. By Lemma 4.2.6, there are thus λ1, . . . , λkN ∈ F such that φ =

λ1φ
(N)
1 + · · ·+ λkNφ

(N)
kN

.

It follows that E∗ is the linear span of the countable set
{
φ

(n)
j : n ∈ N, j = 1, . . . , kn

}
.

Hence, E∗ has a countable Hamel basis. Since E∗ is always a Banach space, this means
that dimE∗ <∞ and, consequently, dimE <∞. ut

In analogy with the weak topology, one defines an even weaker topology on the dual
of a normed space:

Definition 4.2.8 Let E be a normed space. Then {px : x ∈ E} with

px(φ) = |φ(x)| (φ ∈ E∗, x ∈ E)

is a family of seminorms on E∗ such that
⋂
x∈E{φ ∈ E∗ : px(φ) = 0}. The corresponding

topology on E∗ is called the weak∗ topology on E∗.

Exercise 4.5 Let E be a separable Banach space. Show that the relative topology of the weak∗-
topology on the closed unit ball of E∗ is metrizable. (Hint : Let {xn : n ∈ N} be a countable dense
subset of E, and define

d(φ, ψ) :=
∞∑
n=1

1
2n

|φ(xn)− ψ(xn)|
|φ(xn)− ψ(xn)|+ 1

(φ, ψ ∈ E∗).

Show that d is a metric on E∗ which, on the closed unit ball of E∗, defines the weak∗-topology.)

Exercise 4.6 Let E be a Banach space. Show that the following are equivalent:

(a) dimE <∞;
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(b) the weak∗-topology and the norm topology coincide;

(c) the weak∗-topology is metrizable.

How does this go together with Exercise 4.5?

Theorem 4.2.9 (Alaoglu–Bourbaki theorem) Let E be a normed space. Then the
closed unit ball of E∗ is compact in the weak∗ topology on E∗.

Proof For each x ∈ E, let

Kx := {λ ∈ F : |λ| ≤ ‖x‖}.

Since each Kx is closed and bounded, it is compact. By Tychonoff’s theorem (Theorem
A.7.4),

∏
x∈EKx is compact in the product topology. Embed the closed unit ball of E∗

into
∏
x∈EKx via

B1[0]→
∏
x∈E

Kx, φ 7→ (φ(x))x∈E .

Let (φα)α be a net in the closed unit ball of E∗; we will show that it has a conver-
gent subnet. By Theorem A.6.6, the net ((φα(x))x∈E)α has a subnet ((φα(x))x∈E)α that
converges in the product topology, i.e. for each x ∈ E, there is λx ∈ Kx such that

λx = lim
β
φβ(x).

Define φ : E → F by letting φ(x) := λx for x ∈ E. For x, y ∈ E and µ ∈ F, we have

φ(x+ y) = λx+y = lim
β
φβ(x+ y) = lim

β
φβ(x) + lim

β
φβ(y) = λx + λy = φ(x) + φ(y)

and

φ(µx) = λµx = lim
β
φβ(µx) = µ lim

β
φβ = µλx = µφ(x).

Hence, φ is linear. Moreover, note that, for x ∈ E with ‖x‖ ≤ 1,

|φ(x)| = |λx| ≤ ‖x‖ ≤ 1

because λx ∈ Kx. It follows that φ ∈ E∗ lies in the closed unit ball. From the definition
of the weak∗ topology, it is clear that φα

weak∗→ φ. Theorem A.6.6 eventually yields the
weak∗ compactness of the closed unit ball of E∗. ut

Exercise 4.7 Let E be a normed space. Show that there is a compact Hausdorff space X and an
isometry ι : E → C(X).

Exercise 4.8 A Banach space E is called reflexive if the canonical map J : E → E∗∗ is an
isomorphism.
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(i) Let (Ω,S, µ) be a measure space, and let p ∈ (1,∞). Show that Lp(Ω,S, µ) is reflexive.

(ii) Conclude that every Hilbert space is reflexive.

(iii) Argue that `∞ is not reflexive.

Exercise 4.9 Let E be a reflexive Banach space. Show that the closed unit ball of E is compact
in the weak topology.

4.3 Schauder’s fixed point theorem

We need the following fact from algebraic topology:

Theorem 4.3.1 There is no continuous map from the closed unit ball of RN to SN−1 :=
{x ∈ RN : ‖x‖2 = 1} whose restriction to SN−1 is the identity.

Theorem 4.3.2 (Brouwer’s fixed point theorem) Let K := {x ∈ RN : ‖x‖2 ≤ 1},
and let f : K → K be continuous. Then f has a fixed point in K.

Proof Assume that the theorem is false, i.e. f(x) 6= x for all x ∈ K. Define φ : K → R
N

by letting

φ(x) := the unique intersection point of the line from f(x) through x with SN−1.

Then φ is continuous with φ(K) ⊂ SN−1 and φ|SN−1 = id, which is impossible by Theorem
4.3.1. ut

Corollary 4.3.3 Let E be a finite-dimensional normed space, let ∅ 6= K ⊂ E be compact
and convex, and let f : K → K be continuous. Then f has a fixed point in K.

Proof Without loss of generality, let E = R
N . Choose r > 0 such that

K ⊂ {x ∈ RN : ‖x‖2 ≤ r} =: B.

Define φ : B → K by letting

φ(x) := the unique point y ∈ K such that ‖x− y‖2 = dist(x,K) (x ∈ B).

Then φ is continuous, and φ(x) = x for x ∈ K. Hence, f ◦ φ is continuous and maps B
into B. By Theorem 4.3.2, there is x ∈ B such that f(φ(x)) = x. Since φ(B) ⊂ K, we
have x ∈ K, so that f(x) = f(φ(x)) = x. ut

Exercise 4.10 Use the intermediate value theorem to prove Corollary 4.3.3 in the one-dimensional
case: If f : [a, b]→ [a, b] is continuous, then f has a fixed point.
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Schauder’s fixed point theorem is the infinite-dimensional generalization of Corollary
4.3.3.

Definition 4.3.4 A subset S of a linear space E is called balanced if {λx : x ∈ S, λ ∈
F, |λ| ≤ 1} ⊂ S.

Definition 4.3.5 Let E be a linear space, and let ∅ 6= K ⊂ E be convex and balanced.
Then the Minkowski functional µK of K is defined by

µK(x) := inf{t > 0 : x ∈ tK} (x ∈ E).

Proposition 4.3.6 Let E be a locally convex vector space, and let ∅ 6= U ⊂ E be open,
convex, and balanced. Then µU is a continuous seminorm on E such that

U = {x ∈ E : µU (x) < 1}. (4.4)

Proof Since U is balanced, we have 0 ∈ U . Let x ∈ E. Since 1
nx → 0, and since U is

a neighborhood of 0, there is n ∈ N such that 1
nx ∈ U . Hence, µU (x) < ∞. Clearly,

µU (0) = 0. Let x ∈ E, and λ ∈ F \ {0}. We have that

λx ∈ tU ⇐⇒ x ∈ tλ−1U

⇐⇒ x ∈ tλ−1 λ

|λ|
U, since

λ

|λ|
U = U,

⇐⇒ x ∈ t|λ−1|U (t > 0),

and hence

µU (λx) = inf{t > 0 : x ∈ t|λ−1|U} = |λ| inf{t > 0 : x ∈ tU} = |λ|µU (x).

Let x, y ∈ E, and let ε > 0. Choose t, s > 0 such that x ∈ tU , y ∈ sU , t < µU (x) + ε
2 , and

s < µU (y) + ε
2 . It follows that

x

t+ s
∈ t

t+ s
U and

y

t+ s
∈ s

t+ s
U

and therefore

x+ y

t+ s
∈ t

t+ s
U +

s

t+ s
U ⊂ U

because U is convex. It follows that

µU (x+ y) ≤ t+ s ≤ µU (x) +
ε

2
+ µU (y) +

ε

2
= µU (x) + µU (y) + ε

and therefore

µU (x+ y) ≤ µU (x) + µU (y).
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All in all, µU is a seminorm.
Let x ∈ U . Since

(0,∞) 7→ E, t 7→ t−1x

is continuous, and since U is open, there is t ∈ (0, 1) such that t−1x ∈ U . It follows that
µU (x) < 1. Since U is balanced, µU (x) ≥ 1 holds trivially for x /∈ U . This proves (4.4).

Since U is open and contains 0, there are ε > 0 and p1, . . . , pn ∈ P such that{
x ∈ E : max

j=1,... ,n
pj(x)

}
⊂ U.

Let (xα)α be a net in E such that xα → 0, i.e. pj(xα) → 0 for j = 1, . . . , n. Let δ > 0.
Then there is α0 such that pj(xα) < εδ for j = 1, . . . , n and α � α0. This means that
xα ∈ δU for all α � α0 and thus µU (xα) < δ for all α � α0. It it follows that µU (xα)→ 0.
Finally, let (xα)α be a net in E such that xα → x ∈ E. Since xα − x→ 0, we have

|µU (xα)− µU (x)| ≤ µU (xα − x)→ 0.

Hence, µU is continuous. ut

Lemma 4.3.7 Let E be a locally convex vector space, let ∅ 6= K ⊂ E be compact, let
f : K → K be continuous and suppose that f(x) 6= x for all x ∈ K. Then there is an
open, convex, balanced set W such that

({(x, f(x)) : x ∈ K}+W ×W ) ∩ {(x, x) : x ∈ E} = ∅.

Proof Let

Gr f := {(x, f(x)) : x ∈ K} and ∆ := {(x, x) : x ∈ E}.

Let (x, f(x)) ∈ Gr f . Then there are open subset U and V of E with x ∈ U , f(x) ∈ V ,
and (U × V ) ∩∆ = ∅. Without loss of generality, we may suppose that there are ε > 0
and p1, . . . , pn, q1, . . . , qm ∈ P such that

U =
{
y ∈ E : max

j=1,... ,n
pj(x− y) < ε

}
and

V =
{
y ∈ E : max

j=1,... ,m
qj(f(x)− y) < ε

}
.

Define

Wx :=

{
y ∈ E : max

j=1,... ,n
k=1,... ,m

{pj(y), qk(y) < ε

}
.
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Then Wx is an open, convex, balanced set with ((x, f(x)) +Wx ×Wx)∩∆ = ∅. Since K
is compact, there are x1, . . . , xk ∈ K such that

K ⊂
k⋃
j=1

((xj , f(xj)) +Wxj ×Wxj ).

Define W :=
⋂k
j=1Wxj . ut

Exercise 4.11 Let E be a linear space, and let S be a non-empty subset of E. The convex hull
convS of S is defined as the intersection of all convex subsets of E containing S. Show that convS
consists of all elements of E of the form

∑n
j=1 tjsj , where n ∈ N, s1, . . . , sn ∈ S, and t1, . . . , tn > 0

with
∑n
j=1 tj = 1.

Exercise 4.12 Let E be a locally convex vector space, and let x1, . . . , xn ∈ E. Show that the
convex hull of {x1, . . . , xn} is compact.

Theorem 4.3.8 (Schauder’s fixed point theorem) Let E be a locally convex space,
let ∅ 6= K ⊂ E be compact, and let f : K → K be continuous. Then f has a fixed point
in K.

Proof Assume that the theorem is false, i.e. the hypotheses of Lemma 4.3.7 are satisfied.
Choose W as specified in Lemma 4.3.7, i.e., in particular,

f(x) /∈ x+W (x ∈ K). (4.5)

By Proposition 4.3.6, µW is a continuous seminorm on E such that W = {x ∈ E :
µW (x) < 1}. Define

α : E → R, x 7→ max{0, 1− µW (x)}.

Choose x1, . . . , xn ∈ K such that K ⊂
⋃n
j=1 xj +W . For j = 1, . . . , n, define αj : E → R

and βj : K → R by letting

αj(x) := α(x− xj) (x ∈ E, j = 1, . . . n)

and

βj(x) :=
αj(x)

α1(x) + · · ·+ αn(x)
(x ∈ K, j = 1, . . . n).

Let F be the linear span of {x1, . . . , xn}, and let C := conv{x1, . . . , xn}. Then C ⊂ K is
a compact, convex subset of the finite-dimensional (normed) space F . Define

g : K → H, x 7→
n∑
j=1

βj(x)xj .
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Since g ◦ f maps H into itself, Corollary 4.3.3 yields x0 ∈ H such that g(f(x0)) = x0.
Since βj(x) = 0 for x /∈ xj +W , we have

x− g(x) =
n∑
j=1

βj(x)(x− xj) ∈W (x ∈ K).

In particular,

f(x0)− x0 = f(x0)− g(f(x0)) ∈W

holds. This, however, contradicts (4.5). ut

Exercise 4.13 Let B be the closed unit ball in `2, and define f : B → `2 by letting, for x =
(xn)∞n=1,

f(x) = ((1− ‖x‖2), x1, x2, . . . ).

Show that f is continuous with f(B) ⊂ B, but has no fixed point.

4.3.1 Peano’s theorem

Like Banach’s fixed point theorem, Schauder’s fixed point theorem can be applied to initial
value problems:

Lemma 4.3.9 (Mazur’s theorem) Let E be a Banach space, and let K ⊂ E be com-
pact. Then convK is also compact.

Proof Let ε > 0. Choose x1, . . . , xn ∈ K such that

K ⊂
n⋃
j=1

B ε
3
(xj).

Let C := conv{x1, . . . , xn}. Since C is compact, there are y1, . . . , ym ∈ C such that

C ⊂
m⋃
j=1

B ε
3
(yj).

Let z ∈ convK. Then there is w ∈ convK such that ‖w − z‖ < ε
3 . Let t1, . . . , tk > 0

with t1 + · · ·+ tk = 1 and v1, . . . , vk ∈ K such that w =
∑k

j=1 tjvj . For each j = 1, . . . , k,
there is ν(j) ∈ {1, . . . , n} such that ‖vj − xν(j)‖ < ε

3 . It follows that∥∥∥∥∥∥w −
k∑
j=1

tjxν(j)

∥∥∥∥∥∥ =

∥∥∥∥∥∥
k∑
j=1

tj(vj − xν(j))

∥∥∥∥∥∥
≤

k∑
j=1

tj‖vj − xν(j)‖

<
ε

3
.
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Since
∑k

j=1 tjxν(j) ∈ C, there is j0 ∈ {1, . . . ,m} such that∥∥∥∥∥∥
k∑
j=1

tjxν(j) − yj0

∥∥∥∥∥∥ < ε

3
.

All in all, we have that

‖z − yj0‖ ≤ ‖z − w‖+

∥∥∥∥∥∥w −
k∑
j=1

tjxν(j)

∥∥∥∥∥∥+

∥∥∥∥∥∥
k∑
j=1

tjxν(j) − yj0

∥∥∥∥∥∥
<

ε

3
+
ε

3
+
ε

3
= ε.

Since z ∈ convK was arbitrary, this means that

convK ⊂
m⋃
j=1

Bε(yj),

so that convK is totally bounded and thus compact. ut

Theorem 4.3.10 (Peano’s theorem) Let I = [a, b], and let f ∈ Cb(I × R). Then the
initial value problem

y′ = f(x, y), y(a) = y0

has a solution φ ∈ C1(I).

Proof As in the proof of Theorem 4.1.2, we need to find φ ∈ C(I) such that

φ(x) =
∫ x

a
f(t, φ(t)) d+ y0. (4.6)

For the sake of simplicity, suppose that I = [0, 1], y0 = 0, and ‖f‖∞ ≤ 1. Again as in the
proof of Theorem 4.1.2, define T : C(I)→ C(I) by letting

(Tφ)(x) :=
∫ x

0
f(t, φ(t)) dt (φ ∈ C(I), x ∈ I).

Let B := {φ ∈ C(I) : ‖φ‖∞ ≤ 1}. Then T maps B into itself. Note that

|(Tφ)(y)− (Tφ)(x)| ≤
∫ y

x
|f(t, φ(t))| dt ≤ y − x (y ≥ x).

The family {Tφ : φ ∈ B} is therefore equicontinuous and thus relatively compact. Let
K := conv TB. By Lemma 4.3.9, K is compact and clearly TK ⊂ K. By Theorem 4.3.8,
T has a fixed point in K, i.e. a solution of (4.6). ut

Exercise 4.14 Give two different solutions of the initial value problem

y′ =
√
y, y(0) = 0.
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4.3.2 Lomonosov’s theorem

We now give a second application of Schauder’s fixed point theorem to a famous open
problem in operator theory.

Definition 4.3.11 Let E be a Banach space, and let T ∈ B(E). A closed subspace F of
E is called invariant for T if

(a) {0} ( F ( E, and

(b) TF ⊂ F .

If F is invariant for every S ∈ B(E) commuting with T , it is called hyperinvariant

The invariant subspace problem — posed by J. von Neumann — is the following
question:

Let H be a (separable, infinite-dimensional) Hilbert space over C, and let T ∈
B(H). Does T have an invariant subspace?

For operators on Banach spaces, the answer is negative: Counterexamples have been
constructed by P. Enflo and C. J. Read. Read’s construction even yields an operator
T ∈ B(`1) without invariant subspace.

Exercise 4.15 Let H be a Hilbert space such that either 2 ≤ dim H < ∞ or that H is not
separable. Show that every bounded linear operator on H has an invariant subspace.

Theorem 4.3.12 (Lomonosov’s theorem) Let E be an infinite-dimensional Banach
space over C, and let T ∈ K(E) \ {0}. Then T has a hyperinvariant subspace.

Proof Assume towards a contradiction that the claim is wrong. Without loss of generality
suppose that ‖T‖ = 1. Fix x0 ∈ E with ‖Tx0‖ > 1, and let B := {x ∈ E : ‖x− x0‖ ≤ 1},
so that

0 /∈ B and 0 /∈ TB.

For any x ∈ E \ {0} define

Fx := {Sx : S ∈ B(E), ST = TS}.

Then Fx 6= {0} is a closed subspace of E with SFx ⊂ Fx for all S ∈ B(E) with ST = TS.
By assumption, this means that Fx = E for all x ∈ E \{0}. Hence, for each y ∈ TB, there
is Sy ∈ B(E) commuting with T such that ‖Syy − x0‖ < 1. Since K := TB is compact,
there are S1, . . . , Sn ∈ B(E) commuting with T such that

K ⊂
n⋃
j=1

{y ∈ E : ‖Sjy − x0‖ < 1}.
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For y ∈ K and j = 1, . . . , n, let

αj(y) := max{0, 1− ‖Sjy − x0‖}.

For j = 1, . . . , n, define

βj : K → R, y 7→ αj(y)
α1(y) + · · ·+ αn(y)

,

and let

f : B → E, x 7→
n∑
j=1

βj(Tx)SjTx,

so that f is continuous. Let x ∈ B, so that Tx ∈ K. If βj(Tx) > 0, then αj(Tx) > 0
and therefore ‖SjTx− x0‖ < 1, i.e. SjTx ∈ B. The convexity of B yields f(B) ⊂ B. The
compactness of T yields that f(B) is compact. Let C := conv f(B). By Lemma 4.3.9, C
is compact, and clearly f(C) ⊂ C. By Theorem 4.3.8, there is a fixed point y0 of f in
C ⊂ B. Let

R :=
n∑
j=1

βj(Ty0)Sj .

Then T commutes with T and satisfies RTy0 = f(y0) = y0. Since y0 ∈ B ⊂ E \ {0}, this
means that F0 := ker(RT − idE) 6= {0}. Since RT ∈ K(E), we also have that dimF0 <∞
and thus F0 ( E. Clearly, F0 is invariant form T . Let λ ∈ C be an eigenvalue of T |F0 , so
that F := ker(λ − T ) 6= {0}. If λ = 0, then F = kerT 6= E, since T 6= 0. If λ 6= 0, then
dimF <∞, so that F 6= E as well in this case. Clearly, F is hyperinvariant for T . ut

4.4 The Markoff–Kakutani fixed point theorem

We present yet another fixed point theorem, this time not for a single function, but for a
whole family of maps.

Definition 4.4.1 Let K be a convex subset of a linear space. A map T : K → K is called
affine if

T (tx+ (1− t)y) = tTx+ (1− t)Ty (x, y ∈ K, t ∈ [0, 1]).

Theorem 4.4.2 (Markoff–Kakutani fixed point theorem) Let E be a locally con-
vex vector space, let ∅ 6= K ⊂ E be compact and convex, and let S be an abelian semigroup
of continuous affine maps on K, i.e.

(a) each S ∈ S is a continuous affine map on K,
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(b) ST ∈ S for all S, T ∈ S, and

(c) ST = TS for all S, T ∈ S.

Then there is x0 ∈ K such that Sx0 = x0 for all S ∈ S.

Proof For n ∈ N and S ∈ S, let

Sn :=
1
n

n−1∑
k=0

Sk.

It is easy to see that

SnTm = TmSn (n,m ∈ N, S, T ∈ S).

Let

K := {SnK : n ∈ N, S ∈ S}.

Then K consists of non-empty, compact, convex subsets of K. Let n1, . . . , nk ∈ N and
S(1), . . . , S(k) ∈ S and note that(

S(1)
n1
· · ·S(k)

nk

)
(K)︸ ︷︷ ︸

6=∅

⊂
k⋂
j=1

S(j)
nj K.

Hence, every finite family of sets in K has non-empty intersection. Since K is compact,
this means that ⋂

{SnK : n ∈ N, S ∈ S} 6= ∅

Let x0 be any point in this intersection. Fix S ∈ S and n ∈ N. Then there is x ∈ K such
that

x0 = Snx =
1
n

(x+ Sx+ · · ·+ Sn−1x).

It follows that

Sx0 − x0 =
1
n

(Sx+ S2x+ · · ·+ Snx)− 1
n

(x+ Sx+ · · ·+ Sn−1x)

=
1
n

(Snx− x)

∈ 1
n

(K −K).

Let ε > 0, and let p1, . . . , pn ∈ P. Let

U :=
{
x ∈ E : max

j=1,... ,n
pj(x) < ε

}
.

Since K is compact, so is K −K. Hence, there is N ∈ N such that 1
n(K −K) ⊂ U for all

n ≥ N . It follows that limn→∞(Sx0 − x0) = 0, i.e. Sx0 = x0. ut
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Definition 4.4.3 Let G be a group.

(a) A mean on `∞(G) is a functional m ∈ `∞(G)∗ such that m(φ) ≥ 0 for φ ≥ 0 and
m(1) = 1.

(b) A mean on `∞(G) is called left translation invariant if

m(Lgφ) = m(φ) (g ∈ G, φ ∈ `∞(G)),

where

(Lgφ)(h) := φ(gh) (g, h ∈ G, φ ∈ `∞(G)).

(c) G is called amenable if there is a left translation invariant mean on `∞(G).

Examples 1. If G is finite, then it is amenable: Define

m(φ) :=
1
|G|

∑
g∈G

φ(g) (φ ∈ `∞(G)).

2. The free group F2 in two generators, say a and b, is not amenable. To see this, let,
for x ∈ {a, b, a−1, b−1},

W (x) := {w ∈ F2 : w starts with x},

so that

F2 = W (a) ∪W (b) ∪W (a−1) ∪W (b−1) ∪ {e}, (4.7)

the union being disjoint. In terms of indicator functions, (4.7) becomes

1 = χW (a) + χW (b) + χW (a−1) + χW (b−1) + χ{e}.

Let w ∈ F2 \W (a). Then we have a−1w ∈ W (a−1) and thus w ∈ aW (a−1). Hence,
we have the union

F2 = W (a) ∪ aW (a−1)

which means, in terms of indicator functions, that

1 ≤ χW (a) + χaW (a−1) = χW (a) + La−1χW (a−1);

similarly, we obtain

1 = χW (b) + Lb−1χW (b−1).
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Assume now that we have a left translation invariant mean m ∈ `∞(G)∗. We have:

1 = m(1)

≥ m(χW (a) + χW (b) + χW (a−1) + χW (b−1))

= m(χW (a)) +m(χW (b)) +m(χW (a−1)) +m(χW (b−1)))

= m(χW (a)) +m(χW (b)) +m(La−1χW (a−1)) +m(Lb−1χW (b−1)))

= m(χW (a) + La−1χW (a−1)) +m(χW (b) + Lb−1χW (b−1)))

≥ m(1) +m(1)

= 2.

This is impossible.

3. Let G be an abelian group. Let

K := {m ∈ `∞(G)∗ : ‖m‖ ≤ 1 and m is a mean}.

Clearly, K is convex. Since K is weak∗-closed in the closed unit ball of `∞(G)∗, it is
weak∗ compact by Theorem 4.2.9. Clearly, if m ∈ K, then so is L∗gm for all g ∈ G.
The family {L∗g : g ∈ G} is an abelian semigroup of continuous affine mappings on
K. By Theorem 4.4.2, there is m0 ∈ K such that L∗gm0 = m0 for all g ∈ G, i.e.

m0(φ) = (L∗gm0)(φ) = m0(Lgφ) (g ∈ G, φ ∈ `∞(G)).

Hence, G is amenable.

4.5 A geometric consequence of the Hahn–Banach theorem

Lemma 4.5.1 Let E be a locally convex vector space, and let U be a neighborhood of 0.
Then any linear functional φ : E → F with sup{|φ(x)| : x ∈ U} <∞ is continuous.

Proof Let ε > 0, and let C := sup{|φ(x)| : x ∈ U}. Then

V :=
{

ε

C + 1
x : x ∈ U

}
is a neighborhood of 0 such that |φ(x)| < ε for all x ∈ V . Hence, φ is continuous at 0 and
thus everywhere. ut

Lemma 4.5.2 Let E be a locally convex vector space, and let U and K be non-empty
convex subsets of E with U ∩K = ∅ and U open. Then there are φ ∈ E∗ and c ∈ R such
that

Reφ(x) < c ≤ Reφ(y) (x ∈ U, y ∈ K).
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Proof Consider first the case where F = R.
Fix x0 ∈ U and y0 ∈ K. Let z0 := y0 − x0, and define

V := U −K + z0.

Then V is an open, convex neighborhood of 0. Let µV be the corresponding Minkowski
functional. As in the proof of Proposition 4.3.6, one sees that µV is a sublinear functional
on E with

V = {x ∈ E : µV (x) < 1}.

In particular, µV (z0) ≥ 1 holds. Let F = Rz0, and define ψ : F → R by letting ψ(tz0) = t

for t ∈ R. It follows that

ψ(tz0) =

{
t ≤ tµV (z0) = µV (tz0) (t ≥ 0)
t < 0 ≤ µV (tz0) (t < 0).

The Hahn–Banach theorem (Theorem 2.1.3) then yields φ : E → R with φ|F = ψ and
φ(x) ≤ µV (x) for all x ∈ E. Let x ∈ U and y ∈ K, and note that

φ(x)− φ(y) + 1 = φ(x− y + z0) ≤ µV (x− y + z0︸ ︷︷ ︸
∈V

) < 1;

it follows that

φ(x) < φ(y) (x ∈ U, y ∈ K). (4.8)

Since φ(x) ≤ 1 for x ∈ V , we have φ(x) ≥ −1 for x ∈ −V and thus |φ(x)| ≤ 1 for
x ∈ V ∩ (−V ). By Lemma 4.5.1, this means that φ ∈ E∗. By (4.8), φ(U) and φ(K) are
disjoint convex subsets of R. Let c := supx∈U |φ(x)|. It follows that

φ(x) ≤ c ≤ φ(y) (x ∈ U, y ∈ K). (4.9)

It is easy to see that φ(U) ⊂ R is open. Hence, the first inequality in (4.9) must be strict.
Next, consider the case where F = C. Find c ∈ R and a continuous, R-linear functional

φ̃ : E → R such that

φ̃(x) < c ≤ φ̃(y) (x ∈ U, y ∈ K).

Define φ ∈ E∗ by letting

φ(x) = φ̃(x)− iφ̃(ix) (x ∈ E).

This completes the proof. ut
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Theorem 4.5.3 Let E be a locally convex vector space, let F and K be non-empty, dis-
joint, convex subsets of E such that F is closed and K is compact. Then there are φ ∈ E∗

and c1, c2 ∈ R such that

Reφ(x) ≤ c1 < c2 ≤ Reφ(y) (x ∈ K, y ∈ F ).

Proof As in the proof of Lemma 4.3.7, we find an open, convex, balanced neighborhood
V of 0 such that (K + V ) ∩ F = ∅. By Lemma 4.5.2, there are c ∈ R and φ ∈ E∗ such
that

Reφ(x) < c ≤ Reφ(y) (x ∈ K + V, y ∈ F ).

Let

c1 := sup
x∈K

Reφ(x) and c2 := sup
x∈K+V

Reφ(x).

Since φ(K + V ) and φ(F ) are disjoint convex subsets of R with φ(K + V ) open and to
the left of φ(F ), we have

c2 ≤ Reφ(y) (y ∈ F ).

Since φ(K) ⊂ φ(K + V ) is compact,

φ(x) ≤ c1 < c2 (x ∈ K)

follows. ut

4.6 The Krĕın–Milman theorem

Definition 4.6.1 Let E be a linear space, and let K ⊂ E be convex. A convex set
∅ 6= S ⊂ K is called an extremal subset of K if tx + (1 − t)y ∈ S with x, y ∈ K and
t ∈ (0, 1) only if x, y ∈ S. If x ∈ K is such that {x} is an extremal subset of K, the
point x is called an extremal point of K. The set of all extremal points of K is denoted
by ext K.

Lemma 4.6.2 Let E be a locally convex vector space, let ∅ 6= K ⊂ E be compact and
convex, let φ ∈ E∗, and let C := supx∈K Reφ(x). Then

Kφ := {x ∈ K : Reφ(x) = C}

is an extremal, compact, convex subset of K.
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Proof Clearly, Kφ is compact and convex.
Let x, y ∈ K and t ∈ (0, 1) be such that

Reφ(tx+ (1− t)y) = C.

On the other hand, we have

C = tC + (1− t)C ≥ tReφ(x) + (1− t)Reφ(y) = Reφ(tx+ (1− t)y) = C,

which is possible only if Reφ(x) = Reφ(y) = C. ut

The Krĕın–Milman theorem asserts that under certain conditions extremal points exist
in abundance:

Theorem 4.6.3 (Krĕın–Milman theorem) Let E be a locally convex vector space, and
let ∅ 6= K ⊂ E be compact and convex. Then K := conv(ext K).

Proof Let K be the collection of all extremal, compact, convex subsets of K. By Lemma
4.6.2, K is not empty.

For K0 ∈ K, let K0 consist of those sets in K contained in K0. Let K0 be ordered by
set inclusion. By Zorn’s lemma, K0 has a minimal element, say S. Let x ∈ S, and assume
that there is y ∈ S \ {x}. Choose φ ∈ E∗ with Reφ(y) < Reφ(x). By Lemma 4.6.2,
Sφ ( S is an extremal compact, convex subset of S. Since S is an extremal subset of K,
this means that Sφ is also an extremal subset of K. This contradicts the minimality of S,
so that S = {x}. In particular, we see that

K0 ∩ ext K 6= ∅. (4.10)

Clearly,

K̃ := conv
(
ext K

)
⊂ K

holds, so that K̃ is compact. Assume that there is x0 ∈ K \ K̃. By Theorem 4.5.3, there
is φ ∈ E∗ such that

sup
x∈K̃

Reφ(x) < Reφ(x0) =: C. (4.11)

But then, by Lemma 4.5.2 again,

Kφ = {x ∈ E : Reφ(x) = C}

belongs to K. By (4.11), we have Kφ ∩ K̃ = ∅. This, however, contradicts (4.10) (with
K0 = Kφ). ut
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4.6.1 The Stone–Weierstraß theorem

We conclude these notes with a generalization of Theorem 2.3.3 whose proof makes use
of a number of powerful theorems we have encountered:

Theorem 4.6.4 (Stone–Weierstraß theorem) Let X be a compact Hausdorff space,
and let A be a closed subalgebra of C(X) such that:

(a) 1 ∈ A;

(b) if f ∈ A, then f̄ ∈ A;

(c) if x, y ∈ X with x 6= y, there there is f ∈ A such that f(x) 6= f(y).

Then A = C(X).

Proof Assume that A ( C(X). By Corollary 2.1.6, there is ψ ∈ C(X)∗ such that ‖ψ‖ = 1,
but ψ|A = 0. It follows that

K := {φ ∈ C(X)∗ : ‖φ‖ ≤ 1 and φ|A = 0} 6= {0}.

Clearly, K is convex and closed in the weak∗ topology. By Theorem 4.2.9, this means
that K is weak∗ compact and Theorem 4.6.3 implies that ext K 6= ∅. Let φ ∈ ext K; it
is easy to see that ‖φ‖ = 1. By Theorem B.3.8, there is a unique µ ∈M(X) such that

φ(f) =
∫
X
f(x) dµ(x) (f ∈ C(X)).

Let X0 := suppµ, and let x0 ∈ X0.
We claim that X0 = {x0}. Let x ∈ X \ {x0}. By (c), there is f1 ∈ A such that

β := f1(x) 6= f1(x0). By (a), we have β ∈ A and therefore f2 := f1 − β ∈ A. It follows
that f2(x0) 6= 0 = f2(x). Let f3 = |f2|2 = f2f̄2 ∈ A. Then (c) implies that f3 ∈ A, and it
is clear that f3(x) = 0 < f3(x0). Finally, let

f :=
1

‖f3‖∞ + 1
f3,

so that

f(x) = 0, f(x0) > 0, and 0 ≤ f < 1.

Since A is an algebra, we have fg, (1− f)g ∈ A for all g ∈ A and therefore

0 =
∫
fg dµ =

∫
(1− f)g dµ (g ∈ A).

It follows that fµ, (1− f)µ ∈ K. Let

α := ‖fµ‖ =
∫
f d|µ|.
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Since f(x0) > 0, there are ε > 0 and a neighborhood U of x0 such that f ≥ ε on U . It
follows that

α =
∫
f d|µ| ≥

∫
U
f d|µ| ≥ ε|µ|(U) > 0

because U ∩X0 6= ∅. In a similar fashion, one shows that α < 1. We also have

1− α = 1−
∫
f d|µ| =

∫
(1− f) d|µ| = ‖(1− f)µ‖.

Hence,

µ = α
fµ

‖fµ‖
+ (1− α)

(1− f)µ
‖(1− f)µ‖

holds. Since µ ∈ ext K, this means that

µ =
fµ

‖fµ‖
,

i.e. f
‖µf‖ = 1 |µ|-alsmost everywhere. Since f is continuuos, f equals α on X0. Since

x0 ∈ X0, we have

α = f(x0) > f(x) = 0,

so that x /∈ X0. Consequently, X0 = {x0}. We thus have λ ∈ F with |λ| = 1 such that
µ = λδx0 . Since ∫

1 d(λδx0) = λ 6= 0,

this contradicts the choice of µ. ut

Corollary 4.6.5 Let ∅ 6= K ⊂ RN be compact, and let f ∈ C(K). Then, for each ε > 0,
there is a polynomial p in N variables such that ‖f − p‖ < ε.

Proof Apply Theorem 4.6.4 with

A := {p|K : p is a polynomial in N variables}.

It follows that A = C(K). ut

Definition 4.6.6 Let X and Y be compact Hausdorff spaces, and let f ∈ C(X) and
g ∈ C(Y ). Then f ⊗ g ∈ C(X × Y ) is defined through

(f ⊗ g)(x, y) := f(x)g(y) (x ∈ X, y ∈ Y ).

The tenor product C(X)⊗C(Y ) of C(X) and C(Y ) is defined as the linear span in C(X×Y )
of the set {f ⊗ g : f ∈ C(X), g ∈ C(Y )}.

Corollary 4.6.7 Let X and Y be compact Hausdorff spaces, and let f ∈ C(X×Y ). Then
C(X)⊗ C(Y ) is dense in C(X × Y ).

Proof Let A := C(X)⊗ C(Y ), and apply Theorem 4.6.4. ut
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Appendix A

Point set topology

We need point set topology in this course for two reasons:

• spaces of continuous functions are important examples of Banach spaces;

• later in this course, we need to consider topological vector spaces which are not
normed.

This appendix contains the necessary background in point set topology. For most
statements, I have included proofs.

A.1 Open and closed sets

A topological space is a set that has just enough structure, so that we can speak sensibly
of continuous functions on it. The notion of an open set is crucial:

Definition A.1.1 A topological space is a non-empty set X together with a family τ of
subsets of X such that the following properties are satisfied:

(i) ∅, X ∈ τ ;

(ii) if U is a family of sets in τ , then
⋃
{U : U ∈ U} ∈ τ ;

(iii) if U1, . . . , Un ∈ τ , then U1 ∩ · · · ∩ Un ∈ τ .

The family τ is called the topology of X.

Examples 1. Let (X, d) be a metric space. Define U ⊂ X as open if, for each x ∈ U ,
there is ε > 0 such that

Bε(x) := {y ∈ X : d(x, y) < ε} ⊂ U.

It is well known that the collection of open subsets of X forms a topology. Different
metrics can induce the same topology.
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2. The collection of all subsets of any non-empty set is a topology. This topology is
called the discrete topology of X.

3. For any non-empty set X, the collection {∅, X} is a topology. This topology is
called the chaotic topology of X.

Exercise A.1 Verify the statement made in the first example. Show that, if (X, d) is any metric
space, then

X ×X → [0,∞), (x, y) 7→ d(x, y)
1 + d(x, y)

is also a metric and induces the same topology as d.

Definition A.1.2 Let (X, τ) be a topological space.

(i) A subset U of X is open if U ∈ τ .

(ii) A subset F of X is closed if X \ F is open.

Passing to complements, the following is an immediate consequence of Definitions
A.1.1 and A.1.2.

Theorem A.1.3 Let X be a topological space. Then the following are true:

(i) ∅ and X are closed;

(ii) if F is a family of closed subsets of X, the
⋂
{F : F ∈ F} is closed;

(iii) if F1, . . . , Fn are closed, then F1 ∪ · · · ∪ Fn is closed.

A.2 Continuity

In order to define continuity for functions between arbitrary topological spaces, we first
introduce the notion of a neighborhood:

Definition A.2.1 Let X be a topological space, and let x ∈ X. A set U ⊂ X is called a
neighborhood of x if there is an open set V ⊂ U such that x ∈ V .

Exercise A.2 Show that a subset of a topological space is open if and only if its a neighborhood
of each of its points.

Definition A.2.2 Let X and Y be topological spaces. A function f : X → Y is continu-
ous at x0 ∈ X if f−1(U) is a neighborhood of x0 for each neighborhood U of f(x0). If f
is continuous at each x ∈ X, we simply say that f is continuous.
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Exercise A.3 Let X and Y be topological spaces. Show that f : X → Y is continuous if and
only if f−1(U) is open for each open U ⊂ Y if and only if f−1(F ) is closed for each closed F ⊂ Y .

For metric spaces, Definition A.2.2 is (equivalent to) the usual definition:

Proposition A.2.3 Let (X, d) and (Y,∆) be metric spaces, and let x0 ∈ X. Then f :
X → Y is continuous at x0 in the usual sense if and only if f is continuous at x0 in the
sense of Definition A.2.2.

Proof Suppose that f is continuous at x0 in the usual sense. Let U be a neighborhood
of f(x0). By the definition of a neighborhood, there is an open set V ⊂ U such that
f(x0) ∈ V . From the definition of an open set in a metric space, there is ε > 0 such that
Bε(f(x0)) ∈ V . From the definition of continuity in the context of metric spaces, there is
δ > 0 such that, for all x ∈ X,

d(x0, x) < δ =⇒ ∆(f(x0), f(x)) < ε, (A.1)

i.e.

Bδ(x0) ⊂ f−1(Bε(f(x0))) ⊂ f−1(V ) ⊂ f−1(U).

Since Bδ(x0) is an open set containing x0, this means that f−1(U) is a neighborhood of
x0.

Suppose conversely that f is continuous at x0 in the sense of Definition A.2.2. Let
ε > 0. Then Bε(f(x0)) is a neighborhood of f(x0). By Definition A.2.2, f−1(Bε(f(x0)))
is a neighborhood of x0, so that there is an open set V ⊂ f−1(Bε(f(x0))) with x0 ∈ V .
From the definition of open sets in metric spaces, there is δ > 0 such that

Bδ(x0) ⊂ V ⊂ f−1(Bε(f(x0))).

But this just states that (A.1) holds for all x ∈ X. ut

Exercise A.4 Show that, if X is a non-empty set equipped with the discrete topology, then each
function from X into any topological space is continuous.

Exercise A.5 Let X be a non-empty set equipped with its chaotic topology. Describe the con-
tinuous functions on X into a metric space.

Theorem A.2.4 Let X be a topological space, and let (fn)∞n=1 be a sequence of F-valued
continuous functions on X that converges uniformly to a function f on X. Then f is
continuous.
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Proof Let x0 ∈ X be arbitrary, and let U ⊂ F be a neighborhood of f(x0). Without loss
of generality (Why?), we may suppose that U = Bε(f(x0)) for some ε > 0. Since fn → f

uniformly on X, there is N ∈ N such that

|fn(x)− f(x)| < ε

3
(x ∈ X, n ≥ N). (A.2)

This means, in particular, that fN (x0) ∈ U . Let V := B ε
3
(fN (x0)). Then V is a neigh-

borhood of fN (x0). By Definition A.2.2, this means that f−1
N (V ) is a neighborhood of x0.

Hence, there is an open set W ⊂ f−1
N (V ) with x0 ∈W .

For x ∈W , we have

|f(x)− f(x0)| ≤ |f(x)− fN (x)|+ |fN (x)− fN (x0)|+ |fN (x0)− f(x0)|

<
ε

3
+ |fN (x)− fN (x0)|+ ε

3
, by (A.2),

<
ε

3
+
ε

3
+
ε

3
, by the choice of W,

= ε,

i.e. f(x) ∈ Bε(f(x0)). Hence, W ⊂ f−1(Bε(f(x0))), so that f−1(Bε(f(x0))) is a neighbor-
hood of x0. ut

A.3 (Local) compactness

You probably have already encountered the notion of compactness in the context of metric
spaces. Since we have a notion of openness, in arbitrary topological spaces, we can define
compact topological spaces through a finite covering property:

Definition A.3.1 A topological space K is called compact if for any family U of open
subsets of K such that K =

⋃
{U : U ∈ U} there are U1, . . . , Un ∈ U such that K =

U1 ∪ · · · ∪ Un.

Exercise A.6 Show that a topological space X is compact if and only if X has the finite inter-
section property , i.e. for each family F of closed subsets of X such that

⋂
{F : F ∈ F} = ∅, there

are F1, . . . , Fn ∈ F such that F1 ∩ · · · ∩ Fn = ∅.

The following theorem, which we state without proof, characterizes the compact metric
spaces:

Theorem A.3.2 Let X be a metric space. Then the following are equivalent:

(i) X is compact.

(ii) Every sequence in X has a convergent subsequence.
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Example A subset of FN is compact precisely when it is closed and bounded (this is
immediate from the Heine–Borel theorem).

We also need to speak of compactness of subsets of arbitrary topological spaces:

Definition A.3.3 Let (X, τ) be a topological space, and let Y ⊂ X be non-empty. Then

τ |Y := {Y ∩ U : U ∈ τ}

is the relative topology on X induced by τ .

Exercise A.7 Let (X, τ) be a topological space, and let Y ⊂ X be non-empty. Show that (Y, τ |Y )
is a topological space.

When saying that a certain subset of a topological space is compact (or has some other
topological property), we just mean that it is compact (or has that other property) with
respect to its relative topology.

Theorem A.3.4 Let K be a compact, topological space, let Y be a topological space, and
let f : K → Y be continuous. Then f(K) is compact.

Proof Let U be a family of open sets of X such that f(K) ⊂
⋃
{U : U ∈ U}. Then

{f−1(U) : U ∈ U} is a family of open subsets of K such that K =
⋃
{f−1(U) : U ∈ U}.

Since K is compact, there are U1, . . . , Un ∈ U such that

K = f−1(U1) ∪ · · · ∪ f−1(Un)

and hence

f(K) ⊂ U1 ∪ · · · ∪ Un.

From the definition of the relative topology on f(K), this means that f(K) is compact
(in its relative topology). ut

Corollary A.3.5 Let K be a compact topological space, and let f : K → R be continuous.
Then f is bounded and attains both its minimum and its maximum on K.

Exercise A.8 Derive Corollary A.3.5 for Theorem A.3.4.

In a metric space, we can always separate two distinct points through disjoint open
balls. The following definition is a generalization of this property of metric spaces:

Definition A.3.6 A topological space X is called a Hausdorff space if, for any x, y ∈ X
with x 6= y, there are open sets U, V ⊂ X with U ∩ V = ∅, x ∈ U , and y ∈ V .
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Example Every metric space is a Hausdorff space.

Exercise A.9 Give an example of a compact topological space which is not a Hausdorff space.

Proposition A.3.7 Let K be a compact topological space and let F ⊂ K be closed. Then
F is compact.

Proof Let U be a family of open sets of K such that F ⊂
⋃
{U : U ∈ U}. It follows that

K =
⋃
{U : U ∈ U} ∪ (K \ F ).

Since K is compact and K \ F is closed, there are U1, . . . , Un ∈ U such that

K = U1 ∪ · · · ∪ Un ∪ (K \ F )

and thus

F ⊂ U1 ∪ · · · ∪ Un.

This complete the proof. ut

Proposition A.3.8 Let X be a Hausdorff space, and let K ⊂ X be compact. Then K is
closed in X.

Proof Let x ∈ X \K. For each y ∈ K, there are thus open subsets Uy and Vy of X with
Uy ∩ Vy = ∅ and x ∈ Uy and y ∈ Vy. Since K ⊂

⋃
{Vy : y ∈ K} and K is compact, there

are y1, . . . , yn ∈ K such that K = Vy1 ∪ · · · ∪ Vyn . Let

Wx := Uy1 ∩ · · · ∩ Uyn .

Then Wx is open such that x ∈Wx and Ux ⊂ X \K.
Since x ∈ X \K was arbitrary, we can define Wx for each such x. Consequently,

X \K =
⋃
{Wx : x ∈ X \K}

is open, so that K is closed. ut

Exercise A.10 Does Proposition A.3.8 remain true from compact subsets of non-Hausdorff s-
paces.

The following theorem is often useful when it comes to establishing the continuity of
a function:

Theorem A.3.9 Let K be a compact topological space, let X be a Hausdorff space, and
let f : K → X be continuous and bijective. Then f−1 : X → K is also continuous.
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Proof Let F ⊂ K be closed. We have to show that (f−1)−1(F ) = f(F ) is closed. By
Proposition A.3.7, F is compact and so is f(F ) by Theorem A.3.4. Since X is Hausdorff,
this means that f(F ) is closed. ut

Exercise A.11 Give an example that shows that Theorem A.3.9 becomes false if we drop the
demand that X be Hausdorff.

Definition A.3.10 Let X be a topological space, and let S ⊂ X be arbitrary. Then the
closure of S in X is defined as

S =
⋂
{F : F ⊂ X is closed with S ⊂ F}.

Definition A.3.11 Let X be a topological spaces. Then S ⊂ X is called relatively
compact if S = ∅ or if S is compact.

Definition A.3.12 A topological space X is called locally compact if for each point in X
has a relatively compact neighborhood.

Example F
N is locally compact, but not compact.

Definition A.3.13 Let X be a locally compact Hausdorff space. A continuous function
f : X → F is said to vanish at infinity if, for each ε > 0, there is a compact subset K of
X such that |f(x)| < ε for all x ∈ X \ K. We write C0(X,F) for the linear space of all
continuous function on X into F that vanish at infinity.

Exercise A.12 Show that for X = R this yields the usual definition of a function vanishing at
infinity, i.e.

f ∈ C0(R,F) ⇐⇒ lim
t→∞

f(t) = 0.

We state the following theorem without proof; (i) is a consequence of Urysohn’s lemma,
and (ii) is proved on page 4.

Theorem A.3.14 Let X be a locally compact Hausdorff space. Then:

(i) For each compact subset K of X and each closed subset F of X such that K∩F = ∅,
there is f ∈ C0(X,R) such that f |F ≡ 0 and f |K ≡ 1.

(ii) (C0(X,F), ‖ · ‖∞) is a Banach space.

Exercise A.13 Prove Theorem A.3.14(ii).
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A.4 Convergence of nets

In metric spaces, topological concepts such as closedness and continuity can be charac-
terized through convergent sequences. This is not possible anymore for topological spaces
(see below), but there is an appropriate substitute:

Definition A.4.1 A non-empty set A is called directed if there is an oder relation ≺ on
A such that:

(a) If α ≺ β and β ≺ γ, then α ≺ γ.

(b) If α ≺ β and β ≺ α, then α = β.

(c) For any α, β ∈ A, there is γ ∈ A such that α ≺ γ and β ≺ γ.

Definition A.4.2 A net in a non-empty set S is a function from a directed set into S.

Example All sequences are nets.

If A is a directed set and s : A→ S is a net, we denote s by (sα)α∈A and write sα for
s(α); if the index set A is obvious or irrelevant, we often write (sα)α.

Definition A.4.3 Let X be a topological space, let x ∈ X, and let (xα)α be a net in
X. Then (xα)α converges to x — in symbols x = limα xα or xα

α→ x — if, for each
neighborhood U of x, there is an index α such that xβ ∈ U for each index β with α ≺ β.

Proposition A.4.4 Let X a Hausdorff space, let x, y ∈ X, and let (xα)α be a net in X

that converges to both x and y. Then x = y.

Proof Assume that x 6= y. Then there are disjoint open sets U, V ⊂ X such that x ∈ U
and y ∈ V . Since x = limα xα, there is αx such that xα ∈ U for all α such that αx ≺ α.
Since y = limα xα, there is αy such that xα ∈ V for all α such that αy ≺ α. Choose β
such that αx ≺ β and αy ≺ β. Then xα ∈ U ∩ V for all α � β, which is impossible since
U ∩ V = ∅. ut

Exercise A.14 Let X be a nonempty set equipped with the chaotic topology. Show that every
net in X converges to every point of X.

A.5 Closedness and continuity via nets

Theorem A.5.1 Let X be a topological space, and let S be a non-empty subset of X.
Then the following are equivalent for x ∈ X:

(i) x ∈ S;
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(ii) there is a net (xα)α in S such that x = limα xα.

Proof (i) =⇒ (ii): Let Nx denote the collection of all neighborhoods of x. For U, V ∈ Nx
define:

U ≺ V :⇐⇒ U ⊃ V.

Then Nx is directed. By the definition of S, there is, for each U ∈ Nx, an element
xU ∈ U ∩ S. Then (xU )U∈Nx is a net in S such that x = limU xU .

(ii) =⇒ (i): Let (xα)α be a net in S such that x = limα xα, and assume that x ∈ U :=
X \ S. Then there is α such that xβ ∈ U ⊂ X \ S for β � α, which is impossible. ut

This theorem is wrong for sequences:

Example Let X be an uncountable set, and define a subset of X as open if it is empty
or has countable complement. It follows that a closed subset of X is the whole space
or countable. Pick x ∈ X. Then the only closed set containing S := X \ {x} is X, so
that S = X. Assume that there is a sequence (xn)∞n=1 in S such that xn

n→ x. Then
U := X \ {x1, x2, . . . } is an open neighborhood of x, but xn /∈ U for all n ∈ N.

Corollary A.5.2 Let X be a topological space. Then the following are equivalent for a
non-empty subset F of X:

(i) F is closed;

(ii) for each net (xα)α in F that converges to x ∈ X, we have x ∈ F .

Proof (i) =⇒ (ii): Let (xα)α be a net in F with limit x ∈ X. Assume that x /∈ F , i.e.
x ∈ U := X \ F . Since U is a neighborhood of x, there is α such that xβ ∈ U for β � α.
But this is impossible, since (xα)α is a net in F .

(ii) =⇒ (i): It follows immediately from Theorem A.5.1 that F = F , so that F is
closed. ut

Theorem A.5.3 Let X and Y be topological spaces, and let x ∈ X. Then the following
are equivalent for a map f : X → Y :

(i) f is continuous at x;

(ii) for each net (xα)α in X such that xα
α→ x, we have f(xα) α→ f(x).

Proof (i) =⇒ (ii): Let U be a neighborhood of f(x). Then f−1(V ) ⊂ f−1(U) is open,
so that f−1(U) is a neighborhood of x. Since x = limα xα, there is an index α such that
xβ ∈ f−1(U) for β � α. But this means that f(xβ) ∈ U for β � α.
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(ii) =⇒ (i): Let U be a neighborhood of f(x), and assume towards a contradiction
that f−1(U) is not a neighborhood of x. Hence, V 6⊂ f−1(U) for each open subset V of
X with x in V . Let Vx denote the collection of all open subsets of X containing X. Then
Vx is directed in a natural way. By assumptions, we can choose xV ∈ V \ f−1(U) for each
V ∈ Vx. It is clear that limV xV = x (Why?). But since f(xV ) /∈ U for all V ∈ Vx, it
follows that f(xV ) 6→ f(x). ut

A.6 Compactness via nets

Definition A.6.1 Let A and B be directed sets. A map φ : B→ A is called cofinal if, for
each α ∈ A, there is β ∈ B such that φ(β) � α.

Definition A.6.2 Let X be a non-empty set, and let (xα)α∈A and (yβ)β∈B be nets in X.
Then (yβ)β∈B is a subnet of (xα)α∈A if yβ = xφ(β) for a cofinal map φ : A→ B.

Exercise A.15 Does a subnet of a sequence have to be again a sequence?

Proposition A.6.3 Let X be a topological space, let (xα)α be a net in X, and let x ∈ X
be a limit of (xα)α. Then each subnet of (xα)α converges to x.

Exercise A.16 Prove Proposition A.6.3.

Definition A.6.4 Let X be a topological space, and let (xα)α be a net in X. A point
x ∈ X is an cluster point of (xα)α if, for each α and for each neighborhood U of x, there
is β � α such that xβ ∈ U .

Proposition A.6.5 Let X be a topological space, and let (xα)α be a net in X. Then the
following are equivalent for x ∈ X:

(i) x is an cluster point of (xα)α;

(ii) there is a subnet of (xα)α converging to x.

Proof (i) =⇒ (ii): LetNx denote the collection of all neighborhoods of x. Let B := A×Nx.
For (α1, U1), (α2, U2) ∈ B define:

(α1, U1)≺̃(α2, U2) :⇐⇒ α1 ≺ α2 and U1 ⊃ U2.

This turns B into a directed set. Let (α,U) ∈ B. By the definition of an cluster point,
there is φ(α,U) ∈ A with φ(α,U) � α such that xφ(α,U) ∈ U . The map φ : B → A is
cofinal, and the net (xφ(α,U))(α,U)∈B converges to x.

(ii) =⇒ (i): Clear by definition. ut
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We can now prove the analogue of Theorem A.3.2 for general topological spaces:

Theorem A.6.6 For a topological space X the following are equivalent:

(i) X is compact;

(ii) each net in X has a convergent subnet.

Proof (i) =⇒ (ii): Let (xα)α be a net in X. By Proposition A.6.5, it is sufficient to show
that (xα)α has an cluster point. Assume that (xα)α has no cluster point. Then, for each
x ∈ X, there is a neighborhood Ux of x (which we can choose to be open) and an index
αx such that xβ /∈ Ux for β � αx. The family (Ux)x∈X is an open cover of X and thus has
a finite subcover {Ux1 , . . . , Uxn}. Chose an index α such that α � αj for j = 1, . . . , n.
Hence, for β � α

xβ /∈ Ux1 ∪ · · · ∪ Uxn = X,

which is absurd.
(ii) =⇒ (i): Assume that K is not compact. Then there is an open cover U which

has no finite subcover. Let F(U) be the collection of all finite subsets of U ordered by set
inclusion. For each U ∈ F(U), there is

xU ∈ X \
⋃
{U : U ∈ U} =

⋂
{X \ U : U ∈ U}

(otherwise, U would have a finite subcover). By hypothesis, the net (xU )U∈F(U) has an
cluster point x ∈ X. For any U ∈ U, and for any open neighborhood V of x, there
is V � {U} with xV ∈ V and thus V ∩ X \ U 6= ∅. Assume that x /∈ X \ U . Then
x ∈ U , so that U would be an open neighborhood of x; by the foregoing, we would have
U ∩X \ U 6= ∅, which is absurd. It follows that x ∈ X \ U . Since U ∈ U is arbitrary, we
have

x ∈
⋂
{X \ U : U ∈ U} = X \

⋃
{U : U ∈ U} = ∅,

which is again absurd. ut

A.7 Tychonoff’s theorem

Tychonoff’s theorem is possibly the deepest theorem in point set topology. It states that
compactness is preserved under arbitrary Cartesian products.

If τ and σ are two topologies, the τ is called coarser than σ if τ has fewer open sets
then σ (σ is then called finer than τ).
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Definition A.7.1 Let (Xi)i∈I be a family of topological spaces, let X :=
∏
i∈IXi, and

let πi : X → Xi be the projection onto the i-th coordinate. The product topology on X is
the coarsest topology such that the projections πi are all continuous.

Lemma A.7.2 Let (Xi)i∈I be a family of topological spaces, and let X :=
∏
i∈IXi. Then

the open subsets of X in the product topology are exactly the unions of sets of the form

π−1
i1

(Ui1) ∩ · · · ∩ π−1
in

(Uin), (A.3)

where n ∈ N, i1, . . . , in ∈ I, and Ui1 ⊂ Xi1 , . . . , Uin ⊂ Xin are open.

Proof The collection of all union of sets of the form (A.3) is a topology that makes the
projections continuous; hence, each open subset of X in the product topology is of that
form.

Conversely, any topology making the projections continuous, must contain the sets of
the form (A.3) and thus their arbitrary unions. ut

Proposition A.7.3 Let (Xi)i∈I be a family of topological spaces, and let X :=
∏
i∈IXi.

The the following are equivalent for a net (xα)α in X and a point x ∈ X:

(i) xα
α→ x in the product topology;

(ii) πi(xα) α→ πi(x) for each i ∈ I.

Proof (i) =⇒ (ii): This is clear by Theorem A.5.3, since the projections are continuous.
(ii) =⇒ (i): Let U be a neighborhood of x ∈ X. By Lemma A.7.2, there are n ∈ N,

i1, . . . , in ∈ I, and open sets Ui1 ⊂ Xi1 , . . . , Uin ⊂ Xin with

x ∈ π−1
i1

(Ui1) ∩ · · · ∩ π−1
in

(Uin) ⊂ U.

By hypothesis, there is α such that πij (xβ) ∈ Uij for β � α and j = 1, . . . , n. This,
however, means that

xβ ∈ π−1
i1

(Ui1) ∩ · · · ∩ π−1
in

(Uin) ⊂ U

for β � α. ut

Exercise A.17 Let (Xi)i∈I be a family of Hausdorff spaces. Show that
∏
i∈IXi equipped with

the product topology is also Hausdorff.

Theorem A.7.4 (Tychonoff’s theorem) Let (Xi)i∈I be a family of compact topological
spaces. Then X :=

∏
i∈IXi equipped with the product topology is also compact.
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Proof Let (xα)α be a net in X. Let J ⊂ I; we call an element x ∈ X a J-partial cluster
point of (xα)α if x|J is an cluster point of (xα|J)α in

∏
i∈JXi. We call x ∈ X a partial

cluster point of (xα)α if it is a J-partial cluster point of for some J ⊂ I; J is called the
domain of x.

Let P be the set of all partial cluster points of (xα)α. Let x1, x2 ∈ P. We define

x1 ≤ x2 :⇐⇒ domain of x1 ⊂ domain of x2 and x2|domain of x1 = x1.

Since each Xi is compact, (xα)α has {i}-partial cluster points for each i ∈ I.
Let K be a totally ordered subset of P. Let J :=

⋃
{domain of x : x ∈ K}. Define

y ∈
∏
j∈JXj by letting y(j) := x(j) if j ∈ domain of x. Since K is totally ordered, y is

well defined. We claim that y is a J-partial cluster point of (xα)α. Let U ⊂
∏
j∈JXj be a

neighborhood of y. By Lemma A.7.2, we may suppose that

U = π−1
j1

(Uj1) ∩ · · · ∩ π−1
jn

(Ujn),

where n ∈ N, j1, . . . , jn ∈ J, and Uj1 ⊂ Xj1 , . . . , Ujn ⊂ Xjn are open. Clearly, for each α

there is β � α such that

xβ(jk) = πj(xβ) ∈ Ujk (k = 1, . . . , n),

so that xβ ∈ U .
By Zorn’s lemma, P has a maximal element x with domain J. Assume there is i ∈ I\J.

There is a subnet (xαβ )β of (xα)α such that πj(xαβ )
β→ πj(x) for each j ∈ J. Since Xi is

compact, we may find a subnet (xαβγ )γ of (xαβ )β such that πi(xαβγ )γ converges to some
xi in Xi. Define x̃ ∈

∏
j∈J∪{i}Xj by letting x̃|J = x and x̃(i) = xi. It follows that x̃ is a

J ∪ {i}-partial cluster point of (xα)α, which contradicts the maximality of x. ut
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Appendix B

Measure and integration

Like point set topology, measure theory is an important source of examples in functional
analysis.

In this appendix, I have collected the definitions and results we need. Proofs are not
given.

B.1 Measure spaces

Definition B.1.1 Let Ω be a set. A σ-algebra over Ω is collection S of subsets of Ω such
that the following are satisfied:

(a) Ω ∈ S;

(b) if A ∈ S, then Ac ∈ S;

(c) if (An)∞n=1 is a sequence in S, then
⋃∞
n=1An ∈ S.

The pair (Ω,S) is called a measurable space.

Examples 1. P(Ω) is a σ-algebra.

2. {A ⊂ Ω : A or Ac is countable} is a σ-algebra.

3. {A ⊂ Ω : A or Ac is finite} is not a σ-algebra if Ω is infinite.

4. If S ⊂ P(Ω) is arbitrary, there is a smallest σ-algebra over Ω containing S; this
σ-algebra is called the σ-algebra generated by S. If Ω is a topological space, the
σ-algebra generated by its open subsets is called the Borel σ-algebra over Ω; we
denote it by B(Ω).

Definition B.1.2 Let (Ω,S) be a measurable space. A (positive) measure on (Ω,S) is
a function µ : S→ [o,∞) such that:
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(a) µ(∅) = 0;

(b) µ (
⋃∞
n=1An) =

∑∞
n=1 µ(An) for each sequence (An)∞n=1 of pairwise disjoint sets in

S.

The triple (Ω,S, µ) is called a measure space.

Examples 1. Counting measure: Ω any set; S = P(Ω); µ(A) := |A|.

2. Dirac measure: Ω any set with ω ∈ Ω fixed; S = P(Ω); µ = δω, i.e. µ(A) = 1 if
ω ∈ A, otherwise µ(A) = 0.

3. N -dimensional Lebesgue measure: Ω = R
N ; S = B(RN ); µ = λN , i.e. N -dimensio-

nal Lebesgue measure.

Definition B.1.3 A measure space (Ω,S, µ) (or rather the measure µ) is called:

(a) σ-finite if there is a sequence (An)∞n=1 in S such that Ω =
⋃∞
n=1An and µ(An) <∞

for each n;

(b) finite if µ(Ω) <∞;

(c) a probability space (or rather probability measure) if µ(Ω) = 1.

Examples 1. N -dimensional Lebesgue measure is σ-finite, but not finite.

2. Any Dirac measure is a probability measure.

3. Counting measure is finite if and only if Ω is finite, and σ-finite if and only if Ω is
countable.

Definition B.1.4 Let (Ω,S, µ) be a measure space.

(a) A set N ∈ S is called a µ-zero set if µ(N) = 0.

(b) The completion of S with respect to µ is defined as

{S ⊂ Ω : there are A,N ∈ S with A ⊂ S ⊂ A ∪N and N is a µ-zero set}.

(c) A property is said to hold µ-almost everywhere (short: µ-a.e.) on Ω if there is a
µ-zero set N ∈ S such that the property in question holds on Ω \N .

Exercise B.1 Show that the completion of a σ-algebra with respect to a measure is again a
σ-algebra.

Example The completion of B(RN ) with respect to λN is the σ-algebra of Lebesgue
measurable sets.
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B.2 Definition of the integral

Definition B.2.1 Let (Ω,S) be a measurable space. A function f : Ω → R is called
elementary if there are α1, . . . , αn ∈ R and A1, . . . , An ∈ S such that

f =
n∑
k=1

αkχAk .

Definition B.2.2 Let (Ω,S, µ) be a measure space, and let f : Ω→ R be an elementary
function. The integral of f with respect to µ is defined as∫

f dµ :=
n∑
k=1

αkµ(Ak),

where f =
∑n

k=1 αkχAk with α1, . . . , αn ∈ R and A1, . . . , An ∈ S.

Remark It can be shown that the value
∫
f dµ is independent of the representation f =∑n

k=1 αkχAk .

Definition B.2.3 Let (Ω,S) be a measurable space. A function f : Ω → R ∪ {∞} is
called S-measurable if {ω ∈ Ω : f(ω) ≤ α〉} ∈ S for each α ∈ R.

Examples 1. Every elementary function is measurable.

2. If Ω is any topological space, then every continuous function f : Ω → R is Borel-
measurable.

3. Every increasing function f : R→ R ∪ {∞} is Borel-measurable.

4. Measurability is preserved under taking pointwise suprema, infima, and limits.

Proposition B.2.4 Let (Ω,S) be a measurable space, and let f : Ω → [0,∞] be S-mea-
surable. Then there is an increasing sequence (fn)∞n=1 of S-measurable functions on Ω
that converges to f pointwise; in case f is bounded, we can even chose that sequence in
such a way that we have uniform convergence.

Definition B.2.5 Let (Ω,S, µ) be a measure space, let f : Ω→ [0,∞] be S-measurable,
and let (fn)∞n=1 be as in Proposition B.2.4. Then the integral of f with respect to µ is
defined as ∫

f dµ := lim
n→∞

∫
fn dµ.

Remarks 1. It can be shown that the value
∫
f dµ is independent of the choice of the

sequence (fn)∞n=1.
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2. As the limit of an increasing sequence
∫
f dµ always exists, but may be ∞.

3. If
∫
f dµ <∞, then {ω ∈ Ω : f(ω) =∞} is a µ-zero set.

4. We have always
∫
f dµ ≥ 0, and

∫
f dµ = 0 if and only if f = 0 µ-almost everywhere.

Definition B.2.6 Let (Ω,S, µ) be a measure space. A measurable function f : Ω →
R ∪ {∞} is called µ-integrable if

∫
f+ dµ < ∞ and

∫
f− dµ < ∞. The integral of f with

respect to µ is defined as ∫
f dµ :=

∫
f+ dµ−

∫
f− dµ.

Remark Treating real and imaginary part separately, one can also define the integral of
C-valued functions.

Proposition B.2.7 Let (Ω,S, µ) be a measure space, and let

L1(Ω,S, µ) := {f : Ω→ R : f is integrable}.

Then:

(i) L1(Ω,S, µ) is a linear space;

(ii) the integral is linear on L1(Ω,S, µ), i.e.∫
(αf + βg) dµ = α

∫
f dµ+ β

∫
g dµ (α, β ∈ R, f, g ∈ L1(Ω,S, µ));

(iii) the integral is positive, i.e. if f ≥ 0 µ-a.e. for some f ∈ L1(Ω,S, µ), then
∫
f dµ ≥ 0.

Examples 1. For (RN ,B(RN ), λN ) we get the familiar N -dimensional Lebesgue inte-
gral.

2. For (Ω,P(Ω), δω), every function f : Ω→ R is integrable, and we have∫
f δω = f(ω) (f ∈ L1(Ω,S, µ)).

3. For (N,P(N), µ) with µ counting measure, a function f : N→ R is integrable if and
only if the series

∑∞
n=1 f(n) converges absolutely; in this case, we have∫

f dµ =
∞∑
n=1

f(n).
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B.3 Theorems about the integral

The main advantage the Lebesgue integral has over the Riemann integral is the ease with
which it can be interchanged with pointwise limits. These limit theorems hold in a more
abstract measure theoretic context:

Theorem B.3.1 (monotone convergence theorem) Let (Ω,S, µ) be a measure spa-
ce, let (fn)∞n=1 be an increasing sequence of [0,∞]-valued, S-measurable functions on Ω,
and let f : Ω→ [0,∞] be their pointwise limit. Then∫

f dµ = lim
n→∞

∫
fn dµ.

Theorem B.3.2 (dominated convergence theorem) Let (Ω,S, µ) be a measure spa-
ce, let (fn)∞n=1 be a sequence of R ∪ {∞}-valued, µ-integrable functions functions on Ω,
and let f, g : Ω→ R ∪ {∞} be such that:

(a) f = limn→∞ fn µ-a.e.;

(b) g is µ-integrable;

(c) |fn| ≤ g µ-a.e. for all n ∈ N.

Then f is µ-integrable with ∫
f dµ = lim

n→∞

∫
fn dµ.

Definition B.3.3 Let (Ω,S) be a measurable space, and let µ and ν be measures on
(Ω,S). Then ν is said to be absolutely continuous with respect to µ (in symbols: ν � µ)
if every µ-zero set is already a ν-zero set.

Examples 1. Let (Ω,S) be a measure space, let µ be a measure on (Ω,S), and let
f : Ω→ [0,∞] be S-measurable. Define ν : S→ [0,∞] through

ν(A) :=
∫
fχA dµ (A ∈ S).

Then ν is a measure on (Ω,S) (which is finite if and only if f is µ-integrable) such
that ν � µ.

2. Let α ∈ BV [a, b]. Then there is a unique measure µ on ([a, b],B([a, b])) such that

µ([c, d)) = α(d)− α(c) (c, d ∈ [a, b])

(the integral with respect to µ is just the Riemann–Stieltjes integral with respect
to α). The measure µ is absolutely continuous with respect to Lebesgue measure if
and only if α is absolutely continuous.
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Theorem B.3.4 (Radon–Nikodým theorem) Let (Ω,S) be a measurable space, and
let µ and ν be measures on (Ω,S) such that ν � µ and µ is σ-finite. Then there is a
S-measurable function f : Ω→ [0,∞] such that

ν(A) :=
∫
fχA dµ (A ∈ S).

Any two such functions must be equal µ-a.e..

Remark It is necessary that µ be σ-finite in the Radon–Nikodým theorem: A straight-
forward counterexample for non-σ-finite µ is (R,B(R)) with counting measure as µ and
Lebesgue measure as ν.

Definition B.3.5 Let (Ω,S) be a measurable space. A complex measure on (Ω,S) is a
function µ : S→ C such that:

(a) µ(∅) = 0;

(b) µ (
⋃∞
n=1An) =

∑∞
n=1 µ(An) for each sequence (An)∞n=1 of pairwise disjoint sets in

S.

Remark Every complex measure µ has a so called Jordan decomposition, i.e. there are
(with some strings attached) uniquely determined finite measures µ1, µ2, µ3, and µ4 such
that µ = µ1 − µ2 + i(µ3 − µ4). A function is said to be µ-integrable if it is µj-integrable
for j = 1, . . . , 4. The integral of a µ-integrable function f is then defined as∫

f dµ :=
4∑
j=1

∫
g dµj .

Definition B.3.6 Let (Ω,S) be a measurable space, and let µ be a complex measure on
(Ω,S). The total variation of µ is defined as

‖µ‖ := sup


n∑
j=1

|µ(Aj)| : n ∈ N, Aj ∩Ak = ∅ for j 6= k, Ω =
n⋃
j=1

Aj

 .

Definition B.3.7 Let Ω be a locally compact space. A (positive) measure µ on (Ω,B(Ω))
is called regular if

(a) µ(K) <∞ for all compact K ⊂ Ω,

(b) µ(A) = inf{µ(U) : A ⊂ U ⊂ Ω with U open} for all A ∈ B(Ω), and

(c) µ(U) = sup{µ(K) : K ⊂ U is compact} for all open U ⊂ Ω.
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A complex measure is called regular if all the measures occurring in its Jordan decomposi-
tion are regular. The collection of all regular, complex measures on (Ω,B(Ω)) is denoted
by M(Ω).

Example N -dimensional Lebesgue measure is regular.

Theorem B.3.8 (Riesz representation theorem) Let Ω be a locally compact space.
Then T : M(Ω)→ C0(Ω)∗ with

(Tµ)(f) :=
∫
f dµ (µ ∈M(Ω), f ∈ C0(Ω))

is a linear bijection such that

‖Tµ‖ = ‖µ‖ (µ ∈M(Ω)).

Remark The Riesz representation theorem is also valid over R.
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